• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E

    2017-04-18 07:09:03WANGRuiZHUQingkeMAHaoWANGYu
    中國水土保持科學(xué) 2017年1期
    關(guān)鍵詞:若爾蓋源區(qū)土壤水分

    WANG Rui,ZHU Qingke?,MA Hao,WANG Yu

    (1.Forestry Ecological Engineering Research Center,School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China; 2.State Forestry Administration,Northwest Institute of Forest Inventory and Planning and Design,710048,Xi'an,China)

    Spatial and temporal variations of the surface soil moisture in the source region of the Yellow River from 2003 to 2010 based on AMSR-E

    WANG Rui1,ZHU Qingke1?,MA Hao2,WANG Yu1

    (1.Forestry Ecological Engineering Research Center,School of Soil and Water Conservation,Beijing Forestry University,100083,Beijing,China; 2.State Forestry Administration,Northwest Institute of Forest Inventory and Planning and Design,710048,Xi'an,China)

    [Background]Hydrological processes in the source region of the Yellow River(SRYR)are increasingly attracting local concern,particularly when coupled with a changing climate.Nonetheless, large-scale spatial and temporal variations in soil moisture have received minimal research attention compared to other hydrological variables in the area.[Methods]Based on a two-channel retrieval method with a Qpmodel through monthly regression analysis and Advanced Microwave Scanning Radiometer-EOS(AMSR-E)soil moisture data,we investigate the spatial and temporal variations of the surface soil moisture and its influencing factors in the SRYR and through five natural zonings in the SRYR during 2003-2010.[Results]Through successive corrections with the dual-channel retrieval algorithm with the Qpmodel and the monthly regression analysis,the AMSR-E soil moisture shows strong agreement with in situ data in the SRYR.The average annual surface soil moisture in the SRYR is 0.140-0.380 cm3/cm3.There is a decreasing trend in the moisture content in the entire SRYR over the study period (2003-2010).Generally,a decreasing trend occures in the areas with higher initial soil moisture values from 2003 to 2010,while increasing trend in the areas with lower initial soil moisture concentrations over the same period.The soil moisture is highly positively correlated with precipitation(r=0.80,P<0.01)and the NDVI(r=0.79,P<0.01)over the entire year.The soil moisture is also negatively correlated with air temperature in months with high temperatures(from April to September)and positively correlated with air temperature in months with low temperatures(from January to March and from October to December).[Conclusions]This paper illustrates that the surface soil moisture of the SRYR has the tendency of drying,and precipitation and vegetation account for the decrease of soil moisture.Results of this paper provide an effective way for AMSR-E official soil moisture products application,would help to understand the hydrological process and its response to climate change,and have a scientific significance for ecological environment construction in Plateau.

    AMSR-E;surface soil moisture;the source region of the Yellow River

    0 Introduction

    Surface soil moisture exists within the interface of the atmosphere,pedosphere,and biosphere.It plays a major role in the distribution of sensible heat and latent heat in solar net radiation,as well as in the runoff and infiltration process during precipitation.It provides important moisture source to cloud for precipitation by evaporation[1].It also plays the determined role in dynamic variation of deep soil moisture[2].Therefore,it is a critical initial parameter for simulating land surface processes such as climate and ecology.

    Because the soil moisture is strongly variable in space and time,traditionalin situstation monitoring methods are ineffective in assessing soil moisture on regional spatial or wide temporal scales;while microwave remote sensing provides an effective alternative for long-term real-time dynamic monitoring of soil moisture[3-4].As the first passive microwave sensor to provide a global soil moisture product,the AMSR-E has been being widely used.For example,Draper et al.[5]stated that soil moisture datasets by AMSR-E accurately reported the soil moisture in Australia.Zahid and Rasul[6]used AMSR-E data to analyze the spatial and temporal variation of soil moisture during crop planting season of Pakistan from 2003 to 2010.Chen et al.[7]verified the reliability of the AMSR-E soil moisture product in the Xilinhot grassland plots in China.Xi et al.[8]compared the accuracies of the three AMSR-E soil moisture products(JAXA,NASA,and VUA)in the Qinghai-Tibet Plateau(QTP),and reported that NASA and VUA presented higher retrieval accuracy. However,the official dynamic range of soil moisture was small,and therefore,which could not reflect any inter-annual trends.

    Several studies have sought to improve the AMSR-E original retrieval algorithm by introducing theQpsurface radiation model[9],and to validate this improved algorithm and the retrieval accuracy usingin situmeasured data[10-11].In addition,regression analysis relatingin situdata to the remote sensing products reduces the error in soil moisture estimation with the AMSRE[11,12].For instance,Feng et al.[13]used monthly regression analysis and the results on the soil moisture variations over the Poyang Lake basin in China were improved.

    In order to determine the most effective method, we intend to compare and validate the various AMSR-E soil moisture products in this study,including those retrieved by the dual-channel retrieval algorithm with theQpmodel(SMD),those using the linear regressioncorrected method(SML),and the AMSR-E official soil moisture(SMO).We will then apply these results to the analysis of the spatial and temporal variation in soil moisture over the SRYR in China.The SRYR,located in the Qinghai-Tibet Plateau(QTP),is also the world's most important high-altitude biodiversity nature reserve[14].In recent decades,particularly as a result of climate change and human activity in the area,the SRYR has experienced environmental deterioration,including the loss of runoff flow in the main river,theshrinking of associated lakes,soil erosion,continued degradation of area wetlands,deterioration of adjacent grassland ecosystems,and increasing desertification. These problems have had a serious impact on the local ecology,economics such as livestock production,and sustainability of water resources within the Yellow River basin[15-17].

    Soil moisture is crucial to many ecological processes in alpine grasslands,including the ecological carrying capacity,grassland resilience,and grassland recovery and reconstruction from degradation[18].Soil moisture can cause variations in atmospheric heat content,which would impact the shift in seasons in the SRYR[19].Generally,few studies have examined the long-term or large-scale soil moisture dynamics as they relate to climate change.This research uses the AMSR-E soil moisture products,along within situdata,to examine the spatial and temporal variations of soil moisture in the SRYR,to assess the contributing factors to these variations,and to understand the response of soil moisture to climate change as well as regional ecological and hydrological processes.Finally,this research assesses water resources management and ecological restoration options for the study area.

    1 Materials and methods

    1.1 Study area

    The SRYR is a catchment with an area of approximately 145 300 km2above the Longyangxia Reservoir in the mainstream of the Yellow River,and its geographic range is between 32°10'and 36°59'N in latitude and between 95°54'and 103°24'E in longitude(Fig. 1).The climate in SRYR is a typical continental plateau,with an average annual air temperature of-3 to -4.1℃and an annual average precipitation of 300-700 mm.The landform of the Yellow River is mainly three basic types of the mountains with an average altitude of>4 000 m,hill terraces and plain,with undulating plateau planation surface as the main form.The underlying surface primarily consists of seasonal permafrost,alpine meadows,alpine swamps,alpine lakes, and wetlands[20].Based on the division of the Qinghai-Tibetan Plateau natural zone[21],the main regions of the SRYR are as followings:the wide valley basin of the YRSR(I),Zoige hummocky plateau(II),Golog Yushu plateau gully(III),Huangnan mountains(IV),and the eastern margin of the Qaidam mountains (V).

    Fig.1 DEM of the SRYR,displaying meteorological and in situ soil moisture sites.The purple bold lines represent the boundary of natural zonation

    1.2 AMSR-E data of soil moisture

    The AMSR-E L3 daily surface moisture data during June 2002 to October 2010 from the National Snow and Ice Data Center(NSIDC)was applied for this study,AMSR-E was on the Aqua satellite launched by NASA in 2002.It had 6 observation channels of 6.9, 10.7,18.7,23.8,36.5,and 89.0 GHz,each with dual vertical and horizontal polarized radiation measurements,totally 12 channels.The data were available twice daily from an ascending track(overpasses at 13∶30 local time)and a descending track(overpasses at 1∶30 local time)with EASE-Grid as projection method and a spatial resolution of 25 km.Because the AMSRE data in each day cannot cover a full day in the middle and low latitudes,we spliced the data from two adjacent days into one using the stitching algorithm.

    1.3 Measured soil moisture,meteorological data and NDVI

    The soil moisture data from the Maqu Soil Moisture Monitoring Network(MSMMN)located in the SRYR was utilized to calibrate and validate the AMSRE soil moisture product downloaded from the International Soil Moisture Network.The soil moisture was measured at different depths(5 cm,10 cm,30 cm,50 cm,and 80 cm below the surface)at 15-min intervals by the EC-TM ECH2O probe(Decagon Devices,Inc., USA).The EC-TM ECH2O is a capacitance sensor that measures the dielectric permittivity of the soil surrounding the probe's pins,and the root mean square error (RMSE)was 0.02-0.06 m3/m3[22].Since microwave can only reach a few centimeters deep in the ground,the soil moisture at the surface of the 5 cm observed in this paper will be used for analysis and verification.The MSMMN is located at Zoige hummocky plateau of the Southeast SRYR,near to the first big bend of the Yellow River,Maqu County of Gansu province;the underlying surface is alpine meadow.The MSMMN consisted of 20 sites(as shown in Fig.1 and Tab.1).The data from 8 sites of CST-01,CST-04, NST-02,NST-04,NST-07,NST-10,NST-12,and NST-13 were used for the calibration of AMSR-E soil moisture product,while the data from other 12 sites for the verification.In order to obtain the actual surface soil moisture during the passage of the satellite,the average measured soil moisture adjacent to the satellite transit time was chosen to represent the surface soil moisture of AMSR-E transit time.

    Mean monthly air temperature and precipitation data were obtained between 2002 and 2011 from 11 National Meteorological Information Center(http:∥data.cma.cn)stations located across the SRYR(as shown in Fig.1).Using ARCGIS10.2,we conducted a Kriging interpolation of the air temperature and precipitation point data,and then generated raster image datasets with the same spatial resolution and soil moisture by pre-processing such as projecting,clipping, and re-sampling.

    MOD13A3 is monthly vegetation index developed by the land group of NASA MODIS via a common algorithm,and can be downloaded from Geospatial Data Cloud(http:∥globalchange.nsdc.cn),and the data were pre-processed by radiation,geometrical and atmosphere calibration.The data for this study was the maximum monthly NDVI through the Maximum Value Composite(MVC)method with spatial resolution of 1 km.The re-sampled data calibrated by projection matched the data of soil moisture.

    1.4 Dual-channel retrieval algorithm withQpmodel

    In the retrieval of surface soil moisture from passive remote sensing data,how to remove the influence of the surface roughness is an important issue.Shi et al[9]solved this problem through the development of theQpmodel.TheQpmodel is a surface radiation model aimed at AMSR-E sensor parameters based on the Advanced Integral Model(AIEM),applied to high frequency and wide surface roughness.It can be expressed as:

    whereepis the rough surface emissivity(equivalent toevandehin formula 2 shown below),tqis the polarized fresnel transmittance,tpis the fresnel transmittance, andQpis the roughness parameter.The subscriptprepresents polarization(vertical or horizontal polarization).

    In this study,theSMDdataset is processed by a dual-channel retrieval algorithm withQpmodel devel-oped by Shi et al.[9].This algorithm is based on a single-channel retrieval algorithm developed by Jackson et al.[23],and calculates the land surface temperature on the basis of a 36.5-GHz vertical polarized brightness temperature[24].The algorithm eliminates the influence of vegetation on the microwave signal by determining the vegetation's optical thickness using the empirical relationship between the vegetation water content and the NDVI.The dual-channel retrieval algorithm withQpmodel is then introduced into the model in order to eliminate the influence of land surface roughness.The resulting soil moisture data is then taken as the inverse of the 10.65-GHz brightness temperature.The algorithm[11]can be expressed as follows:

    Tab.1 Overview of sites in the regional observation net for analyzing the soil moisture in Maqu

    where theSMDis the retrieved soil moisture data andevandehare the vertical and horizontal polarized rough surface emissivity,respectively,calculated as the ratio between the brightness temperature and land surface temperature.

    1.5 Monthly regression analysis

    Because the AMSR-E soil moisture retrieval algorithm is strongly influenced by seasonal changes in vegetation cover,applying a monthly regression analysis to the AMSR-E soil moisture product increased the accuracy of the soil moisture measurements.In the monthly regression analysis,thein situdata was used to calibrate the AMSR-E soil moisture[13].The regression can be expressed as:

    whereSMLis the calibrated final product,andSMAMSREis the original AMSR-E soil moisture product,whileaandbare the regression coefficients.

    1.6 Data analysis

    The trend of the soil moisture during 2003-2010 served as the changing rate representing drier or wetter conditions,annually.We used the trend line method to analyze the change in soil moisture in different areas and months during 2003-2010,with the slope of thetrend line calculated as:

    wherenis the number of years(for this study,n=8, year 2003-2010),xjis the soil moisture value injth year,andθis the slope of the trend line(θ>0 indicates that the change in the soil moisture innyears is increased).

    In this study,the validation accuracy of three soil moisture products has been proposed based on observed data.The coefficient of determination(R2),betweenin situdata and the soil moisture product,and the RMSE were computed as criteria for goodness of fit.

    The RMSE is defined as:

    whereSMinsituandSMvare the observed and validated values forith pair,andnis the total number of paired values.Smaller RMSE values corresponded to smaller differences between the validated values and the observed values.

    2 Results

    2.1 Calibration and verification of AMSR-E soil moisture data

    First,according to the dual-channel retrieval algorithm withQpmodel,we calibrated the AMSR-E soil moisture usingin situsoil moisture from eight sites in the MSMMN,and then validated them with data from the other 12 sites.Tab.2 shows that the accuracy ofSMDis higher thanSMO,and the RMSE is reduced from 0.041 to 0.036.At the same time,using the NST-14 site in 2009 as an example(see Fig.2),the range ofSMOis small(0.070-0.180 cm3/cm3),andSMDwas significantly higher than thein situsoil moisture in general situation,especially so in the months with little moisture.SMDis generally lower than thein situdata,and in periods with less precipitation and vegetation,SMDis similar to thein situdata.However,in periods with more precipitation and vegetation,SMDis much lower than thein situdata.Tab.2 shows that the AMSR-E soil moisture retrieval algorithm is not strongly influenced by precipitation,but rather seasonal changes in vegetation cover[3].Applying monthly regression analysis to the AMSR-E soil moisture product could mitigate the effect of the change in vegetation cover for increasing the accuracy of the soil moisture measurements.

    Next,we calculated the monthly calibration coefficient using equation(2)based onSMDbydual-channel retrieval algorithm withQpmodel as well asin situdata from eight sites,and obtained the soil moisture product(SML)using the linear regression-corrected method.Then,the accuracy ofSMLwas validated by data from the 12 sites.Tab.2 shows that the accuracy of theSMLis higher thanSMDandSMO.The range and trend curve ofSMLmost closely approximate those ofin situdata(see Fig.2).Consequently,we calibrated the AMSR-E soil moisture through the dual-channel retrieval algorithm withQpmodel and monthly regression analysis,and analyzed the spatial and temporal variations in soil moisture over the SRYR from 2003 to 2010.

    Tab.2 Validation accuracy of three soil moisture productscm3/cm3

    2.2 Spatial and temporal variations in soil moisture

    Average annual land surface soil moisture is 0.140-0.380 cm3/cm3as shown in Fig.3,the overall spatial distribution presented as high in the southeastern part and low in the northwestern part of the study area,i.e.,gradually rising from northwestern to southeastern part.It is similar to the soil moisture calculated for the Qinghai-Tibet Plateau[11],but smallerthan the range of 0.2-0.5 cm3/cm3in the SRYR from August to October 2009 by the Advanced Synthesis Aperture Radar(ASAR)[25].The average soil moisture in the Zoige hummocky plateau of the Southeast SRYR is 0.332 cm3/cm3,and this is the highest in the SRYR,and the area near the first bend of the Yellow River is of the highest soil moisture,and it is a key water conservation area in the SRYR.Correspondingly,Chen et al.[26]found that the soil moisture in the Zoige wetland was approximately 0.3 cm3/cm3from their soil moisture simulation experiment.The average annual soil moisture in the Golog Yushu plateau gully of the South SRYR is 0.275 cm3/cm3with the trend of high in the southeast and low in the northwest of the area.The soil moistures in the Huangnan mountains of the North SRYR,and the wide valley basin of the Northwest YRSR are low at averagely 0.215 cm3/cm3and 0.241 cm3/cm3,respectively.The soil moisture in the eastern margin of the Qaidam Mountains in the most northern part of SRYR is the lowest at 0.213 cm3/cm3.

    The soil moisture tends to decrease from 2003 to 2010 in the SRYR at a rate of 0.012 cm3/cm3yearly (see Fig.4).There is also a slight trend of drying in the northern Tibetan over a period of nearly ten years[27].Furthermore,the soil moisture in different natural zonation is inconsistent.In the Zoige hummocky plateau,Golog Yushu plateau gully and Huangnan mountains,the soil moisture gradually decreases at a rate of 0.067 cm3/cm3,0.011 cm3/cm3,and 0.012 cm3/cm3,respectively.In the wide valley basin of the YRSRandtheeasternmarginoftheQaidam mountains,the soil moisture increases at a rate of 0.026 cm3/cm3and 0.019 cm3/cm3,respectively.

    Fig.5 shows the spatial variations in the soil moisture averaged across the study period(2003-2010). Regarding to varied seasons and areas,the soil moisture in the spring(March,April,and May)decreases in most areas,especially in the Zoige hummocky plateau and in the Huangnan mountains;while the spring soil moisture in the wide valley basin of the YRSR and in the Golog Yushu plateau gully shows an increasing trend.In the summer(June,July,and August),the soil moisture increases in the eastern margin of the Qaidam Mountains and in the western Eling Lake in the wide valley basin of the YRSR,and decreases in the southern area of both Golog Yushu plateau gully and Huangnan mountains.In the autumn(September,October,and November),there are significant fluctuations in the soil moisture in the southern Zoige hummocky plateau and Golog Yushu plateau gully.In the winter(January,February,and December),the SRYR experiences freezing soils,as the mean air temperature drops below zero at times,resulting in minimal fluctuations in the soil moisture.On an individual monthly basis,the averaged soil moisture gradually increases in June,July,and September(when the moisture shows a significant increase of 0.036 cm3/cm3.In all other months,the averaged soil moisture decreases, with the greatest rate occurring in May(0.009 cm3/ cm3and November 0.008 cm3/cm3.

    2.3 Analysis of factors influencing soil moisture

    Tab.3 shows a significant positive correlation between precipitation,NDVI,and soil moisture in the SRYR,while air temperature is not correlated with the annual averaged soil moisture.Using monthly data, there is lower correlation between the precipitation and soil moisture in the January and December than the other months,likely due to hindered infiltration when the ground is frozen.From April to September inclusive,air temperature and soil moisture show a negative correlation,particularly in May and June when the soil moisture is most strongly subjected to evaporative influences from high ambient temperatures.From January to March and from October to December,air temperature and soil moisture are positively correlated,likely because in the freeze-thaw cycles when increased air temperatures facilitate the thaw of accumulated snow and frozen water,therefore increasing the soil moisture.The NDVI is also significantly correlated with the soil moisture,and it is consistent with previous studies[10,28].Vegetation affects the soil moisture by intercepting rainfall as well as regulating evaporation and infiltration.The correlations in May to July are generally lower than the other months,likely as the effect of air temperature on the soil moisture during this period increases,while the effect of vegetation alleviates.

    Fig.2 Comparisons of three types of soil moisture products and the measured soil moisture at the NST-14 site in 2009

    Fig.3 Average annual soil moisture during 2003-2010 in the SRYR

    Fig.4 Annual variance ratio of the soil moisture from 2003 to 2010 in the SRYR

    3 Conclusions and discussions

    With the validation ofin situdata,the accuracy of the soil moisture data by the dual-channel retrieval algorithm and monthly regression analysis is better than that by official AMSR-E product,i.e.,by which the soil moisture is accurately measured.However,due to the low spatial resolution of the passive microwave sensor,it cannot be applied in the retrieval of soil moisture in the middle and low-scales.In the subsequent measurement,the downscaling method that combines the high resolution data should be employed to acquire the soil moisture with more accurate and spatially higher.

    Tab.3 Correlation coefficients between the soil moisture and environmental factors including precipitation,air temperature,and NDVI

    In this study,we analyzed the temporal and spatial characterization of the soil moisture over the SRYR using the retrieval AMSR-E soil moisture products.

    Fig.5 Monthly variance ratio of the soil moisture from 2003 to 2010 in the SRYR(Unit:cm3/(cm3·a))

    Temporally,soil moisture is the highest in July and August and the lowest in January and December.Soil moisture generally tends to decrease in the spring, while increase again in the summer,have fluctuation in the autumn,and have little change in the winter.Spatially,the soil moisture is high in the southeastern section of the study area,and low in northwestern section; of which is the highest in the Zoige hummocky plateau, and lowest in the eastern margin of the Qaidam mountains.On the changing trend,the average soil moisture tends to decrease over the study period(2003 -2010)at a rate of 0.012 cm3/(cm3·a),with the highest rate of decrease(0.067 cm3/(cm3·a))in the Zoige hummocky plateau.The soil moisture in the wide valley basin of the YRSR and in the eastern margin of the Qaidam mountains increases slightly,i.e.,the soil moisture decreases the most in the areas with initially high soil moisture,while increases in the areas that originally had low soil moisture.

    Among all considered influencing factors,precipitation results in the greatest impact on soil moisture. Air temperature is negatively correlated with soil moisture during periods of high temperature,and positively during periods of low temperature.Actually,the climate in the SRYR shows a significant trend towards warmer and wetter during the study period[16,29],while the soil moisture in the SRYR generally decreases,indicating that the increase of precipitation is not enough to offset the evaporative loss from warming trends and the amount ofsoilwateravailableforvegetative growth.Previous study[30]stated that when the air temperature increased by 2℃and precipitation increasedby less than 15%,evapotranspiration prevailed and the drought-related stress on the ecosystem increased; which could be eliminated only precipitation increased b 15%at the same time.Warming trend must,therefore,be offset by large increases in precipitation in order to ensure sufficient soil moisture and stabilize vegetative growth.In the next 90 years,air temperature in the QTP expectedly increases by 2.5℃[31],while the increase of precipitation will not exceed 5%over the next 30-50 years[32].In another words,the increasing precipitation would not enough to compensate the negative effect of increasing air temperature,which would thereby intensify the drought trend in the SRYR. The NDVI and soil moisture is positively correlated.Vegetation degradation further contributes to lowering soil moisture,especially significantly in the surface soil layers,and the highest reduction to the surface soil moisture was 38.6%[28].In the source region of 3 Rivers(Yangtze River,the Yellow River,and Lancang River)in the QTP,the ecological degradation of meadows also showed a strong impact on soil water conservation[33],and thus,restoration and reconstruction of degraded ecosystems should play a positive effect on suppressing drought trend in the SRYR.Other than precipitation,air temperature,and NDVI,environmental factors such as topography,soil physical properties,and human activities cause certain impacts on soil moisture,and therefore they should be taken into the further research in the SRYR.

    4 References

    [1] FAMIGLIETTI J S,RUDNICKI J W,RODELL M.Variability in surface moisture content along a hillslope transect:Rattlesnake Hill,Texas[J].Journal of Hydrology, 1998,210(1/2/3/4):259.

    [2] KOSTER R D,SUAREZ M J,HIGGINS R W,et al. Observational evidence that soil moisture variations affect precipitation[J].Geophysical Research Letters,2003, 30(5):45.

    [3] NJOKU E G,JACKSON T J,LAKSHMI V,et al.2003. Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience&Remote Sensing,41(2):215.

    [4] LU H,KOIKE T,OHTA T,et al.Development of a soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E and SSM/I[C]∥IEEE International Geoscience and Remote Sensing Symposium,2007:1177.

    [5] DRAPER C S,WALKER J P,STEINLE P J,et al. 2009.An evaluation of AMSR-E derived soil moisture over Australia[J].Remote Sensing of Environment,113(4): 703.

    [6] ZAHID M,RASUL G.Spatial trends of AMSR-E soil moisture across agro-climatic zones of pakistan 2003-2010[J].Pakistan Journal of Meteorology,2013,9 (18):23.

    [7] CHEN J,YANGang Z D,WU S L.Validation of AMSRE soil moisture products in the Xilinhot grassland plots [J].Meteorological Monthly,2011,37(3):334.

    [8] XI J J,WEN J,TIAN H,et al.Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau[J].Chinese Society of Agricultural Engineering,2014,30(13):194.

    [9] SHI J,JIANG L,ZHANG L,et al.Physically based estimation of bare-surface soil moisture with the passive radiometers[J].IEEE Transactions on Geoscience&Remote Sensing,2006,44(11):3145.

    [10] WANG A,SHI J,GONG H,et al.A quantitative model of soil moisture and instantaneous variation of land surface temperature[C]∥Geoscience and Remote Sensing Symposium.IEEE,2012:698.

    [11] LIU Q,DU J Y,SHI J C,et al.Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau[J].Science China, 2013,56(12):2173.

    [12] BROCCA L,HASENAUER S,LACAVA T,et al.2011 soil moisture estimation through ASCAT and AMSR-E sensors:an intercomparison and validation study across Europe[J].Remote Sensing of Environment,115 (12):3390.

    [13] FENG H H,LIU Y B.Spatial and temporal variation of soil moisture and its controlling factors over the Poyang lake basin from 2003 to 2009[J].Resources&Environment in the Yangtze Basin,2015,24(2):241.

    [14] FENG J,TAO W,XIE C.Eco-Environmental Degradation in the Source Region of the Yellow River,Northeast Qinghai-Xizang Plateau[J].Environmental Monitoring &Assessment,2006,122(122):125.

    [15] WANG G,LIU G,LI C.Effects of changes in alpine grassland vegetationcoveronhillslopehydrological processes in a permafrost watershed[J].Journal of Hydrology,2012,444-445(12):22.

    [16] LAN C,ZHANG Y,GAO Y,et al.The impacts of climate change and land cover/use transition on the hydrol-ogy in the upper Yellow River Basin,China[J].Journal of Hydrology,2013,502(2):37.

    [17] MENG F,SU F,YANG D,et al.Impacts of recent climate change on the hydrology in the source region of the Yellow River basin[J].Journal of Hydrology Regional Studies,2016,6:66.

    [18] GE Y,LU C,XIE G,et al.Grassland ecosystem services and their economic evaluation in Qinghai-Tibetan Plateau based on RS and GIS[C]∥Geoscience and Remote Sensing Symposium,2005.IGARSS'05.Proceedings.IEEE International,2005:2961.

    [19] YANG M,YAO T,GOU X,et al.The soil moisture distribution,thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang(Tibetan)Plateau[J].Journal of Asian Earth Sciences, 2003,21(21):457.

    [20] WEN J,XIN L,SHI X,et al.Numerical simulations of fractional vegetation coverage influences on the convective environment over the source region of the Yellow River[J].Meteorology&Atmospheric Physics,2013, 120(1/2):1.

    [21] ZHENG D,ZHANG R Z,YANG Q Y.On the natural zonation in the Qinghai-Xizang Plateau[J].Acta Geographica Sinica,1979,34(1):1.

    [22] DENTE L,VEKERDY Z,WEN J,et al.Maqu network for validation of satellite-derived soil moisture products [J].International Journal of Applied Earth Observation &Geoinformation,2012,17(1):55.

    [23] JACKSON T J,VINE D M L,HSU A Y,et al.Soil moisture mapping at regional scales using microwave radiometry:the Southern Great Plains Hydrology Experiment[J].Geoscience&Remote Sensing IEEE Transactions on,1999,37(5):2136.

    [24] HOLMES T R H,DE JEU R A M,OWE M,et al. Land surface temperature from Ka band(37 GHz)passive microwave observations[J].Journal of Geophysical Research Atmospheres,2009,114(4):83.

    [25] HE Y,WEN J,ZHANG T T,et al.A study on estimating soil moisture using microwave remote sensing combined with optical over the source region of the Yellow River[J].Remote Sensing Technology and Application,2013,28(2):300.

    [26] CHEN B L,LUO S Q,LU S H,et al.Simulation and improvement of soil temperature and moisture at Zoige station in source region of the Yellow River during freezing and thawing[J].Plateau Meteorology,2014,33 (2):337.

    [27] FU X,SONG C Q,ZHONG X K.On spatial and temporal variation of land surface moisture in Northern Tibetan[J].Advance in Water Science,2012,23(4): 464.

    [28] ZENG C,ZHANG F,WANG Q,et al.Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau[J].Journal of Hydrology, 2013,478(2):148.

    [29] TIAN H L,LAN Y C,WEN J,et al.Evidence for a recent warming and wetting in the source area of the Yellow River(SAYR)and its hydrological impacts[J]. Journal of Geographical Sciences,2015,25(6):643.

    [30] LI Y N,WANG Q J,ZHAO X Q,et al.The influence of climatic warming on the climatic potential productivity of alpine meadow[J].Acta Agrestia Sinica,2000,8 (1):23.

    [31] YU L,FENG C Y.Recent progress in climate change over tibetan plateau[J].Plateau&Mountain Meteorology Research,2012,32(3):84.

    [32] LIU X D,CHENG Z G,ZHANG R.The A1B scenario projection for climate change over the tibetan plateau in the next 30-50 Years[J].Plateau Meteorology,2009, 28(3):475.

    [33] WANG Y B,WANG G X,WU Q B,et al.The impact of vegetation degeneration on hydrology features of alpine soil[J].Journal of Glaciology&Geocryology,2010,32 (5):989.

    基于AMSR-E的黃河源區(qū)表層土壤水分時(shí)空變化

    王蕊1,朱清科1,馬浩2,王瑜1
    (1.北京林業(yè)大學(xué)水土保持學(xué)院,100083,北京;2.國家林業(yè)局西北林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,710048,西安)

    黃河源區(qū)生態(tài)環(huán)境和水文過程對(duì)氣候變化的響應(yīng)是該區(qū)域研究的熱點(diǎn)問題,但相對(duì)于其他環(huán)境和水文要素____而言,大尺度長序列的土壤水分時(shí)空分布特征研究不足。本文基于AMSR-E被動(dòng)微波遙感數(shù)據(jù)和地面實(shí)測數(shù)據(jù),首先采用引入Qp模型的雙通道反演算法校正AMSR-E土壤水分?jǐn)?shù)據(jù),獲得的土壤水分產(chǎn)品(SMD)精度高于官方提供的土壤水分產(chǎn)品(SMO),但其波動(dòng)范圍與實(shí)測數(shù)據(jù)有差異。之后采用逐月回歸分析法對(duì)SMD進(jìn)行二次校正,其土壤水分產(chǎn)品(SML)具有更高的精度且變化趨勢與實(shí)測數(shù)據(jù)一致。基于SML土壤水分產(chǎn)品,對(duì)黃河源區(qū)及其5個(gè)自然分區(qū)表層土壤水分的時(shí)空變化特征及其影響因素進(jìn)行分析。黃河源區(qū)年平均表層土壤水分為0.140~0.380 cm3/cm3,在2003—2010年間呈下降趨勢,在東南部土壤水分較高的若爾蓋丘狀高原區(qū)、黃南山地區(qū)和果洛玉樹高原寬谷區(qū)土壤水分呈下降趨勢,其中若爾蓋丘狀高原區(qū)的下降速率最快,而在西北部土壤水分較低的黃河源寬谷湖盆區(qū)和柴達(dá)木東緣山區(qū)呈增加趨勢;春季土壤水分呈下降趨勢,夏季呈增加趨勢,秋季的波動(dòng)較大,冬季的變化的不大,其中9月土壤水分增加率和5月減少率最大。土壤水分受降水和植被指數(shù)的影響最大,氣溫表現(xiàn)為在年高溫月份與土壤水分呈負(fù)相關(guān),在年低溫月份呈正相關(guān)。研究結(jié)果為AMSR-E土壤水分?jǐn)?shù)據(jù)的研究與應(yīng)用提供了依據(jù),有助于深化對(duì)區(qū)域尺度土壤水分格局及其對(duì)氣候變化響應(yīng)的研究,對(duì)高原生態(tài)環(huán)境建設(shè)有重大意義。

    AMSR-E;表層土壤水分;黃河源區(qū)

    S152.7;TP79

    :A

    :2096-2673(2017)01-0022-11

    2016- 10- 31

    2017- 02- 07

    10.16843/j.sswc.2017.01.004

    Funded:National Science and Technology Support Plan(2015BAD07B02)

    WANG Rui(1985-),female,doctoral student.Main research interests:soil erosion and remote sensing.E-mail:wangrui227@126.com.

    ?Corresponding author:ZHU Qingke(1956-),male,professor.Main research interests:Soil and water conservation,forestry ecological engineering.E-mail:zhuqingke@sohu.com.

    猜你喜歡
    若爾蓋源區(qū)土壤水分
    冬小麥蒸散源區(qū)代表性分析
    近30年來若爾蓋高寒濕地變化及其對(duì)區(qū)域氣候變化的響應(yīng)
    渭河源區(qū)徑流量變化特征及趨勢分析
    綠龜
    在若爾蓋草原(外一首〕
    中國詩歌(2016年7期)2016-12-05 20:43:22
    西藏高原土壤水分遙感監(jiān)測方法研究
    基于SPI指數(shù)的若爾蓋及其臨近地區(qū)降水變化特征分析
    不同覆蓋措施對(duì)棗園土壤水分和溫度的影響
    植被覆蓋區(qū)土壤水分反演研究——以北京市為例
    土壤水分的遙感監(jiān)測方法概述
    日韩精品青青久久久久久| 91av网站免费观看| 18禁观看日本| 88av欧美| 中文字幕人成人乱码亚洲影| 成人精品一区二区免费| 97超级碰碰碰精品色视频在线观看| 久久久久久久精品吃奶| 久久久国产欧美日韩av| 欧美日韩精品网址| 国产成人免费无遮挡视频| 亚洲一区高清亚洲精品| 在线观看午夜福利视频| 女生性感内裤真人,穿戴方法视频| 欧美一区二区精品小视频在线| 亚洲中文日韩欧美视频| 两人在一起打扑克的视频| 日韩大码丰满熟妇| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 91九色精品人成在线观看| 热99re8久久精品国产| 12—13女人毛片做爰片一| 大码成人一级视频| 18禁裸乳无遮挡免费网站照片 | 麻豆一二三区av精品| 十分钟在线观看高清视频www| 一个人观看的视频www高清免费观看 | 国产精品一区二区三区四区久久 | 香蕉丝袜av| 亚洲精品在线观看二区| 777久久人妻少妇嫩草av网站| 伦理电影免费视频| 人人妻人人澡人人看| 久久精品国产亚洲av高清一级| 国产免费av片在线观看野外av| 国产午夜福利久久久久久| netflix在线观看网站| 精品日产1卡2卡| 99在线视频只有这里精品首页| 一夜夜www| 亚洲熟妇熟女久久| 午夜福利欧美成人| 一区福利在线观看| 97人妻天天添夜夜摸| 国产精品野战在线观看| 欧美丝袜亚洲另类 | 久久久久久亚洲精品国产蜜桃av| 亚洲男人天堂网一区| 久久香蕉精品热| 一级毛片精品| 国产97色在线日韩免费| 嫁个100分男人电影在线观看| 91av网站免费观看| 黄频高清免费视频| 国产免费av片在线观看野外av| 亚洲专区中文字幕在线| 国产午夜福利久久久久久| 欧美精品啪啪一区二区三区| 久久影院123| 国产97色在线日韩免费| 欧美在线一区亚洲| 国产精品久久久av美女十八| 久久久久国产精品人妻aⅴ院| 真人做人爱边吃奶动态| 亚洲精品国产色婷婷电影| 色综合欧美亚洲国产小说| 18禁美女被吸乳视频| 亚洲久久久国产精品| 欧美黄色片欧美黄色片| 久久久国产欧美日韩av| 少妇粗大呻吟视频| 老司机在亚洲福利影院| 91九色精品人成在线观看| 国产在线精品亚洲第一网站| 成人18禁高潮啪啪吃奶动态图| 一区在线观看完整版| 日韩免费av在线播放| 超碰成人久久| 日日爽夜夜爽网站| 成人18禁在线播放| 久久这里只有精品19| 夜夜夜夜夜久久久久| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 婷婷丁香在线五月| 国产精品久久视频播放| 国产一区二区三区在线臀色熟女| 午夜免费观看网址| 国产精品免费视频内射| 久久久久久久久中文| 校园春色视频在线观看| 国产亚洲欧美98| 如日韩欧美国产精品一区二区三区| 亚洲黑人精品在线| 久久久国产精品麻豆| 亚洲精品在线观看二区| 色哟哟哟哟哟哟| 国语自产精品视频在线第100页| 欧美日本视频| 国产精品秋霞免费鲁丝片| 一夜夜www| avwww免费| 国产亚洲精品第一综合不卡| 日本免费一区二区三区高清不卡 | 亚洲国产欧美日韩在线播放| 在线观看66精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品综合一区在线观看 | 精品国产美女av久久久久小说| 天堂√8在线中文| 日本 av在线| av在线播放免费不卡| 欧美av亚洲av综合av国产av| 人人妻,人人澡人人爽秒播| 亚洲成人久久性| 欧美成人午夜精品| www日本在线高清视频| 亚洲国产精品合色在线| 久久久久久久久中文| 中文字幕高清在线视频| 精品国内亚洲2022精品成人| 丁香六月欧美| 国产日韩一区二区三区精品不卡| 亚洲国产精品久久男人天堂| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久电影中文字幕| 女人被狂操c到高潮| 在线观看日韩欧美| 国产亚洲av嫩草精品影院| av网站免费在线观看视频| 精品免费久久久久久久清纯| 俄罗斯特黄特色一大片| 国产亚洲精品久久久久5区| 男女做爰动态图高潮gif福利片 | 国产精品九九99| 亚洲第一青青草原| 日韩欧美一区视频在线观看| 搡老岳熟女国产| 欧美日本亚洲视频在线播放| 亚洲成人精品中文字幕电影| 91字幕亚洲| 女人被躁到高潮嗷嗷叫费观| av免费在线观看网站| 国产一级毛片七仙女欲春2 | 国产乱人伦免费视频| 欧美激情久久久久久爽电影 | 精品国产乱码久久久久久男人| 国产黄a三级三级三级人| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久人人做人人爽| 亚洲精品国产精品久久久不卡| 亚洲中文av在线| 岛国视频午夜一区免费看| 久久婷婷人人爽人人干人人爱 | 在线观看免费午夜福利视频| 在线av久久热| 九色国产91popny在线| 正在播放国产对白刺激| 午夜久久久在线观看| 欧美中文日本在线观看视频| 久久久国产成人精品二区| 可以免费在线观看a视频的电影网站| 性欧美人与动物交配| 亚洲欧美激情综合另类| 身体一侧抽搐| av天堂在线播放| 欧美日本亚洲视频在线播放| 老司机靠b影院| 日本免费一区二区三区高清不卡 | 午夜亚洲福利在线播放| av视频在线观看入口| 久久精品91无色码中文字幕| 精品欧美国产一区二区三| 久久香蕉激情| 无人区码免费观看不卡| 免费在线观看亚洲国产| 美女扒开内裤让男人捅视频| 国产av一区在线观看免费| 最近最新中文字幕大全电影3 | 中文字幕人妻熟女乱码| x7x7x7水蜜桃| 亚洲欧美精品综合久久99| 少妇的丰满在线观看| 日韩欧美在线二视频| 黄色a级毛片大全视频| 日日摸夜夜添夜夜添小说| 国产免费男女视频| 亚洲全国av大片| 亚洲久久久国产精品| 99国产精品一区二区蜜桃av| 久久久国产成人免费| 国产精品 欧美亚洲| 亚洲 欧美一区二区三区| www日本在线高清视频| 国产成人欧美| 最好的美女福利视频网| 久久中文看片网| 天天添夜夜摸| 午夜福利视频1000在线观看 | 亚洲国产高清在线一区二区三 | 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 精品国产国语对白av| 国产精品乱码一区二三区的特点 | 级片在线观看| 一级毛片女人18水好多| 久久九九热精品免费| 免费在线观看黄色视频的| 一进一出抽搐动态| 久久久精品国产亚洲av高清涩受| 午夜免费激情av| 国产国语露脸激情在线看| 精品欧美国产一区二区三| bbb黄色大片| 免费在线观看亚洲国产| 国产精品久久电影中文字幕| 欧美国产日韩亚洲一区| 色播在线永久视频| 久久精品亚洲熟妇少妇任你| 亚洲色图av天堂| 一级黄色大片毛片| 999久久久精品免费观看国产| 久久久久亚洲av毛片大全| 97碰自拍视频| 国产精品免费一区二区三区在线| 午夜福利,免费看| av有码第一页| 免费观看人在逋| 大陆偷拍与自拍| 露出奶头的视频| 免费看美女性在线毛片视频| 精品久久久久久久毛片微露脸| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美一区二区三区黑人| 一区二区三区精品91| 久久精品成人免费网站| 十八禁人妻一区二区| 制服诱惑二区| 国产国语露脸激情在线看| 国产97色在线日韩免费| 性欧美人与动物交配| 欧美日韩亚洲国产一区二区在线观看| 九色国产91popny在线| 亚洲精品av麻豆狂野| 又黄又粗又硬又大视频| 久久国产精品影院| 18禁观看日本| 亚洲精品国产区一区二| 日韩欧美国产一区二区入口| 又紧又爽又黄一区二区| 色哟哟哟哟哟哟| 国产一级毛片七仙女欲春2 | 亚洲第一电影网av| √禁漫天堂资源中文www| 久久婷婷人人爽人人干人人爱 | 黄色视频,在线免费观看| 国产成人影院久久av| 可以在线观看的亚洲视频| 国产成人啪精品午夜网站| 91大片在线观看| 黑人欧美特级aaaaaa片| 欧美大码av| 日日夜夜操网爽| 亚洲一区二区三区不卡视频| 国产午夜福利久久久久久| 好男人电影高清在线观看| 国产男靠女视频免费网站| 无遮挡黄片免费观看| 一区二区三区高清视频在线| 国产xxxxx性猛交| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 国产精品 国内视频| 国产熟女午夜一区二区三区| 日本一区二区免费在线视频| 精品午夜福利视频在线观看一区| 国产精品久久电影中文字幕| 久久人妻av系列| 欧美日本视频| 一边摸一边做爽爽视频免费| 悠悠久久av| 韩国精品一区二区三区| 悠悠久久av| 亚洲精品中文字幕在线视频| 国产一级毛片七仙女欲春2 | 国产精品一区二区在线不卡| 日韩大尺度精品在线看网址 | 日本 av在线| 亚洲熟妇中文字幕五十中出| 久久中文字幕一级| 国产高清有码在线观看视频 | 亚洲片人在线观看| 在线永久观看黄色视频| 久久精品国产亚洲av香蕉五月| 欧美激情极品国产一区二区三区| 亚洲久久久国产精品| 狠狠狠狠99中文字幕| bbb黄色大片| 亚洲国产中文字幕在线视频| 国产高清videossex| 日日摸夜夜添夜夜添小说| 一边摸一边做爽爽视频免费| 嫩草影视91久久| 精品国产美女av久久久久小说| 亚洲av日韩精品久久久久久密| 一夜夜www| 一边摸一边抽搐一进一小说| 精品一区二区三区四区五区乱码| 午夜久久久久精精品| 一级毛片精品| 久热爱精品视频在线9| 大型黄色视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 一区福利在线观看| 黄色女人牲交| 午夜福利,免费看| 国内毛片毛片毛片毛片毛片| 一区二区三区精品91| 久久精品国产99精品国产亚洲性色 | 欧美av亚洲av综合av国产av| 亚洲精品国产精品久久久不卡| 亚洲黑人精品在线| 午夜精品在线福利| 18禁黄网站禁片午夜丰满| 欧洲精品卡2卡3卡4卡5卡区| 看免费av毛片| 女人被狂操c到高潮| 日韩一卡2卡3卡4卡2021年| 91大片在线观看| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 九色亚洲精品在线播放| 亚洲精品在线观看二区| 国产一区二区激情短视频| 免费搜索国产男女视频| 极品人妻少妇av视频| av天堂久久9| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 香蕉久久夜色| 一区二区三区激情视频| 亚洲少妇的诱惑av| 在线永久观看黄色视频| 亚洲人成伊人成综合网2020| a在线观看视频网站| 在线av久久热| 午夜福利成人在线免费观看| 亚洲中文日韩欧美视频| 黄网站色视频无遮挡免费观看| 97碰自拍视频| 丝袜美足系列| 变态另类成人亚洲欧美熟女 | 精品国产亚洲在线| 18禁国产床啪视频网站| 91av网站免费观看| 成年女人毛片免费观看观看9| 亚洲国产欧美网| 激情视频va一区二区三区| avwww免费| 极品教师在线免费播放| 如日韩欧美国产精品一区二区三区| 亚洲av电影不卡..在线观看| 麻豆一二三区av精品| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久人人人人人| 国产不卡一卡二| 长腿黑丝高跟| 亚洲国产欧美一区二区综合| 国内精品久久久久久久电影| 最新美女视频免费是黄的| 亚洲第一欧美日韩一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| 国产99白浆流出| 国产蜜桃级精品一区二区三区| 天天添夜夜摸| 99riav亚洲国产免费| 亚洲人成伊人成综合网2020| 制服人妻中文乱码| 欧美日韩精品网址| 国产精品久久久av美女十八| 久久久国产精品麻豆| 国产成人影院久久av| a在线观看视频网站| 日本三级黄在线观看| 搞女人的毛片| 韩国精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影观看| 国产成人啪精品午夜网站| 亚洲色图av天堂| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 欧美色视频一区免费| 国产aⅴ精品一区二区三区波| 精品福利观看| 欧美黑人精品巨大| 精品免费久久久久久久清纯| 18禁黄网站禁片午夜丰满| 啦啦啦观看免费观看视频高清 | 91成人精品电影| 一二三四社区在线视频社区8| 黄片大片在线免费观看| 美女扒开内裤让男人捅视频| 成人国产综合亚洲| 天天躁狠狠躁夜夜躁狠狠躁| av有码第一页| 69精品国产乱码久久久| 精品国内亚洲2022精品成人| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 久久 成人 亚洲| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 我的亚洲天堂| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 国产精华一区二区三区| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 久热这里只有精品99| 国产高清有码在线观看视频 | 18禁国产床啪视频网站| 又大又爽又粗| 国产人伦9x9x在线观看| 亚洲欧美日韩另类电影网站| 一级a爱片免费观看的视频| or卡值多少钱| 国内精品久久久久久久电影| 在线国产一区二区在线| 亚洲国产欧美日韩在线播放| 久久亚洲精品不卡| 国产精品爽爽va在线观看网站 | 搞女人的毛片| 人人妻人人澡欧美一区二区 | av视频在线观看入口| www国产在线视频色| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区| 18禁美女被吸乳视频| 操美女的视频在线观看| 男男h啪啪无遮挡| 色哟哟哟哟哟哟| 99热只有精品国产| 久久精品成人免费网站| 亚洲精品国产色婷婷电影| 国产精品自产拍在线观看55亚洲| 亚洲激情在线av| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 国产亚洲欧美精品永久| 亚洲国产精品合色在线| 一区福利在线观看| 久久精品91无色码中文字幕| 在线播放国产精品三级| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 中文字幕久久专区| 国产av在哪里看| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 嫩草影视91久久| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 男人舔女人下体高潮全视频| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 在线观看日韩欧美| 咕卡用的链子| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 可以免费在线观看a视频的电影网站| 一边摸一边抽搐一进一出视频| 国产精品久久久人人做人人爽| 成人手机av| 精品国产国语对白av| 国产精品,欧美在线| 99久久精品国产亚洲精品| 色播在线永久视频| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 在线观看舔阴道视频| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲色图综合在线观看| 日韩精品青青久久久久久| 高清黄色对白视频在线免费看| 国产精品一区二区在线不卡| 嫩草影视91久久| 中文字幕另类日韩欧美亚洲嫩草| 日本一区二区免费在线视频| 在线十欧美十亚洲十日本专区| 深夜精品福利| 两人在一起打扑克的视频| 亚洲欧美日韩另类电影网站| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 动漫黄色视频在线观看| 久久久久久久午夜电影| 成年女人毛片免费观看观看9| 成人永久免费在线观看视频| 亚洲av成人不卡在线观看播放网| 久久精品人人爽人人爽视色| 国产亚洲欧美98| 精品福利观看| 一二三四社区在线视频社区8| 极品人妻少妇av视频| 国产精品免费视频内射| 国产精品免费一区二区三区在线| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 国产精品久久电影中文字幕| 一本大道久久a久久精品| 免费少妇av软件| 一区在线观看完整版| 国产成+人综合+亚洲专区| 国产精品久久久av美女十八| 视频在线观看一区二区三区| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 涩涩av久久男人的天堂| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一电影网av| 麻豆久久精品国产亚洲av| 免费看美女性在线毛片视频| www.精华液| 波多野结衣av一区二区av| 亚洲五月婷婷丁香| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| av天堂久久9| 999久久久精品免费观看国产| 日韩欧美三级三区| 桃色一区二区三区在线观看| 亚洲三区欧美一区| 淫秽高清视频在线观看| 国产精品永久免费网站| 91字幕亚洲| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 国产乱人伦免费视频| 国产一区二区激情短视频| 亚洲avbb在线观看| 亚洲全国av大片| 亚洲国产欧美一区二区综合| 超碰成人久久| 亚洲av美国av| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区在线臀色熟女| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 亚洲狠狠婷婷综合久久图片| 国产人伦9x9x在线观看| 国产高清视频在线播放一区| 日本 欧美在线| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 国产精品秋霞免费鲁丝片| 亚洲色图av天堂| 亚洲av电影在线进入| 老司机福利观看| 亚洲成人免费电影在线观看| 亚洲九九香蕉| √禁漫天堂资源中文www| 婷婷精品国产亚洲av在线| 男女下面插进去视频免费观看| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 色综合亚洲欧美另类图片| 最近最新免费中文字幕在线| 中文字幕精品免费在线观看视频| 99在线人妻在线中文字幕| 两个人看的免费小视频| 搡老岳熟女国产| 午夜老司机福利片| 成人欧美大片| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | 国产精品影院久久| 香蕉丝袜av| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 亚洲精品中文字幕一二三四区| 99国产精品99久久久久| 午夜福利欧美成人| 久99久视频精品免费| 精品福利观看| 日本免费a在线| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 久久国产精品人妻蜜桃| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 女同久久另类99精品国产91| 制服丝袜大香蕉在线| 免费在线观看日本一区| 国产成人精品在线电影| 久久伊人香网站| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 黄色成人免费大全| 国产成人精品无人区| 国产亚洲精品av在线|