楊國(guó)玉,張舒夢(mèng),雒盼妮,胡紀(jì)亮,王勇鋒,崔桂賓,張 超,孫風(fēng)麗,劉曙東,奚亞軍
(西北農(nóng)林科技大學(xué) 農(nóng)學(xué)院,陜西楊凌 712100)
柳枝稷苗期發(fā)育速度差異顯著的2類幼苗生理特性比較
楊國(guó)玉,張舒夢(mèng),雒盼妮,胡紀(jì)亮,王勇鋒,崔桂賓,張 超,孫風(fēng)麗,劉曙東,奚亞軍
(西北農(nóng)林科技大學(xué) 農(nóng)學(xué)院,陜西楊凌 712100)
旨在生理生化水平上探索柳枝稷苗期慢發(fā)育的機(jī)理。采用栽培品種‘Alamo’的2個(gè)單株(編號(hào)為Ma和Mg)收獲的種子為材料,在播種后16、24和32 d分別對(duì)生長(zhǎng)發(fā)育快(簡(jiǎn)稱快發(fā)育苗)和生長(zhǎng)發(fā)育慢(簡(jiǎn)稱慢發(fā)育苗)的2類幼苗進(jìn)行生長(zhǎng)相關(guān)的生理指標(biāo)測(cè)定和比較分析。結(jié)果表明:慢發(fā)育苗地上部分和地下部分鮮質(zhì)量、干質(zhì)量顯著小于快發(fā)育苗,且根長(zhǎng)較短,根數(shù)較少,但兩者根冠比、根系活力無(wú)顯著差異;慢發(fā)育苗與快發(fā)育苗相比還原型谷胱甘肽(GSH)質(zhì)量分?jǐn)?shù)在前期較低,但兩者葉綠素、可溶性糖、淀粉、纖維素、可溶性蛋白、全氮和游離氨基酸質(zhì)量分?jǐn)?shù)總體上無(wú)顯著差異;慢發(fā)育苗脫落酸(ABA)質(zhì)量分?jǐn)?shù)總體上比快發(fā)育苗高,赤霉素(GA)質(zhì)量分?jǐn)?shù)24 d時(shí)較低,IAA/ZR比值32 d時(shí)較低。Ma和Mg同種類型幼苗根長(zhǎng)、16 d時(shí)GSH質(zhì)量分?jǐn)?shù)、32 d時(shí)IAA/ZR比值存在顯著差異,根數(shù)、ABA質(zhì)量分?jǐn)?shù)和24 d時(shí)GA質(zhì)量分?jǐn)?shù)無(wú)顯著差異。柳枝稷苗期根系不發(fā)達(dá),前期GSH質(zhì)量分?jǐn)?shù)較低,內(nèi)源激素ABA質(zhì)量分?jǐn)?shù)較高,中期GA質(zhì)量分?jǐn)?shù)和后期IAA/ZR比值較低對(duì)柳枝稷苗期慢發(fā)育的形成有重要影響。
柳枝稷(Panicumvirgatum);苗期;慢發(fā)育;生理生化;內(nèi)源激素
隨著能源需求日益增多和化石燃料不斷減少,世界范圍內(nèi)的能源危機(jī)逐漸加重[1]。中國(guó)人均能源占有量遠(yuǎn)低于世界平均水平,能源形勢(shì)十分嚴(yán)峻[2]。生物質(zhì)能源因其具有可再生性和可貯藏性,已成為新能源領(lǐng)域研究的熱點(diǎn)之一[3]。中國(guó)耕地面積相對(duì)貧乏,以玉米等谷物類為原料生產(chǎn)燃料乙醇并不現(xiàn)實(shí),而中國(guó)擁有豐富的邊際土地資源,利用邊際土地開(kāi)展生物質(zhì)能源植物的規(guī)?;N植既是能源作物的發(fā)展方向,也是緩解中國(guó)能源危機(jī)的有效途徑[4-6]。
柳枝稷(PanicumvirgatumL.)是禾本科黍?qū)俣嗄晟鶦4植物,具有廣適、生物質(zhì)產(chǎn)量高等特點(diǎn),被認(rèn)為是最具有開(kāi)發(fā)利用前景的能源植物之一[2,7]。自20世紀(jì)80年代初由美國(guó)引入中國(guó)以來(lái),柳枝稷在鹽堿、干旱、沙地等各種類型土地上均表現(xiàn)出較好的適應(yīng)性[8-10],適宜在中國(guó)鹽堿、干旱等不利于耕作的生態(tài)地區(qū)推廣種植[11]。柳枝稷為異花授粉植物,具有自交不親和性[7],可采用播種、扦插、組織培養(yǎng)等多種方法進(jìn)行繁殖[12-14]。播種繁殖與其他方法相比,具有簡(jiǎn)便性和能保持后代群體遺傳多樣性等特點(diǎn),因此在實(shí)際生產(chǎn)中更多被采用。然而,柳枝稷播種出苗后生長(zhǎng)十分緩慢,在同期田間雜草競(jìng)爭(zhēng)中處于明顯劣勢(shì),嚴(yán)重制約其播種后生長(zhǎng)發(fā)育[15-16],成為柳枝稷推廣過(guò)程中限制其快速建植的重要因素。
柳枝稷苗期發(fā)育緩慢,可能與其根系發(fā)育、碳氮代謝和植物激素水平有重要關(guān)系。根系是植物的生存之本。水稻(Oryzasativa)根系的生長(zhǎng)和活力的維持,對(duì)地上部分生長(zhǎng)發(fā)育有重大意義[17],棉花(Gossypiumhirsutum)根系傷流液中的細(xì)胞分裂素(CTKs)、脫落酸(ABA)等在根-冠之間的通訊中發(fā)揮重要作用[18]。碳氮代謝是植物最基本的代謝過(guò)程[19]。用植物生長(zhǎng)調(diào)節(jié)劑浸種,大豆(Glycinemax)葉片可溶性糖質(zhì)量分?jǐn)?shù)、淀粉質(zhì)量分?jǐn)?shù)等發(fā)生變化,能調(diào)控子葉碳代謝,促進(jìn)幼苗生長(zhǎng)[20];化學(xué)調(diào)控可以改變大豆根系內(nèi)可溶性蛋白、根系活力等,通過(guò)改善同化物代謝水平,促進(jìn)根系正常生長(zhǎng)[21]。此外,植物激素對(duì)幼苗生長(zhǎng)有重要作用。ABA對(duì)花生(Arachishypogaea)側(cè)根的發(fā)生、小麥(Triticumaestivum)幼苗根系伸長(zhǎng)均有抑制作用[22-23],且能夠抑制種子萌發(fā)和促進(jìn)植物衰老[24];赤霉素(GA)是一類重要的植物激素,在種子發(fā)芽、莖伸長(zhǎng)、開(kāi)花誘導(dǎo)等方面有重要作用[25],能夠顯著促進(jìn)苧麻(Boehmerianivea)株高的增長(zhǎng)[26];生長(zhǎng)素(IAA)在根周皮特定細(xì)胞中積累,促進(jìn)根原基形成,側(cè)根生長(zhǎng)[27],在豌豆(Pisumsativum)中IAA促進(jìn)RNA表達(dá),控制表皮和內(nèi)部細(xì)胞延伸,對(duì)莖生長(zhǎng)有重要作用[28];玉米素(ZR)是一種天然的CTK,在水稻幼苗早期發(fā)育中有顯著作用[29]。此外,IAA/CTK比值對(duì)煙草(Nicotianatabacum)根原基誘導(dǎo)有一定影響,兩者比值低時(shí)地上部分生長(zhǎng)旺盛,比值高時(shí)促進(jìn)根原基的產(chǎn)生[30]。可見(jiàn),植物根系、碳氮代謝、激素等對(duì)植物生長(zhǎng)發(fā)育有重要意義。但是,從根系、碳氮代謝、激素等方面解析柳枝稷苗期發(fā)育緩慢的機(jī)制尚不清晰。
目前,國(guó)內(nèi)外關(guān)于柳枝稷苗期發(fā)育的研究主要集中在耐鹽堿性、抗旱性等方面[4,11,31-34],關(guān)于種子大小、土壤類型、播種深度、外生菌、除草劑使用等對(duì)柳枝稷苗期發(fā)育影響的研究也有報(bào)道[15-16,35-38],對(duì)于柳枝稷苗期生長(zhǎng)緩慢的內(nèi)在機(jī)理研究尚未見(jiàn)報(bào)道。本試驗(yàn)以來(lái)源于柳枝稷栽培品種‘Alamo’的2個(gè)單株的種子為材料,分別比較其后代群體中生長(zhǎng)發(fā)育快和生長(zhǎng)發(fā)育慢的2類幼苗相關(guān)生理生化指標(biāo),初步探索柳枝稷苗期慢發(fā)育的生理生化原因,為進(jìn)一步從整體上解析柳枝稷苗期慢發(fā)育的機(jī)制提供參考。
1.1 材 料
由西北農(nóng)林科技大學(xué)農(nóng)學(xué)院柳枝稷分子育種課題組提供,具體為來(lái)源于柳枝稷栽培品種‘Alamo’的2個(gè)單株所收獲的種子,分別編號(hào)為Ma和Mg。
1.2 播種及幼苗管理
挑選飽滿、均一的柳枝稷種子,播種在裝有基質(zhì)的穴盤(pán)中,并將其置于溫室中生長(zhǎng)。穴盤(pán)規(guī)格為50 cm× 25 cm× 5 cm,共50 穴;基質(zhì)為常規(guī)蔬菜育苗用基質(zhì),購(gòu)于楊凌裕豐種業(yè)有限公司。溫室條件為(30 ± 2) ℃,光照周期14 h光照/10 h黑暗,光照強(qiáng)度為234 μmol·m-2·s-1,試驗(yàn)期間不施肥,每天澆1次水。播種后7~8 d定苗,每穴1株。播種16 d后,根據(jù)預(yù)試驗(yàn)所測(cè)定的幼苗株高,區(qū)分快發(fā)育苗(9 cm以上)和慢發(fā)育苗(7 cm以下),并將中等大小的幼苗舍棄。分別于16、24和32 d取樣。取樣時(shí)快發(fā)育苗和慢發(fā)育苗分別隨機(jī)選取10株,用于各項(xiàng)指標(biāo)的測(cè)定,每個(gè)處理重復(fù)3次。
1.3 測(cè)定項(xiàng)目與方法
1.3.1 幼苗形態(tài)指標(biāo) 根長(zhǎng)和根數(shù):測(cè)定10株幼苗單株的根長(zhǎng)和根數(shù),取其平均值。
地上部分和地下部分鮮質(zhì)量、干質(zhì)量:取10株幼苗測(cè)定其地上部分或地下部分鮮質(zhì)量,于105 ℃下殺青15 min,85 ℃下烘干至恒質(zhì)量,測(cè)定干質(zhì)量。
根冠比:地下部分干質(zhì)量與地上部分干質(zhì)量比值。
1.3.2 幼苗生理指標(biāo) 根系活力:采用氯化三苯基四氮唑(TTC)法測(cè)定其活力[39]。
葉綠素質(zhì)量分?jǐn)?shù)、可溶性總糖質(zhì)量分?jǐn)?shù)、淀粉質(zhì)量分?jǐn)?shù)、纖維素質(zhì)量分?jǐn)?shù)、可溶性蛋白質(zhì)量分?jǐn)?shù)、還原型谷胱甘肽(GSH)質(zhì)量分?jǐn)?shù)和硝酸還原酶(NR)活性等參考高俊鳳[39]的方法測(cè)定,游離氨基酸(FAA)質(zhì)量分?jǐn)?shù)采用劉榮森等[40]的方法測(cè)定,全氮量用自動(dòng)定氮儀(德國(guó) Kjeltec 8400)采用凱氏定氮法測(cè)定。分別取快發(fā)育苗和慢發(fā)育苗地上部分,用于以上各項(xiàng)指標(biāo)的測(cè)定。
內(nèi)源激素:采用酶聯(lián)免疫試劑盒(中國(guó)農(nóng)業(yè)大學(xué)自主開(kāi)發(fā)),分別測(cè)定快發(fā)育苗和慢發(fā)育苗地上部分生長(zhǎng)素(IAA)、赤霉素(GA)、玉米素(ZR)和脫落酸(ABA)等的質(zhì)量分?jǐn)?shù)。
1.4 數(shù)據(jù)處理
采用Excel 2013進(jìn)行數(shù)據(jù)分析,采用SPSS 19.0統(tǒng)計(jì)軟件完成Duncan’s多重比較。
2.1 柳枝稷2類幼苗形態(tài)指標(biāo)分析
當(dāng)播種后16 d,柳枝稷幼苗在株高上表現(xiàn)出廣泛的變異,其中Ma最高可達(dá)13.2 cm,而最低為5.6 cm,Mg最高可達(dá)13.5 cm,而最低為6.2 cm。分別選取Ma和Mg中株高大于9 cm和小于7 cm的幼苗,并標(biāo)記為快發(fā)育苗和慢發(fā)育苗(圖1-A、1-D);繼續(xù)培養(yǎng)8 d,2個(gè)材料快發(fā)育苗株高(Ma:15.54 cm,Mg:17.65 cm)仍明顯高于慢發(fā)育苗(Ma:11.26 cm,Mg: 11.30 cm,圖1-B、1-E);再次培養(yǎng)8 d,2個(gè)材料快發(fā)育苗與慢發(fā)育苗株高差異情況與前2個(gè)階段保持一致(Ma:23.58、16.64 cm,Mg:25.49、18.67 cm,圖1-C、1-F)。
地上部分和地下部分差異分析:在16、24和32 d時(shí),2個(gè)材料快發(fā)育苗的地上部分和地下部分鮮質(zhì)量及干質(zhì)量均顯著大于慢發(fā)育苗(P<0.05),且生長(zhǎng)速度快于慢發(fā)育苗??彀l(fā)育苗的地上部分鮮質(zhì)量、干質(zhì)量的每天生長(zhǎng)量均是慢發(fā)育苗的2倍;地下部分鮮質(zhì)量、干質(zhì)量的每天生長(zhǎng)量分別是慢發(fā)育苗的2~3、1.8~2倍。2個(gè)材料同種類型幼苗間各時(shí)期比較發(fā)現(xiàn),鮮質(zhì)量及干質(zhì)量基本不存在顯著差異(表1)。
根數(shù)差異分析:在16 d時(shí),2個(gè)材料快發(fā)育苗和慢發(fā)育苗的根數(shù)不存在顯著差異,但快發(fā)育苗根數(shù)多于慢發(fā)育苗。在24 d時(shí),Ma快發(fā)育苗根數(shù)顯著大于慢發(fā)育苗(P<0.05),快發(fā)育苗與慢發(fā)育苗根數(shù)差為0.75;Mg快發(fā)育苗根數(shù)大于慢發(fā)育苗,但未達(dá)到顯著水平。在32 d時(shí),2個(gè)材料快發(fā)育苗根數(shù)均顯著大于慢發(fā)育苗(P<0.05),Ma和Mg快發(fā)育苗與慢發(fā)育苗根數(shù)差分別為0.89和0.84。2個(gè)材料同種類型幼苗間各時(shí)期比較發(fā)現(xiàn),根數(shù)基本不存在顯著差異(表1)。
根長(zhǎng)差異分析:在16、24和32 d時(shí)2個(gè)材料快發(fā)育苗的根長(zhǎng)均顯著大于慢發(fā)育苗(P<0.05),并且快發(fā)育苗的生長(zhǎng)速度大于慢發(fā)育苗。Ma快發(fā)育苗和慢發(fā)育苗根長(zhǎng)生長(zhǎng)速度分別為每8 d 1.96、3.14、3.08 cm和1.73、2.37、1.72 cm;Mg快發(fā)育苗和慢發(fā)育苗根長(zhǎng)生長(zhǎng)速度分別為1.86、2.83、5.33 cm和1.31、2.54、3.41 cm(表1)。
根冠比和根系活力差異分析:在16、24和32 d 時(shí),2個(gè)材料快發(fā)育苗和慢發(fā)育苗根冠比均不存在顯著差異;除Mg快發(fā)育苗16 d時(shí)根系活力顯著大于慢發(fā)育苗(P<0.05)外,2個(gè)材料快發(fā)育苗和慢發(fā)育苗的根系活力不存在顯著差異(表1)。
2.2 柳枝稷2類幼苗葉綠素質(zhì)量分?jǐn)?shù)分析
對(duì)2個(gè)材料生長(zhǎng)16、24和32 d的快慢發(fā)育苗葉綠素質(zhì)量分?jǐn)?shù)進(jìn)行測(cè)定發(fā)現(xiàn),除Ma快發(fā)育苗32 d葉綠素a質(zhì)量分?jǐn)?shù)稍低外,快發(fā)育苗和慢發(fā)育苗間在各時(shí)期的葉綠素a、b、總量及a/b值均無(wú)顯著差異(圖2-A),2個(gè)材料同種類型幼苗之間也無(wú)顯著差異。
2.3 柳枝稷2類幼苗碳氮代謝分析
對(duì)2個(gè)材料生長(zhǎng)16、24和32 d的快發(fā)育苗和慢發(fā)育苗可溶性蛋白質(zhì)量分?jǐn)?shù)、FAA質(zhì)量分?jǐn)?shù)和全氮質(zhì)量分?jǐn)?shù)分析發(fā)現(xiàn),除32 d時(shí)Ma慢發(fā)育苗可溶性蛋白質(zhì)量分?jǐn)?shù)相對(duì)較高外,快慢發(fā)育苗在各時(shí)期的可溶性蛋白質(zhì)質(zhì)量分?jǐn)?shù)、FAA質(zhì)量分?jǐn)?shù)和全氮質(zhì)量分?jǐn)?shù)均無(wú)顯著差異;2個(gè)材料同種類型幼苗間也基本不存在顯著差異(表2)。
A.Ma,16 d; B.Ma,24 d; C.Ma,32 d; D.Mg,16 d; E.Mg,24 d; F.Mg,32 d
指標(biāo)Index材料Material分類Classification取樣時(shí)間/d Samplingtime162432地上部分鮮質(zhì)量/gMa快發(fā)育苗Fastgrowingseedlings0.24±0.00b0.80±0.02a1.86±0.11aFreshmassofshoot慢發(fā)育苗Slowgrowingseedlings0.12±0.00c0.43±0.01b1.00±0.12bMg快發(fā)育苗Fastgrowingseedlings0.30±0.03a0.97±0.11a2.26±0.18a慢發(fā)育苗Slowgrowingseedlings0.14±0.01c0.49±0.01b1.18±0.15b地下部分鮮質(zhì)量/gMa快發(fā)育苗Fastgrowingseedlings0.03±0.01ab0.26±0.01a0.57±0.04aFreshmassofroot慢發(fā)育苗Slowgrowingseedlings0.01±0.00c0.12±0.01b0.28±0.07bMg快發(fā)育苗Fastgrowingseedlings0.03±0.00a0.28±0.03a0.69±0.02a慢發(fā)育苗Slowgrowingseedlings0.01±0.01bc0.12±0.01b0.34±0.04b地上部分干質(zhì)量/gMa快發(fā)育苗Fastgrowingseedlings0.030±0.001b0.117±0.003a0.273±0.017bDrymassofshoot慢發(fā)育苗Slowgrowingseedlings0.015±0.001c0.064±0.002b0.142±0.018cMg快發(fā)育苗Fastgrowingseedlings0.043±0.004a0.138±0.017a0.336±0.021a慢發(fā)育苗Slowgrowingseedlings0.019±0.002c0.068±0.003b0.170±0.020c地下部分干質(zhì)量/gMa快發(fā)育苗Fastgrowingseedlings0.003±0.000a0.022±0.000a0.053±0.005aDrymassofroot慢發(fā)育苗Slowgrowingseedlings0.002±0.000b0.012±0.000b0.029±0.006bMg快發(fā)育苗Fastgrowingseedlings0.004±0.000a0.023±0.003a0.061±0.001a慢發(fā)育苗Slowgrowingseedlings0.002±0.000b0.010±0.000b0.029±0.003b根數(shù)RootnumberMa快發(fā)育苗Fastgrowingseedlings2.25±0.07ab3.78±0.05a4.92±0.14a慢發(fā)育苗Slowgrowingseedlings1.83±0.20b3.03±0.07c4.03±0.03cMg快發(fā)育苗Fastgrowingseedlings2.61±0.26a3.62±0.14ab5.20±0.12a慢發(fā)育苗Slowgrowingseedlings2.07±0.18ab3.40±0.06b4.36±0.05b根長(zhǎng)/cm RootlengthMa快發(fā)育苗Fastgrowingseedlings3.92±0.02a7.06±0.07a10.14±0.08b慢發(fā)育苗Slowgrowingseedlings3.46±0.07b5.83±0.1c7.55±0.06dMg快發(fā)育苗Fastgrowingseedlings3.71±0.12ab6.54±0.14b11.87±0.05a慢發(fā)育苗Slowgrowingseedlings2.62±0.14c5.16±0.08d8.57±0.16c根冠比Ma快發(fā)育苗Fastgrowingseedlings0.10±0.01a0.19±0.00a0.19±0.01aValueofroot/shoot慢發(fā)育苗Slowgrowingseedlings0.11±0.01a0.19±0.01a0.20±0.02aMg快發(fā)育苗Fastgrowingseedlings0.10±0.01a0.17±0.02a0.18±0.01a慢發(fā)育苗Slowgrowingseedlings0.10±0.01a0.15±0.02a0.17±0.01a根系活力/(μg·g-1·h-1)Ma快發(fā)育苗Fastgrowingseedlings0.93±0.04b1.94±0.71a3.42±0.88aRootactivity慢發(fā)育苗Slowgrowingseedlings0.86±0.10b1.39±0.50a3.25±0.10aMg快發(fā)育苗Fastgrowingseedlings1.26±0.03a2.68±0.47a2.14±0.07a慢發(fā)育苗Slowgrowingseedlings0.40±0.10c2.54±0.28a2.08±0.26a
注: 各指標(biāo)同列不同小寫(xiě)字母表示在0.05水平上達(dá)到顯著差異水平。下同。
Note: Different lowercase letters mean significant difference of every factors in the same column at 0.05 level.The same as below.
GSH質(zhì)量分?jǐn)?shù)差異分析:在16 d時(shí),2個(gè)材料快發(fā)育苗GSH質(zhì)量分?jǐn)?shù)均顯著大于慢發(fā)育苗(P<0.05),Ma快發(fā)育苗和慢發(fā)育苗GSH質(zhì)量分?jǐn)?shù)分別為92.01、77.92 μg·g-1,Mg快發(fā)育苗和慢發(fā)育苗GSH質(zhì)量分?jǐn)?shù)分別為47.44、26.99 μg·g-1;在24 和32 d時(shí),2個(gè)材料快發(fā)育苗和慢發(fā)育苗GSH質(zhì)量分?jǐn)?shù)不存在顯著差異。2個(gè)材料幼苗GSH質(zhì)量分?jǐn)?shù)各時(shí)期間比較發(fā)現(xiàn),GSH質(zhì)量分?jǐn)?shù)總體上呈先降后升的趨勢(shì)(表2)。
NR活性差異分析:在16和24 d時(shí),Mg快發(fā)育苗NR活性顯著大于慢發(fā)育苗(P<0.05);在32 d時(shí),快發(fā)育苗和慢發(fā)育苗NR活性不存在顯著差異。Ma快慢發(fā)育苗間NR活性在各階段均不存在顯著差異。2個(gè)材料幼苗NR活性各時(shí)期間比較發(fā)現(xiàn),在16和24 d時(shí)NR活性維持穩(wěn)定,32 d時(shí)NR活性上升(表2)。由以上分析可知,慢發(fā)育苗GSH質(zhì)量分?jǐn)?shù)在前期相對(duì)較低,而快慢發(fā)育苗間可溶性糖質(zhì)量分?jǐn)?shù)、纖維素質(zhì)量分?jǐn)?shù)、淀粉質(zhì)量分?jǐn)?shù)、可溶性蛋白質(zhì)量分?jǐn)?shù)、FAA質(zhì)量分?jǐn)?shù)、全氮質(zhì)量分?jǐn)?shù)及NR活性在總體上無(wú)顯著差異。
表2 柳枝稷2類幼苗碳氮代謝相關(guān)指標(biāo)比較Table 2 Carbon and nitrogen metabolism related indexes of different switchgrass seedlings
2.4 柳枝稷2類幼苗內(nèi)源激素分析
2.4.1 生長(zhǎng)素(IAA)、玉米素(ZR)、生長(zhǎng)素/玉米素比值(IAA/ZR) 在16 d時(shí),Ma快慢發(fā)育苗間IAA質(zhì)量分?jǐn)?shù)不存在顯著差異,Mg快發(fā)育苗IAA質(zhì)量分?jǐn)?shù)顯著大于慢發(fā)育苗(P<0.05)。在24和32 d時(shí),2個(gè)材料快發(fā)育苗和慢發(fā)育苗IAA質(zhì)量分?jǐn)?shù)均不存在顯著差異(圖2-B)。
在16 d時(shí),Ma慢發(fā)育苗ZR質(zhì)量分?jǐn)?shù)顯著大于快發(fā)育苗(P<0.05),Mg快發(fā)育苗ZR質(zhì)量分?jǐn)?shù)顯著大于慢發(fā)育苗(P<0.05)。在24d時(shí),2個(gè)材料快發(fā)育苗和慢發(fā)育苗ZR質(zhì)量分?jǐn)?shù)不存在顯著差異。在32 d時(shí),Ma慢發(fā)育苗ZR質(zhì)量分?jǐn)?shù)顯著大于快發(fā)育苗(P<0.05),Mg快慢發(fā)育苗間ZR質(zhì)量分?jǐn)?shù)無(wú)顯著差異(圖2-C)。
Fg.快發(fā)育苗 Fast growing seedlings;Sg.慢發(fā)育苗 Slow growing seedlings;不同小寫(xiě)字母表示差異顯著(P<0.05) Different lowercase letters mean significant difference(P<0.05).
圖2 柳枝稷2類幼苗葉綠素、內(nèi)源激素比較
Fig.2 Chlorophyll and endogenous hormones in different switchgrass seedlings
在16 d時(shí),Mg快發(fā)育苗IAA/ZR比值顯著大于慢發(fā)育苗(P<0.05),Ma快慢發(fā)育苗間IAA/ZR比值無(wú)顯著差異;在24 d時(shí),2個(gè)材料快慢發(fā)育苗間IAA/ZR比值均無(wú)顯著差異;在32 d時(shí),2個(gè)材料快發(fā)育苗IAA/ZR比值均顯著大于慢發(fā)育苗(P<0.05),Ma和Mg快發(fā)育苗和慢發(fā)育苗比值分別為9.86、7.82和12.35、10.38(圖2-D)。
2.4.2 赤霉素(GA)、脫落酸(ABA) 在16 d時(shí),Mg慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)顯著大于快發(fā)育苗(P<0.05),Ma快發(fā)育苗和慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)無(wú)顯著差異。24 d時(shí),2個(gè)材料快發(fā)育苗GA質(zhì)量分?jǐn)?shù)顯著大于慢發(fā)育苗(P<0.05),Ma快發(fā)育苗和慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)分別為8.94、8.21 ng·g-1,Mg快發(fā)育苗和慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)分別為9.82、7.73 ng·g-1。在32 d時(shí),Mg快發(fā)育苗GA質(zhì)量分?jǐn)?shù)顯著大于慢發(fā)育苗(P<0.05),Ma快發(fā)育苗和慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)無(wú)顯著差異(圖2-E)。
16 d時(shí),2個(gè)材料慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)顯著大于快發(fā)育苗(P<0.05),Ma和Mg快慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)差分別為7.86、7.87 ng·g-1。24 d時(shí),Ma快發(fā)育苗ABA質(zhì)量分?jǐn)?shù)顯著大于慢發(fā)育苗(P<0.05),Mg快慢發(fā)育苗間ABA質(zhì)量分?jǐn)?shù)差異不顯著。32 d時(shí),2個(gè)材料慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)顯著大于快發(fā)育苗(P<0.05),Ma和Mg快慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)差分別為22.13、17.25 ng·g-1。2個(gè)材料各時(shí)期同種類型幼苗間比較發(fā)現(xiàn),ABA質(zhì)量分?jǐn)?shù)無(wú)顯著差異(圖2-F)。
由以上分析可知,2個(gè)材料慢發(fā)育苗與快發(fā)育苗相比ABA質(zhì)量分?jǐn)?shù)在苗期較高,而中期GA質(zhì)量分?jǐn)?shù)和后期IAA/ZR比值較低。
根系是植物生存之本,在吸收、固著、輸導(dǎo)等方面起到重要作用[41]。有研究指出,根系分泌物(包括糖類、有機(jī)酸、氨基酸等)能通過(guò)改變土壤有效性從而影響植物養(yǎng)分吸收[42]。本試驗(yàn)發(fā)現(xiàn)柳枝稷慢發(fā)育苗根長(zhǎng)和根數(shù)與快發(fā)育苗相比較小,慢發(fā)育苗地上部分鮮質(zhì)量、干質(zhì)量顯著小于快發(fā)育苗(表1),表明柳枝稷慢發(fā)育苗根系欠發(fā)達(dá),可能對(duì)土壤中養(yǎng)分等吸收能力較弱,不能為地上部分供給充足的水分和營(yíng)養(yǎng),造成地上部分生長(zhǎng)緩慢,最終導(dǎo)致苗期慢發(fā)育的現(xiàn)象。
GSH在清除活性氧自由基方面有重要作用[43]。植物細(xì)胞在生理?xiàng)l件下經(jīng)氧化呼吸會(huì)產(chǎn)生少量的氧自由基,谷胱甘肽與其相關(guān)酶是抗自由基的重要防線[44],在氧化條件下GSH由酶催化轉(zhuǎn)化為氧化型,起到調(diào)節(jié)和抗氧化的作用[43]。本試驗(yàn)發(fā)現(xiàn)慢發(fā)育苗生長(zhǎng)前期GSH質(zhì)量分?jǐn)?shù)較低(表2),可能會(huì)造成幼苗抗自由基能力較弱,對(duì)幼苗快速生長(zhǎng)起到阻礙作用,不利于幼苗生長(zhǎng)。
ABA作為脂溶性的小分子植物激素,在植物生長(zhǎng)過(guò)程中起重要作用[45]。ABA被認(rèn)為是一種生長(zhǎng)抑制劑,通過(guò)誘導(dǎo)產(chǎn)生與脅迫相關(guān)的蛋白,促進(jìn)氣孔關(guān)閉等調(diào)節(jié)根生長(zhǎng)以及植物抗逆性等[46-47]。ABA能使花生側(cè)根發(fā)生率降低,數(shù)目減少且長(zhǎng)度降低[22]。本試驗(yàn)發(fā)現(xiàn)慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)相對(duì)較高(圖2-F),可能對(duì)幼苗側(cè)根發(fā)生、根系和胚芽鞘等的伸長(zhǎng)有抑制作用,與本試驗(yàn)中慢發(fā)育苗根長(zhǎng)和根數(shù)相對(duì)較低結(jié)果一致,這可能是導(dǎo)致柳枝稷苗期發(fā)育緩慢的重要原因。
GA是一個(gè)大家族,在植物生長(zhǎng)和發(fā)育的許多方面起作用,被認(rèn)為是植物生長(zhǎng)的調(diào)節(jié)劑[48]。GA對(duì)苧麻株高的促進(jìn)作用極為明顯[26],能促進(jìn)植物生長(zhǎng),延緩衰老和誘導(dǎo)營(yíng)養(yǎng)物質(zhì)運(yùn)輸?shù)萚49]。此外,擬南芥(Arabidopsisthaliana)中內(nèi)源激素GA質(zhì)量分?jǐn)?shù)和基因表達(dá)水平降低能部分抑制暗中光形態(tài)發(fā)生[50]。本試驗(yàn)發(fā)現(xiàn)24 d時(shí)慢發(fā)育苗GA質(zhì)量分?jǐn)?shù)顯著小于快發(fā)育苗(圖2-E),且與本實(shí)驗(yàn)室轉(zhuǎn)錄組測(cè)定結(jié)果一致。GA質(zhì)量分?jǐn)?shù)較低,可能不利于幼苗莖的伸長(zhǎng)生長(zhǎng)和營(yíng)養(yǎng)物質(zhì)的運(yùn)輸,從而造成柳枝稷幼苗生長(zhǎng)緩慢。
目前很多研究報(bào)道指出內(nèi)源IAA/ZR比值的高低對(duì)植株的根芽發(fā)育具有重要的調(diào)控作用,比值較高有利于根的分化和細(xì)胞增殖,比值較低促進(jìn)芽的分化[51-52]。此外,在煙草生長(zhǎng)過(guò)程中IAA/CTK比值較高誘導(dǎo)根原基產(chǎn)生,IAA/CTK比值較低地上部分生長(zhǎng)旺盛[30]。本試驗(yàn)發(fā)現(xiàn)慢發(fā)育苗地上部分IAA/ZR比值在后期相對(duì)較低(圖2-D)。較低的IAA/ZR比值不利于幼苗根原基的產(chǎn)生,使柳枝稷慢發(fā)育苗根系發(fā)育較慢,不能為地上生長(zhǎng)提供充足的水分、營(yíng)養(yǎng)等物質(zhì),最終導(dǎo)致幼苗發(fā)育緩慢。
本試驗(yàn)通過(guò)在苗期將柳枝稷幼苗分成生長(zhǎng)發(fā)育快(快發(fā)育苗)和生長(zhǎng)發(fā)育慢(慢發(fā)育苗)的2類,從形態(tài)特征和生理學(xué)方面進(jìn)行比較分析發(fā)現(xiàn):慢發(fā)育苗根系欠發(fā)達(dá),不能為地上部分提供充足的水分和營(yíng)養(yǎng);慢發(fā)育苗ABA質(zhì)量分?jǐn)?shù)相對(duì)較高,前期GSH質(zhì)量分?jǐn)?shù)、中期GA質(zhì)量分?jǐn)?shù)及后期IAA/ZR比值較低,不利于根系發(fā)育和植株生長(zhǎng),從而導(dǎo)致苗期慢發(fā)育現(xiàn)象;Ma和Mg同種類型幼苗根數(shù)、ABA質(zhì)量分?jǐn)?shù)和24 d時(shí)GA質(zhì)量分?jǐn)?shù)不存在顯著差異,2個(gè)材料同種類型幼苗根長(zhǎng)、16 d時(shí)GSH質(zhì)量分?jǐn)?shù)、32 d時(shí)IAA/ZR比值存在顯著差異,但2個(gè)材料2類幼苗間比較趨勢(shì)一致,這可能與基因型不同有關(guān)。此外,苗期慢發(fā)育產(chǎn)生的分子機(jī)理以及對(duì)苗期柳枝稷進(jìn)行遺傳改良育種是下一步的研究重點(diǎn),相關(guān)工作正在進(jìn)行。
Reference:
[1] 盧業(yè)飛,羅 清,龐新華.生物質(zhì)能源產(chǎn)業(yè)發(fā)展研究的現(xiàn)狀[J].農(nóng)業(yè)研究與應(yīng)用,2015(1):52-55.
LU Y F,LUO Q,PANG X H.Present situation of the development of biomass energy industry[J].AcriculturalResearchandApplication,2015(1):52-55(in Chinese with English abstract).
[2] 劉吉利,朱萬(wàn)斌,謝光輝,等.能源作物柳枝稷研究進(jìn)展[J].草業(yè)學(xué)報(bào),2009,18(3):232-240.
LIU J L,ZHU W B,XIE G H,etal.The development ofPanicumvirgatumas an energy crop [J].ActePrataculturaeSinica,2009,18(3):232-240(in Chinese with English abstract).
[3] 韓玉香.生物質(zhì)能源研究現(xiàn)狀與前景展望[J].北京農(nóng)業(yè),2015(17):193-193.
HAN Y X.Research status and prospect of biomass energy [J].BeijingAgricuture,2015(17):193-193(in Chinese with English abstract).
[4] 趙春橋,陳 敏,侯新村,等.干旱脅迫對(duì)柳枝稷生長(zhǎng)與生理特性的影響[J].干旱區(qū)資源與環(huán)境,2015,29(3):126-130.
ZHAO CH Q,CHEN M,HOU X C,etal.Effect of drought stress on the growth and physiological characteristics ofPanicumvirgatumL.[J].JournalofAridLandResourcesandEnvironment,2015,29(3):126-130(in Chinese with English abstract).
[5] 朱 毅,侯新村,武菊英,等.兩種沙性栽培基質(zhì)下柳枝稷根系生長(zhǎng)對(duì)施氮水平的響應(yīng)[J].中國(guó)草地學(xué)報(bào),2012,34(2):58-64.
ZHU Y,HOU X C,WU J Y,etal.The responses of switchgrass’s root growth to nitrogen fertilizer in two kinds of sandy substrates [J].ChineseJournalofGrassland,2012,34(2):58-64(in Chinese with English abstract).
[6] 蔣劍春.生物質(zhì)能源應(yīng)用研究現(xiàn)狀與發(fā)展前景[J].林產(chǎn)化學(xué)與工業(yè),2002,22(2):75-80.
JIANG J CH.Prospect on research and development of biomass energy utilization [J].ChemistryandIndustryofForestProducts,2002,22(2):75-80(in Chinese with English abstract).
[7] LIU L L,WU Y Q.Identification of a selfing compatible genotype and mode of inheritance in switchgrass[J].BioenergyResearch,2012,5(3):662-668.
[8] 賈春林,李忠德,張進(jìn)紅,等.黃河三角洲鹽堿地柳枝稷育苗栽培技術(shù)初探[J].農(nóng)學(xué)學(xué)報(bào),2014,4(10):50-53.
JIA CH L,LI ZH D,ZHANG J H,etal.The Yellow River delta saline switchgrass cultivation technology[J].JournalofAgriculture,2014,4(10):50-53(in Chinese with English abstract).
[9] 徐炳成,山 侖,李鳳民.黃土丘陵半干旱區(qū)引種禾草柳枝稷的生物量與水分利用效率[J].生態(tài)學(xué)報(bào),2005,25(9):2206-2213.
XU B CH,SHAN L,LI F M.Aboveground biomass and water use efficiency of an introduced grass,Panicumvirgatum,in the semiarid loess hilly-gully region [J].ActaEcologicaSinica,2005,25(9): 2206-2213(in Chinese with English abstract).
[10] 范希峰,侯新村,左海濤,等.邊際土地類型及移栽方式對(duì)柳枝稷苗期生長(zhǎng)的影響[J].草業(yè)科學(xué),2010,27(1):97-102.
FAN X F,HOU X C,ZUO H T,etal.Effect of marginal land types and transplanting methods on the growth of switchgrass seedlings [J].PrataculTuralScience,2010,27(1):97-102(in Chinese with English abstract).
[11] 范希峰,侯新村,朱 毅,等.鹽脅迫對(duì)柳枝稷苗期生長(zhǎng)和生理特性的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2012,23(6):1476-1480.
FAN X F,HOU X C,ZHU Y,etal.Impacts of salt stress on the growth and physiological characteristics ofPanicumvirgatumseedlings [J].ChineseJournalofAppliedEcology,2012,23(6):1476-1480(in Chinese with English abstract).
[12] 魏 娟,王學(xué)華,肖 亮.能源草本植物繁殖技術(shù)研究進(jìn)展[J].作物研究,2015,29(5):558-563.
WEI J,WANG X H,XIAO L.Research progress on propagation techniques of bioenergy grasses[J].CropResearch,2015,29(5):558-563(in Chinese with English abstract).
[13] 王勇鋒,奚亞軍,徐開(kāi)杰.一種柳枝稷扦插無(wú)性繁殖方法[P].中國(guó),CN 201310218910.2013-09-18.
WANG Y F,XI Y J,XU K J,etal.A method of switchgrass cutting asexual reproduction[P].China,CN 201310218910.2013-09-18(in Chinese).
[14] 孟 敏,李華軍,徐開(kāi)杰,等.柳枝稷的組織培養(yǎng)技術(shù)研究[J].安徽農(nóng)業(yè)科學(xué),2009,37(4):1477-1478.
MENG M,LI H J,XU K J,etal.The tissue culture technology of switchgrass [J].JournalofAnhuiAgricultureScience,2009,37(4):1477-1478(in Chinese with English abstract).
[15] KERING M K,HUO C,INTERRANTE S M,etal.Effect of various herbicides on warm-season grass weeds and switchgrass establishment[J].CropScience,2013,53(2):666-673.
[16] MITCHELL R B,VOGEL K P,BERDAHL J,etal.Herbicides for establishing switchgrass in the central and northern great plains[J].BioenergyResearch,2010,3(4):321-327.
[17] 何芳祿,王明全.水稻根系的生長(zhǎng)生理[J].植物生理學(xué)報(bào),1980(3):21-26.
HE F L,WANG M Q.Growth physiology of rice root system[J].JournalofPlantPhysiology,1980(3):21-26(in Chinese with English abstract).
[18] 田曉莉,楊培珠,何鐘佩,等.棉花根-冠關(guān)系的研究──根系傷流液及葉片中內(nèi)源激素的變化[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),1999,4(5):92-97.
TIAN X L,YANG P ZH,HE ZH P,etal.Changes of endogenous hormones in root exudates and leaf of cotton and the relation between root and growing stem [J].JournalofChinaAgriculturalUniversity,1999,4(5):92-97(in Chinese with English abstract).
[19] 陽(yáng) 劍,時(shí)亞文,李宙煒,等.水稻碳氮代謝研究進(jìn)展[J].作物研究,2011,25(4):383-387.
YANG J,SHI Y W,LI ZH W,etal.Research progress on carbon and nitrogen metabolism in rice[J].CropResearch,2011,25(4):383-387(in Chinese with English abstract).
[20] 馮亞楠,李 璨,馮乃杰,等.不同植物生長(zhǎng)調(diào)節(jié)劑浸種對(duì)大豆幼苗子葉碳代謝的影響[J].大豆科學(xué),2009,28(6):1016-1020.
FENG Y N,LI C,FENG N J,etal.Effects on seed soaking with plant growth regulators(PGRs) on the carbon metabolism of soybean seedling cotyledon[J].SoybeanScience,2009,28(6):1016-1020(in Chinese with English abstract).
[21] 張 鑫,翟瑞常,鄭殿峰,等.植物生長(zhǎng)調(diào)節(jié)劑對(duì)大豆根系氮代謝相關(guān)指標(biāo)的影響[J].大豆科學(xué),2010,29(3):433-436.
ZHANG X,ZHAI R CH,ZHENG D F,etal.Effects of plant growth regulators(PGRs) on nitrogen metabolism related indicators in soybean roots[J].SoybeanScience,2010,29(3):433-436(in Chinese with English abstract).
[22] 戴艷紅,郭棟梁,李 玲.ABA抑制花生側(cè)根發(fā)生[J].植物生理學(xué)報(bào),2011,47(1):75-79.
DAI Y H,GUO D L,LI L.The inhibition effect of ABA on lateral root formation of peanut [J].PlantPhysiologyJournal,2011,47(1):75-79(in Chinese with English abstract).
[23] 趙春江,康書(shū)江,王紀(jì)華,等.植物內(nèi)源激素對(duì)小麥葉片衰老的調(diào)控機(jī)理研究[J].華北農(nóng)學(xué)報(bào),2000,15(2):53-56.
ZHAO CH J,KANG SH J,WANG J H,etal.Research on phyto-hormones regulating mechanism of the senescence of wheat leaves [J].ActaAgriculturaeBoreali-Sinica,2000,15(2):53-56(in Chinese with English abstract).
[24] 庫(kù)文珍,彭克勤,張雪芹,等.低鉀脅迫對(duì)水稻苗期礦質(zhì)營(yíng)養(yǎng)吸收和植物激素含量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2009,15(1):69-75.
KU W ZH,PENG K Q,ZHANG X Q,etal.Effects of low potassium stress on mineral nutrient uptake and plant hormone content of rice at seedling stage [J].PlantNutritionandFertilizerScience,2009,15(1):69-75(in Chinese with English abstract).
[25] HUANG Y Y,YANG W L,ZHONG P,etal.The genes for gibberellin biosynthesis in wheat[J].Functional&IntegrativeGenomics,2011,12(1):199-206.
[26] 錢(qián)光熹,夏龍平.激素處理對(duì)苧麻苗株生長(zhǎng)的影響[J].上海農(nóng)學(xué)院學(xué)報(bào),1988,6(1):88-94.
QIAN G X,XIA L P.The influence of different plant hormones on ramie seedling growth[J].JournalofShanghaiAgriculturalCollege,1988,6(1): 88-94(in Chinese with English abstract).
[27] HIMANEN K,BOUNCHERON E,VANNESTE S,etal.Auxin-mediated cell cycle activation during early lateral root initiation[J].PlantCell,2002,14(10):2339-2351.
[28] DIETZ A,KUTSCHERA U,RAY P M.Auxin enhancement of mRNAs in epidermis and internal tissues of the pea stem and its significance for control of elongation[J].PlantPhysiology,1990,93(2):432-438.
[29] KWAK K S,IIJIMA M,YAMAUCHI A,etal.Changes with aging of endogenous abscisic acid and zeatin riboside in the root system of rice [J].JapaneseJournalofCropScience,1996,65(4):686-692.
[30] 劉國(guó)順,秦 菲,王彥亭,等.煙草生長(zhǎng)過(guò)程中根系內(nèi)源激素含量的變化規(guī)律[J].中國(guó)農(nóng)學(xué)通報(bào),2005,21(4):179-181.
LIU G SH,QIN F,WANG Y T,etal.Law of endogenous hormone variation of growing tobacco root [J].ChineseAgriculturalScienceBulletin,2005,21(4):179-181(in Chinese with English abstract).
[31] STROUP J A,SANDERSON M A,MUIR J P,etal.Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress[J].BioresourceTechnology,2003,86(1):65-72.
[32] WANG Q,WU C,XIE B,etal.Model analysing the antioxidant responses of leaves and roots of switchgrass to NaCl-salinity stress[J].PlantPhysiology&Biochemistry,2012,58(3):288-296.
[33] BARNEY J N,MANN J J,KYSER G B,etal.Tolerance of switchgrass to extreme soil moisture stress: ecological implications[J].PlantScience,2009,177(6):724-732.
[34] 珊 丹,何京麗,邢恩德,等.干旱脅迫對(duì)柳枝稷幼苗生理特征的影響[J].國(guó)際沙棘研究與開(kāi)發(fā),2014,12(1):33-38.
SHAN D,HE J L,XING E D,etal.The influence on physiological characteristics of switchgrass seedlings under soil drought stress[J].TheGlobalSeabuckthornResearchandDevelopment,2014,12(1):33-38(in Chinese with English abstract).
[35] BERTI M T,JOHNSON B L.Switchgrass establishment as affected by seeding depth and soil type[J].IndustrialCrop&Products,2013,41:289-293.
[36] SMART A J,MOSER L E.Switchgrass seedling development as affected by seed size[J].AgronomyJournal,1999,91(2):335-338.
[37] GHIMIRE S R,CHARLTON N D,CRAVEN K D.The mycorrhizal fungus,sebacina vermifera,enhances seed germination and biomass production in switchgrass(PanicumvirgatumL)[J].BioenergyResearch,2009,2(1):51-58.
[38] SADEGHPOUR A,HASHEMI M,DACOSTA M,etal.Switchgrass establishment influenced by cover crop,tillage systems,and weed control[J].BioenergyResearch,2014,7(4):1402-1410.
[39] 高俊鳳.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版社,2006.
GAO J F.Experimental Instruction of Plant Physiology[M].Beijing:Higher Education Press,2006(in Chinese).
[40] 劉榮森,楊虹琦,黃郁維,等.植物中游離氨基酸的提取、純化及分析方法[J].河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,28(3):76-79.
LIU R S,YANG H Q,HUANG Y W,etal.Extraction,purification and analysis of free amino acids in plants [J].JournalofHenanUniversityofScienceandTechnology(NaturalScienceEdition),2007,28(3):76-79(in Chinese with English abstract).
[41] 羅 琎,孫長(zhǎng)忠,王 琦,等.根系的發(fā)育及其激素調(diào)控研究[J].安徽農(nóng)業(yè)科學(xué),2008,36(26):11219-11222.
LUO J,SUN CH ZH,WANG Q,etal.Study on root system formation and its regulation by phytohormones [J].JournalofAnhuiAgriculturalScience,2008,36(26):11219-11222(in Chinese with English abstract).
[42] 常二華,楊建昌.根系分泌物及其在植物生長(zhǎng)中的作用[J].耕作與栽培,2006(5):13-16.
CHANG E H,YANG J CH.Root exudates and their effects on plant growth[J].CulturewithPlanting,2006(5):13-16(in Chinese with English abstract).
[43] 黃益宗,隋立華,王 瑋,等.O3對(duì)水稻葉片氮代謝、脯氨酸和谷胱甘肽含量的影響[J].生態(tài)毒理學(xué)報(bào),2013,8(1):69-76.
HUANG Y Z,SUI L H,WANG W,etal.Effects of ozone on nitrogen metabolism,prolism and glutathione of rice leaf [J].AsianJournalofEcotoxicology,2013,8(1):69-76(in Chinese with English abstract).
[44] 程 時(shí),丁海勤.谷胱甘肽及其抗氧化作用今日談[J].生理科學(xué)進(jìn)展,2002,33(1):85-90.
CHENG SH,DING H Q.Glutathione and its antioxidant role today[J].ProgressinPhysiologicalSciences,2002,33(1): 85-90(in Chinese with English abstract).
[45] 王成章,潘曉建,張春梅,等.外源ABA對(duì)不同秋眠型苜蓿品種植物激素含量的影響[J].草業(yè)學(xué)報(bào),2006,15(2):30-36.
WANG CH ZH,PAN X J,ZHANG CH M,etal.Effects of exogenous ABA on hormone content in different varieties of fall dormancyMddicagosativavarieties [J].ActaPrataculturaeSinica,2006,15(2):30-36(in Chinese with English abstract).
[46] 馬 燕.外源GA3和ABA對(duì)秋茄及楊葉肖槿幼苗生長(zhǎng)的影響[D].廈門(mén):廈門(mén)大學(xué),2012:2-3.
MA Y.Exogenous ABA and GA3 effect on the growth ofKandeliaobovataandThespesiapopulneaseedlings [D].Xiamen:Xiamen University,2012:2-3(in Chinese with English abstract).
[47] ZHANG CH,ZHANG L,ZHANG S,etal.Global analysis of gene expression profiles in physic nut(JatrophacurcasL.) seedlings exposed to drought stress[J].BmcPlantBiology,2015,15(1):1-14.
[48] GRENNAN A K.Gibberellin metabolism enzymes in rice[J].PlantPhysiology,2006,141(2):524-526.
[49] AYELE B T,OZGA J A,REINECKE D M.Regulation of GA biosynthesis genes during germination and young seedling growth of pea(PisumsativumL.)[J].JournalofPlantGrowthRegulation,2006,25(3):219-232.
[51] 王 荔,楊艷瓊,楊 德,等.不同激素濃度及培養(yǎng)基對(duì)煙草愈傷組織分化的影響[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào),1999,14(4):371-375.
WANG L,YANG Y Q,YANG D,etal.The effects of different hormone concentration and media on callus differentiation of tobacco[J].JournalofYunnanAgriculturalUniversity,1999,14(4):371-375(in Chinese with English abstract).
[52] 陳季楚,王六發(fā).煙草葉外植體分化和脫分化過(guò)程中幾種內(nèi)源激素變化(簡(jiǎn)報(bào))[J].植物生理學(xué)報(bào),1992,28(5):356-358.
CHEN J CH,WANG L F.Changes of endohormones during differentiation and dedifferentiation in tobacco leaf explants [J].PlantPhysiologyCommunications,1992,28(5):356-358(in Chinese with English abstract).
(責(zé)任編輯:成 敏 Responsible editor:CHENG Min)
Comparison of Physiologic and Biochemical Characteristics between Fast- and Slow-growing Seedlings in Swithgrass
YANG Guoyu,ZHANG Shumeng,LUO Panni,HU Jiliang,WANG Yongfeng, CUI Guibin,ZHANG Chao,SUN Fengli,LIU Shudong and XI Yajun
(College of Agronomy,Northwest A&F University,Yangling Shaanxi 712100,China)
To investigate the slow-growing mechanism of switchgrass at the physiological and biochemical levels,an experiment was conducted using seeds harvested from two plants(Ma and Mg) of Alamo ecotype. Since 16,24 and 32 days after planting,physiological and biochemical indexes related to growth characteristics were examined and compared between two types of seedlings characterized as fast and slow growth. The results showed that fresh and dry mass of the shoot and root tissues in slow growing seedlings were significantly lighter than those in the fast growing seedlings. In addition,slow growing seedlings had few and short roots,whereas no significant differences in root/shoot ratios and root activities were observed between the slow and fast growing seedlings. Even though GSH mass fraction in slow growing seedlings during early stage was lower than that in fast growing ones,the mass fraction of chlorophyll,starch,cellulose,soluble protein,total nitrogen and free amino acids showed no overall differences between the two types of seedlings. Compared with fast growing seedlings,slow growth seedlings were overall high in ABA mass fraction ,low in GA mass fraction on the 24th day,and low in IAA/ZR value on the 32nd day. Significant differences in root length and GSH mass fraction at the 16th day and in IAA/ZR ratio on the 32nd day were found between seedlings of the same variety for both varieties. Nevertheless,no significant differences were observed in root number,ABA mass fraction and GA mass fraction on the 24th day. Furthermore,significant differences were noticed in root length and GSH mass fraction on the 16th day and IAA/ZR ratio on the 32nd day between Ma and Mg,while no significant differences were noted in root number,ABA mass fraction and GA mass fraction on the 24th day. These results indicated that slow growing seedlings had a poorly developed root system with low GSH mass fraction at early stage,high ABA mass fraction ,low GA mass fraction and IAA/ZR value,which probably resulted in the slow developmental rate during the seedling stage.
Switchgrass(Panicumvirgatum); Seedling; Slow growth; Physiological characteristics; Endogenous hormones
YANG Guoyu,female,master student. Research area:physiological property of switchgrass development.E-mail:yangguoyu989@126.com
XI Yajun,male,professor. Research area:wheat and switchgrass breeding.E-mail:xiyajun11@126.com
日期:2017-03-30
2016-05-03
2016-05-25
國(guó)家自然科學(xué)基金(31371690)。
楊國(guó)玉,女,碩士,從事柳枝稷發(fā)育生理特性的研究。E-mail:yangguoyu989@126.com
奚亞軍,男,教授,主要從事小麥和柳枝稷遺傳育種研究。E-mail:xiyajun11@126.com
Q945.1
A
1004-1389(2017)04-0533-11
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1220.S.20170330.1508.014.html
Received 2016-05-03 Returned 2016-05-25
Foundation item National Natural Science Foundation of China(No.31371690).