• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE MILITARU-STEFAN LIFTING THEOREM OVER WEAK HOPF ALGEBRAS

    2017-04-12 14:31:39WANGYong
    數(shù)學(xué)雜志 2017年2期
    關(guān)鍵詞:曉莊王勇工程學(xué)院

    WANG Yong

    (College of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China)

    THE MILITARU-STEFAN LIFTING THEOREM OVER WEAK HOPF ALGEBRAS

    WANG Yong

    (College of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China)

    The paper is concerned with extension modules for weak Hopf-Galois extensions. By using faithfully flat weak Hopf-Galois extension theory,we investigative the Militaru-Stefan lifting theorem over weak Hopf algebras,which extends the corresponding result given in[10]. Moreover,we characterizer weak stable modules by a weak cleft extension of endomorphism rings of induced modules.

    weak Hopf algebra;weak Hopf-Galois extension;weak cleft extension

    1 Introduction and Preliminaries

    Let H be a Hopf algebra,A a faithfully flat Hopf-Galois extension over its subalgebra of coinvariants B and M a B-module.Generalizing a result due to Dade[7]on strongly graded rings,Militaru and Stefan checked the following classical result:the B-action on M can be extended to an A-action if and only if there exists a total integral and algebra map φ :H → ENDA(M ?BA),where ENDA(M ?BA),consisting of the rational space of EndA(M ?BA),was introduced by Ulbrich[17].Moreover,Caenepeel also studied and obtained this result using isomorphisms of small categories in[4].

    The purpose of the present paper is to investigate the above result in the case of weak Hopfalgebras.But this is not a direct promotion,we give a new simple proof.

    Weak bialgebras(or weak Hopfalgebras),as a generalization ofordinary bialgebras(or Hopf algebras)and groupoid algebras,were introduced by B¨ohm and Szlach′anyi in[3](see also their joint work with Nillin[2]).The main difference between ordinary and weak Hopf algebras comes from the fact that the comultiplication of the latter is no longer required to preserve the unit(equivalently,the counit is not required to be an algebra homomorphism). Consequently,there are two canonical subalgebras(HLand HR)playing the role of “noncommutative bases” in a weak Hopf algebra H.Moreover,the wellknown examples of weakHopfalgebras are groupoid algebras,face algebras and generalized Kac algebras(see[8,20]). The main motivation for studying weak Hopfalgebras comes from quantum field theory and operator algebras.It turned out that many results of classical Hopf algebra theory can be generalized to weak Hopf algebras.

    This paper is organized as follows.In Section 1,we recall some basic definitions and give a summary of the fundamental properties concerning weak Hopf algebras.In Section 2,based on the work of[19],we obtain the main result of this paper by a new method,that is,the Militaru-Stefan lifting theorem over weak Hopf algebras.As an application,we check that if A/B is a weak right H-Galois extension,then the weak smash product EndB(M)#H is isomorphic to ENDA(M ?BA)as an algebra for any M ∈ MA,which extends Theorem 2.3 in[18],given for a finite dimensional Hopf algebra.Moreover,for any B-module M, we prove that there exists a one-to-one correspondence between all A-isomorphism classes of extensions of M to a right A-module and the conjugation classes of total integrals and algebra maps t:H → ENDA(M ?BA).In Section 3,under the condition “faithfully flat weak Hopf-Galois extensions”,we mainly prove that a right B-module M is weak H-stable if and only if ENDA(M ?BA)/EndB(M)is a weak cleft extension,which generalizes Theorem 3.6 in[15].

    We always work over a fixed field k and follow Montgomery’s book[11]for terminologies on algebras,coalgebras and comodules,butomitthe usualsummation indicesand summation symbols.

    In what follows,we recallsome concepts and results used in this paper.

    Defi nition 1.1[2]Let H be both an algebra and a coalgebra.If H satisfies conditions (1.1)–(1.3)below,then it is called a weak bialgebra.If it satisfies conditions(1.1)–(1.4) below,then it is called a weak Hopf algebra with antipode S.

    For any x,y,z ∈ H,

    where Δ2=(Δ ? id)Δ.

    where Δ(1)=11? 12.

    For any weak bialgebra H,define the mapsL,R:H → H by the formulas

    We have that HL=Im(L)and HR=Im(R)(see[2,5]).

    By[2],the antipode S of a weak Hopf algebra H is anti-multiplicative and anticomultiplicative,that is,for any h,g ∈ H,

    The unit and counit are S-invariants,that is,S(1H)=1H,ε ? S= ε.

    H is always considered as a weak Hopf algebra.The following results(W1)? (W9)are given in[2].For any x ∈ HL,y ∈ HRand h,g ∈ H,

    Let H be a weak Hopf algebra with bijective antipode S.Then it is clear that S?1is anti-multiplicative and anti-comultiplicative such that

    The following results(W13)? (W14)are given in[12].

    If the antipode S is bijective,then for any h ∈ H,

    Defi nition 1.2[5]Let H be a weak bialgebra,and A a right H-comodule,which is also an algebra,such that

    for any a,b ∈ A.In this case we call A a weak right H-comodule algebra.

    Defi nition 1.3[5]Let H be a weak Hopf algebra and A a weak right H-comodule algebra.If M is both a right A-module and a right H-comodule such that for any m ∈M,a ∈ A,then M is called a weak right(A,H)-Hopf module.

    Similarly,we can define the weak left right(A,H)-Hopf modules.We denote by MHAthe category of weak right(A,H)-Hopf modules,and right A-linear H-colinear maps,andAMHthe category ofweak left right(A,H)-Hopfmodules,and left A-linear right H-colinear maps.

    Defi nition 1.4[12] Let H be a weak bialgebra.The algebra A is called a weak left H-module algebra if A is a left H-module via h ? a → h ·a such that for any a,b ∈ A and h∈H,

    Defi nition 1.5[12]Let H be a weak Hopfalgebra and A a weak left H-module algebra. A weak smash product A#H of A with H is defined on a k-vector space A ?HLH,where H is a left HL-module via its multiplication and A is a right HL-module via

    Its multiplication is given by the familiar formula:for any a,b ∈ A and h,g ∈ H,

    Then by[12],A#H is an associative algebra with unit 1A#1H.

    Defi nition 1.6[1]Let H be a weak Hopf algebra and A a weak right H-comodule algebra.A map φ :H → A is called a total integral if φ is a right H-comodule map and φ(1H)=1A.

    2 The Militaru-Stefan Lifting Theorem

    In this section,we always assume that H is a weak Hopfalgebra with bijective antipode S and A a weak right H-comodule algebra.

    Denote B=AcoH={a ∈ A|ρ(a)=a(0)?L(a(1))}.Then by[9,23],we know that B is a subalgebra of A,McoH={m ∈ M|ρ(m)=m(0)?L(m(1))}is a right B-submodule of M for any M ∈ MHA.Set

    for any N ∈ MA.Then by[19],N ? H ∈ MHA,whose action and coaction are given by

    Defi nition 2.1[9]If the given map

    is a bijection,we say that A/B is a weak right H-Galois extension,where A is a left and right B-module via its multiplication.

    We will write for any h ∈ H, β?1(1A? h)=h[1]?Bh[2]∈ A ?BA.

    Lemma 2.2Let N ∈ MA.If A/B is a weak right H-Galois extension,then N ? H ~= N ?BA as weak right(A,H)-Hopfmodules,where the A-action and H-coaction on N ?BA are given by

    for any a,b ∈ A,n ∈ N.

    ProofDefine a map ? to be the composite

    that is, ?(n ? h)=n ·h[1]?Bh[2].This implies ? is a bijection.Additionally,by Lemma 2.2 in[13],we can easily check that ? is both a right A-module map and a right H-comodule map.Thus N ? H ~=N ?BA as weak right(A,H)-Hopf modules.

    Lemma 2.3The following assertions are equivalent.

    (1)There exists a totalintegral and algebra map φ :H → A.

    (2)B#H ~=A as weak right H-comodule algebras.

    If these assertions hold then B is a weak left H-module algebra via the adjoint action h ·b= φ(h1)bφ(S(h2)).

    ProofDefine a map τ:H → B#H,h → 1#h.For any h,g ∈ H,(1#h)(1#g)=1#hg. This implies that τ is an algebra map.Obviously, τis a total integral.Hence the map φ = λ ? τ:H → A is also a totalintegraland algebra map,where the map λ :B#H → A is an isomorphism of right H-comodule algebras.

    Conversely,assume that there exists a totalintegraland algebra map φ :H → A.Then B is a weak left H-module algebra via the adjoint action h ·b= φ(h1)bφ(S(h2)).

    In fact,since φ is a right H-comodule map,(φ ? idH)Δ(1H)= ρAφ(1H),that is,φ(11)?12=1(0)? 1(1).Hence

    In view of Theorem 3.3 in[22],we know that the rest is true.

    Take M,N ∈ MHA.Consider ρ(f) ∈ HomA(M,N ? H)as

    for any f ∈ HomA(M,N),m ∈ M,where the A-action on N ? H is induced by the A-action on N.Then by[19], ρ(f)is right A-linear.In addition,by[19],we know that HomA(M,N) becomes a right HR-module via

    for any f ∈ HomA(M,N)and y ∈ HR,where M is a left HR-module via

    Recall from[19],we say that a map f ∈ HomA(M,N)is rationalif there is an element fi? fj∈ HomA(M,N)? H such that

    for any m ∈ M,where Δ(1H)=11? 12.Set HOMA(M,N)={f ∈ HomA(M,N)|f is rational}.Then by(2.3)and(2.6),for any f ∈ HOMA(M,N),

    By[19],we know that HOMA(M,N)is a right H-comodule via(2.7),ENDA(M)= HOMA(M,M)is a weak right H-comodule algebra,ENDA(M)coH=EndHA(M),and(2.6) is equivalent to that

    for any m ∈ M and f ∈ HOMA(M,N).

    From(2.8),for any M ∈ MHA,we can easily check that M ∈ENDA(M)MHthe category of weak left right(ENDA(M),H)-Hopf modules,and left ENDA(M)-linear right H-colinear maps,where M is a left ENDA(M)-module via f ·m=f(m)for any f ∈ E N DA(M),m ∈ M.

    Let M ∈ MHA.Consider the induction functor ? ?HRM and the functor HOMA(M,?) between MHand MHA:

    where for a right H-comodule P,it is a right HR-module via p ·y=p(0)ε(p(1)y)for any p ∈ P,y ∈ HR,M is a left HR-module via(2.5),and the A-action and H-coaction on P ?HRM are given by

    With notation as above,the following assertion holds.

    Lemma 2.4Let M ∈ MHA.Then(? ?HRM,HOMA(M,?))is an adjoint pair.

    ProofTo show that(? ?HRM,HOMA(M,?))is an adjoint pair,it suffi ces to prove that HomH(P,HOMA(M,N)) ~=HomHA(P ?HRM,N)for any P ∈ MH,M,N ∈ MHA.

    Define a map F:HomHA(P ?HRM,N) → HomH(P,HOMA(M,N))by

    The map F is welldefined.In fact,for any f ∈ HomHA(P ?HRM,N),p ∈ P,m ∈ M,

    that is, ρ(F(f)(p))=F(f)(p(0)) ← 11? p(1)12.The right A-linearity of f implies that F(f)(p)is also a right A-linear map.Hence F(f)(p) ∈ HOMA(M,N).Moreover,in the light ofthe right H-colinearity of f,we can easily show that F(f)is also a right H-colinear map.

    Now,we define a map G:HomH(P,HOMA(M,N)) → HomHA(P ?HRM,N)by

    Obviously,G is welldefined,and F is a bijection with inverse G.Hence HomH(P,HOMA(M,N))~=HomHA(P ?HRM,N).

    Consider H as a right H-comodule via its comultiplication,hence by(2.9),H ?HRM ∈MHA.Then the following assertion holds.

    Lemma 2.5Let M ∈ MHA.Then H ?HRM ~=M ? H as weak right(A,H)-Hopf modules,where M ? H is a weak right(A,H)-Hopf module via(2.1).

    ProofDefine a map

    Using(W2),we can check that δis well defined.It is easy to see that δis both a right A-module map and a right H-comodule map.

    In what follows,we show that δis a bijection with inverse

    The map γ is well defined,since for any m ∈ M,h ∈ H,y ∈ HR,

    that is,Imγ ? H ?HRM.

    Now we calculate that

    for any h ?HRm ∈ H ?HRM,and

    where the fifth equality follows by the fact that m(0)?R(m(1))=m ·1(0)? S(1(1))for any m ∈ M(see[19]).Therefore H ?HRM ~=M ? H as weak right(A,H)-Hopf modules.

    In what follows,we obtain the Militaru-Stefan lifting theorem over weak Hopfalgebras,

    which extends Theorem 2.3 in[10].

    Theorem 2.6Let A/B be a weak right H-Galois extension and A faithfully flat as a

    left B-module.Assume that(M,?)is a right B-module.Then the following assertions are equivalent.

    (1)M can be extended to a right A-module.

    (2)There exists a total integral and algebra map φ :H → ENDA(M ?BA),where

    M ?BA is a weak right(A,H)-Hopf module via(2.2).

    (3)There is a weak left H-module algebra structure on EndB(M)such that

    as weak right H-comodule algebras.

    Proof(1) ? (2)Since A/B is a weak right H-Galois extension and A is faithfully flat as a left B-module,the functor ? ?BA is an equivalence between MBand MHAaccording to[6].Hence we have a sequence of isomorphisms:

    where the first isomorphism follows by Lemma 2.4,the second one by Lemma 2.5 and the third one by Lemma 2.2.This resulting isomorphism relates the desired A-action ? on M to the multiplicative total integralφ on ENDA(M ?BA).

    In fact,the associativity and unitality of the action ? are equivalent to the multiplicativity and unitality of φ,respectively.Indeed,there are further similar isomorphisms:

    and

    They relate,respectively,

    with

    and

    with

    while

    with(?) ? 1A:M → M;furthermore the unit of ENDA(M ?BA)with the identity map on M.So(1) ? (2)holds.

    (2)? (3)Since A/B is a weak right H-Galois extension and A is faithfully flat as a left B-module,the functor ? ?BA is an equivalence between MBand MHAaccording to[6], hence

    So by Lemma 2.3,(2)? (3)holds.

    The following conclusion extends Theorem 3.5 in[16].

    Proposition 2.7Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Assume that(M,?)is a right B-module.Then the following assertions are equivalent.

    (1) ι:M → M ?BA,m → m ?B1Ais a B-split monomorphism.

    (2)ENDA(M ?BA)is a relative injective H-comodule.

    ProofWe only sketch the proof.This result can be derived from the isomorphism HomH(H,ENDA(M ?BA)) ~=HomB(M ?BA,M)together with Theorem 1.7 in[1]and the observation in the proofof Theorem 2.6 about the simultaneous unitality of the corresponding morphisms κ ∈ HomB(M ?BA,M)and φ ∈ HomH(H,ENDA(M ?BA)).

    Remark(1)Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Assume that(M,?)is a right A-module.Then(M,?)is also a right B-module, which can be extended to a right A-module.Therefore,by Theorem 2.6,EndB(M)#H ~= ENDA(M ?BA)as weak right H-comodule algebras,which extends Theorem 2.3 in[18], given for a finite dimensional Hopf algebra.

    (2)By[6,21],we know that H is a weak right H-Galois extension of HL,hence,by(1), EndHL(H)#H ~=ENDH(H ?HLH)as algebras.In particular,if H is a finite dimensional

    weak Hopfalgebra,then by Corollary 3.4 in[12],we have H#H?~=E ndHL(H)as algebras. Then there exists an algebra isomorphism(H#H?)#H ~=ENDH(H ?HLH).

    Set

    For any φ1,φ2∈ ?E,if there exists ψ ∈ AutB(M)such that

    for any h ∈ H,we say that φ1,φ2are conjugate,denoted by φ1~ φ2.It is obvious that ~is an equivalence relation on ?E.We denote by ?Ethe quotient set of ?Erelative to this equivalence relation ~.

    With notation as above,the following assertion holds.

    Theorem 2.8Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Consider M as a right B-module.Then there is a bijection between all A-isomorphism classes of extensions of M to a right A-module and ?E.

    ProofBy the proof of Theorem 2.6,we know that HomH(H,ENDA(M ?BA)) ~= HomB(M ?BA,M).This isomorphism relates

    with the map

    where ψ ∈ AutB(M).Therefore,the bijection between ?Eand the set of extensions of M, induces a bijection between ?Eand the set of A-isomorphism classes of extensions of M.

    Recall from Remark 2.8(1)in[19],we know that ENDA(A) ~=A as weak right H-comodule algebras.Hence ENDA(B ?BA) ~=ENDA(A) ~=A as weak right H-comodule algebras.Let M=B,then ?E= ?A={φ ∈ HomH(H,A)|φ is an algebra map}.At the same time,it is easy to see that equation(2.10)is replaced by the equation

    where b ∈ U(B)={b ∈ B|b is invertible}.That is,for any φ1,φ2∈ ?A,φ1,φ2are conjugate if there exists b ∈ U(B)such that for any h ∈ H,(2.11)holds.Denote by ?Athe quotient set of ?Arelative to this conjugate relation.Then by Theorem 2.6 and Theorem 2.8,the following assertion holds.

    Corollary 2.9Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Consider M as a right B-module.Then the following assertions are equivalent.

    (1)B can be extended to a right A-module.

    (2) ?A/= ?.

    (3)There exists a weak left H-module algebra structure on B such that B#H ~=A as weak right H-comodule algebras.

    Furthermore,there exists a one-to-one correspondence between the set of isomorphism classes of extensions of B and ?A.

    3 Weak Stable Modules

    In this section,we always assume that H is a weak Hopfalgebra with bijective antipode S,A a weak right H-comodule algebra and B=AcoH.

    Defi nition 3.1If there exists a right H-comodule map φ :H → A,called a weak cleaving map,and a map ψ :H → A that satisfy the following conditions

    for any h ∈ H.Then we say that A/B is a weak cleft extension(see[14]).

    Defi nition 3.2Let M be both a right B-module and a left HL-module.M is called weak H-stable if M ?BA and H ?HLM are isomorphic as right H-comodules and right B-modules,where H is a right HL-module via

    for any h ∈ H,x ∈ HL,and the actions and coactions are given by

    for any b ∈ B,m ?Ba ∈ M ?BA,h ?HLm ∈ H ?HLM.

    Lemma 3.3Let M ∈ MHA.Then H ?HLM is a weak right(A,H)-Hopfmodule,where H is a right HL-module as in(3.1),M is a left HL-module via x ·m=m(0)ε(m(1)S(x))for any x ∈ HL,m ∈ M,and the A-action and H-coaction on H ?HLM are given by

    for any h ?HLm ∈ H ?HLM,a ∈ A.

    ProofThe A-action on H ?HLM is welldefined,since for any x ∈ HL,a ∈ A,h?HLm ∈H ?HLM,

    where the third equality follows by the fact that m(0)?R(m(1))=m ·1(0)? S(1(1))for any m ∈ M.Using(W2)and the fact that S(HL) ? HR,we can easily show that the H-coaction on H ?HLM is also well defined.What is more,it is easy to see that H ?HLM is a weak right(A,H)-Hopf module.

    Let M ∈ MHA.By Lemma 2.5,we know that H ?HRM is a weak right(A,H)-Hopf module.In view of Lemma 3.3,we obtain the following result.

    Lemma 3.4Let M ∈ MHA.Then H ?HRM ~=H ?HLM as weak right(A,H)-Hopf modules.

    ProofWe first have a welldefined map

    In fact,for any h ?HLm ∈ H ?HLM,x ∈ HL,

    where the fourth equality follows by(W3)and the fact that S(HL) ? HR.And for any h ∈ H,m ∈ M,y ∈ HR,

    that is,Imθ ? H?HRM.Moreover,from(1.6),we can easily show thatθ is a right A-module map,and θ is a right H-comodule map,because

    Next,we show that θis a bijection with inverse

    The map ? is well defi ned,since for any y ∈ HR,h ?HLm ∈ H ?HLM,

    and for any h ∈ H,m ∈ M,x ∈ HL,

    where the second equality follows by(W9)and the fact that S(HL) ? HR.This implies Im? ? H ?HLM.

    Now we calculate that

    that is,θ is a bijection with inverse ?.

    Therefore,H ?HRM ~=H ?HLM as weak right(A,H)-Hopf modules.

    With notation as above,we obtain the following result which extends Theorem 3.6 in [15].

    Theorem 3.5Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Let M be both a right B-module and a left HL-module.Then the following assertions are equivalent.

    (1)M is weak H-stable.

    (2)ENDA(M ?BA)/EndB(M)is a weak cleft extension.

    ProofBy the proof of Theorem 2.6,we have a sequence of isomorphisms

    where the second isomorphism is given by

    for any f ∈ HomB(M ?BA,M),g ∈ HomHB(M ?BA,H ?HLM).This resulting isomorphism relates Φ ∈ HomHB(M ?BA,H ?HLM)with φ ∈ HomH(H,ENDA(M ?BA))which is given by

    Moreover,by Theorem 2.6 and Lemma 3.4,we have the following sequence of isomorphisms

    This resulting isomorphism relates Ψ ∈ HomHB(H ?HLM,M ?BA)with ψ ? S?1∈ HomH(H, ENDA(M ?BA))which is given by

    Therefore, φ and ψ ? S?1satisfy conditions(1)and(2)in Definition 3.1 if and only if Φ is a bijection with inverse Ψ,that is,ENDA(M ?BA)/EndB(M)is a weak cleft extension if and only if M is weak H-stable.

    [1]Alonso ′Alvarez J N,Fern′andez Vilaboa J M,Gonz′alez Rodr′?guez R,Rodr′?guez Raposo A B.A Maschke type theorem for weak Hopf algebras[J].Acta Math.Sin.,2008,24:2065–2080.

    [2]B¨ohm G,Nill F,Szlach′anyi K.Weak Hopf algebras I.integral theory and C?-structure[J].J.Alg., 1999,221:385–438.

    [3]B¨ohm G,Szlach′anyi K.A coassociative C?-quantum group with nonintegral dimensions[J].Lett. Math.Phys.,1996,35:437–456.

    [4]Caenepeel S.Hopf-Galois extensions and isomorphisms of small categories[J].Math.,2010,52:121–142.

    [5]Caenepeel S,De Groot E.Modules over weak entwining structures[J].Contemp.Math.,2000,267: 31–54.

    [6]Caenepeel S,De Groot E.Galois theory for weak Hopf algebras[J].Rev.Roumaine Math.Pures Appl.,2007,52:51–76.

    [7]Dade E C.Extending irreducible modules[J].J.Alg.,1981,72:374–403.

    [8]Hayashi T.Quantum group symmetry of partition functions of IRF models and its applications to Jones’s index theory[J].Comm.Math.Phys.1993,157:331–345.

    [9]Kadison L.Galois theory for bialgebroids,depth two and normal Hopf subalgebras[J].Ann.Univ. Ferrara Sez.VII(N.S.),2005,51:209–231.

    [10]Militaru G,Stefan D.Extending modules for Hopf Galois extensions[J].Comm.Alg.,1994,22: 5657–5678.

    [11]Montgomery S.Hopf algebras and their actions on rings[M].Chicago:CBMS,1993.

    [12]Nikshych D.A duality theorem for quantum groupoids[J].Contemp.Math.,2000,267:237–243.

    [13]Niu R F,Wang Y,Zhang L Y.The structure theorem for endomorphism algebras of weak Doi-Hopf modules[J].Acta Math.Hungar.,2010,127:273–290.

    [14]Rodr′?guez Raposo A B.Crossed products for weak Hopf algebras[J].Comm.Alg.,2009,37:2274–2289.

    [15]Schneider H J.Representation theory of Hopf Galois extensions[J].Israel J.Math.,1990,72:196–231.

    [16]Schneider H J.Hopf Galois extensions,crossed products and Cliff ord theory[A].Bergen J,Montgomery S.Advances in Hopf Algebras[C].FL,USA:CRC Press,1994:267–298.

    [17]Ulbrich L H.Smash products and comodules oflinear maps[J].Tsukuba J.Math.,1990,14:371–378.

    [18]Van Oystaeyen F,Zhang Y H.H-module endomorphism rings[J].J.Pure Appl.Alg.,1995,102: 207–219.

    [19]Wang Y,Zhang L Y.The structure theorem and duality theorem for endomorphism algebras of weak Hopf algebras[J].J.Pure Appl.Alg.,2011,215:1133–1145.

    [20]Yamanouchi T.Duality for generalized Kac algebras and a characterization of finite groupoid algebras[J].J.Alg.,1994,163:9–50.

    [21]Zhang L Y.Weak Galois extensions over H-module algebras[J].J.Math.,2008,28:647–652.

    [22]Zhang L Y.The structure theorem for weak comodule algebras[J].Comm.Alg.,2010,38:254–260.

    [23]Zhang L Y,Zhu S L.Fundamental theorems of weak Doi-Hopf modules and semisimple weak smash product Hopf algebras[J].Comm.Alg.,2004,32:3403–3415.

    弱Hopf代數(shù)上的Militaru-Stefan提升定理

    王勇
    (南京曉莊學(xué)院信息工程學(xué)院,江蘇 南京 211171)

    本 文 研 究 了 弱Hopf-Galois擴 張 的 擴 張 模. 利 用 忠 實 平 坦 的 弱Hopf-Galois擴 張 理 論, 研 究 了弱Hopf代數(shù)上 的Militaru-Stefan提 升定理, 推廣了文獻[10]中的相應(yīng)結(jié)果. 進一步地, 通過誘導(dǎo)模的自同態(tài)環(huán)的cleft擴張刻畫了弱穩(wěn)定模.

    弱Hopf代數(shù); 弱Hopf-Galois擴張; 弱cleft擴張

    :16T05;16T15

    O153.3

    tion:16T05;16T15

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0325-15

    0255-7797(2017)02-0325-15

    ?Received date:2015-09-14 Accepted date:2016-03-04

    Foundation item:Supported by National Natural Science Foundation of China(11401522);Natural Science Foundation for Colleges and Universities in Jiangsu Province(13KJD110008);Postdoctoral Research Program of Zhejiang Province(BSH1402029);Qing Lan Project.

    Biography:Wang Yong(1982–),male,born at Xuzhou,Jiangsu,associate professor,major in Hopf algebras.

    猜你喜歡
    曉莊王勇工程學(xué)院
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    福建工程學(xué)院
    福建工程學(xué)院
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    南京曉莊學(xué)院手繪作品選登
    福建工程學(xué)院
    王勇智斗財主
    王勇:我的想法就是“堅持”
    金橋(2018年12期)2019-01-29 02:47:44
    MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION?
    激情视频va一区二区三区| 波多野结衣av一区二区av| kizo精华| 纵有疾风起免费观看全集完整版| 一本色道久久久久久精品综合| 免费观看无遮挡的男女| 久久久久久人妻| 国产成人一区二区在线| 午夜av观看不卡| 男女高潮啪啪啪动态图| 水蜜桃什么品种好| 免费看不卡的av| 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| 99久国产av精品国产电影| 新久久久久国产一级毛片| 老汉色av国产亚洲站长工具| 美女主播在线视频| 国产精品久久久久久av不卡| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| av福利片在线| 国精品久久久久久国模美| 久久久久久免费高清国产稀缺| 久久毛片免费看一区二区三区| 边亲边吃奶的免费视频| 欧美少妇被猛烈插入视频| 亚洲一区中文字幕在线| 午夜福利一区二区在线看| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 国产一区二区在线观看av| 卡戴珊不雅视频在线播放| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 26uuu在线亚洲综合色| 国产精品一区二区在线不卡| 婷婷成人精品国产| 国产免费现黄频在线看| 精品午夜福利在线看| 最近手机中文字幕大全| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| 大码成人一级视频| 亚洲欧美一区二区三区国产| 欧美黄色片欧美黄色片| 免费女性裸体啪啪无遮挡网站| 母亲3免费完整高清在线观看 | 人人妻人人澡人人爽人人夜夜| 国产成人精品久久久久久| 边亲边吃奶的免费视频| 视频在线观看一区二区三区| 免费观看a级毛片全部| 色吧在线观看| 精品一区在线观看国产| 黄色毛片三级朝国网站| www日本在线高清视频| 亚洲五月色婷婷综合| 18禁观看日本| 91成人精品电影| 成人午夜精彩视频在线观看| 高清视频免费观看一区二区| 人体艺术视频欧美日本| 一级片免费观看大全| 美女国产视频在线观看| 中国国产av一级| 亚洲三区欧美一区| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 99久久综合免费| 伊人久久国产一区二区| 肉色欧美久久久久久久蜜桃| 久久久精品94久久精品| 精品少妇一区二区三区视频日本电影 | 午夜福利影视在线免费观看| tube8黄色片| 大话2 男鬼变身卡| 亚洲av电影在线观看一区二区三区| 激情视频va一区二区三区| 久久精品国产亚洲av涩爱| 婷婷色综合大香蕉| 丰满少妇做爰视频| 在线观看人妻少妇| 国产黄色免费在线视频| 精品久久蜜臀av无| 综合色丁香网| 女性被躁到高潮视频| 在线观看人妻少妇| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 欧美另类一区| 我要看黄色一级片免费的| 一区二区三区激情视频| 在线观看人妻少妇| 黑丝袜美女国产一区| 男人操女人黄网站| 男女国产视频网站| 亚洲av免费高清在线观看| 国产爽快片一区二区三区| 亚洲精华国产精华液的使用体验| 夫妻性生交免费视频一级片| 91午夜精品亚洲一区二区三区| 亚洲av成人精品一二三区| 亚洲精品国产一区二区精华液| 一区二区三区四区激情视频| 99久久精品国产国产毛片| 一区二区三区激情视频| 香蕉精品网在线| 国产精品香港三级国产av潘金莲 | 亚洲一区中文字幕在线| 九九爱精品视频在线观看| 另类亚洲欧美激情| 肉色欧美久久久久久久蜜桃| 亚洲天堂av无毛| www.精华液| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 777米奇影视久久| 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 99热国产这里只有精品6| 午夜福利影视在线免费观看| a级片在线免费高清观看视频| 街头女战士在线观看网站| 国精品久久久久久国模美| 男女午夜视频在线观看| 满18在线观看网站| 91在线精品国自产拍蜜月| www.自偷自拍.com| 一级,二级,三级黄色视频| 久久人人爽av亚洲精品天堂| 国产爽快片一区二区三区| 日本免费在线观看一区| 青春草亚洲视频在线观看| 欧美成人精品欧美一级黄| 国产在线免费精品| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 国产免费现黄频在线看| 97在线视频观看| 啦啦啦啦在线视频资源| 老司机影院毛片| 大码成人一级视频| 国产欧美日韩一区二区三区在线| 纵有疾风起免费观看全集完整版| 校园人妻丝袜中文字幕| 美女午夜性视频免费| 视频在线观看一区二区三区| 午夜福利视频精品| 久久毛片免费看一区二区三区| 哪个播放器可以免费观看大片| 9191精品国产免费久久| 1024香蕉在线观看| 国产97色在线日韩免费| 亚洲av综合色区一区| 性高湖久久久久久久久免费观看| 免费av中文字幕在线| 亚洲成人一二三区av| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 久久精品国产亚洲av天美| 成人毛片60女人毛片免费| 国产亚洲最大av| 女的被弄到高潮叫床怎么办| 免费女性裸体啪啪无遮挡网站| 国产亚洲最大av| 免费黄网站久久成人精品| 精品一区二区三卡| 中文欧美无线码| 成人国产麻豆网| 久久青草综合色| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 街头女战士在线观看网站| 国产激情久久老熟女| 老司机影院成人| 国产精品一二三区在线看| 考比视频在线观看| 纯流量卡能插随身wifi吗| 国产免费一区二区三区四区乱码| 亚洲成国产人片在线观看| 久久这里只有精品19| 久久免费观看电影| 国产在线视频一区二区| 高清在线视频一区二区三区| 亚洲欧美日韩另类电影网站| a级毛片黄视频| 少妇人妻精品综合一区二区| 国产精品久久久久久精品电影小说| 韩国av在线不卡| 亚洲国产精品999| 国产毛片在线视频| 成人亚洲精品一区在线观看| 欧美精品人与动牲交sv欧美| 欧美日韩一级在线毛片| 日本vs欧美在线观看视频| 亚洲综合色惰| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 黑人猛操日本美女一级片| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人 | 国产高清不卡午夜福利| 国产亚洲最大av| 国产一级毛片在线| 久久国产精品大桥未久av| 一级片'在线观看视频| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| freevideosex欧美| 高清欧美精品videossex| 另类亚洲欧美激情| 亚洲精品乱久久久久久| 蜜桃国产av成人99| 高清黄色对白视频在线免费看| 久久影院123| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 99九九在线精品视频| 欧美在线黄色| 亚洲国产av影院在线观看| 国产精品99久久99久久久不卡 | 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 亚洲国产看品久久| 久久久精品国产亚洲av高清涩受| 国语对白做爰xxxⅹ性视频网站| 午夜免费男女啪啪视频观看| 99久久中文字幕三级久久日本| 亚洲三区欧美一区| 国产成人精品久久二区二区91 | 一本大道久久a久久精品| 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 中文字幕人妻丝袜制服| 啦啦啦视频在线资源免费观看| 亚洲三级黄色毛片| 国产一区二区在线观看av| 亚洲欧美日韩另类电影网站| 制服丝袜香蕉在线| 99九九在线精品视频| 亚洲国产精品999| 国产一区亚洲一区在线观看| 久久久久久人妻| 日韩人妻精品一区2区三区| 嫩草影院入口| 黄色配什么色好看| 亚洲欧洲日产国产| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 99热全是精品| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 99国产精品免费福利视频| 成年女人毛片免费观看观看9 | 大片免费播放器 马上看| 18+在线观看网站| 国产成人免费观看mmmm| 三上悠亚av全集在线观看| 日韩一本色道免费dvd| 性色avwww在线观看| 黄片小视频在线播放| 亚洲一级一片aⅴ在线观看| 久热久热在线精品观看| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 国产一区二区三区综合在线观看| 青春草亚洲视频在线观看| 中文字幕制服av| 伦精品一区二区三区| 老司机影院毛片| 日韩伦理黄色片| av一本久久久久| 91精品国产国语对白视频| 少妇人妻久久综合中文| 国产精品三级大全| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 久久久精品区二区三区| 一个人免费看片子| 9热在线视频观看99| 亚洲国产成人一精品久久久| 欧美日韩亚洲高清精品| 日本欧美视频一区| 精品酒店卫生间| 亚洲精品日韩在线中文字幕| 日韩不卡一区二区三区视频在线| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 久久久久久人人人人人| a级片在线免费高清观看视频| 亚洲第一区二区三区不卡| 亚洲美女视频黄频| 最近中文字幕高清免费大全6| 午夜激情av网站| 欧美97在线视频| 精品少妇黑人巨大在线播放| 国产人伦9x9x在线观看 | 视频区图区小说| 亚洲三区欧美一区| 18在线观看网站| 国产精品久久久久久精品电影小说| 亚洲成人av在线免费| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 两个人免费观看高清视频| 成年女人毛片免费观看观看9 | 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| 热re99久久国产66热| 捣出白浆h1v1| av在线播放精品| 欧美人与善性xxx| 久久影院123| 国产午夜精品一二区理论片| 男女国产视频网站| 精品一品国产午夜福利视频| 高清av免费在线| 国产深夜福利视频在线观看| 制服丝袜香蕉在线| 男人操女人黄网站| 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 精品久久蜜臀av无| 国产片特级美女逼逼视频| 午夜福利乱码中文字幕| 1024视频免费在线观看| 久久久久久久久免费视频了| 99久久人妻综合| 久久久久久久久久久免费av| 在线观看三级黄色| 中文乱码字字幕精品一区二区三区| 亚洲国产看品久久| 成人黄色视频免费在线看| 亚洲欧美一区二区三区久久| 久久婷婷青草| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 在线观看人妻少妇| 日韩一本色道免费dvd| 看免费av毛片| 欧美日本中文国产一区发布| 最近中文字幕高清免费大全6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费久久久久久久精品成人欧美视频| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 男女边摸边吃奶| 99久久精品国产国产毛片| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图| 一级爰片在线观看| 亚洲av男天堂| 久久精品国产a三级三级三级| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 久久午夜福利片| 老汉色av国产亚洲站长工具| 久久人人爽av亚洲精品天堂| 熟女av电影| 午夜久久久在线观看| 巨乳人妻的诱惑在线观看| 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 亚洲精品在线美女| 国产一区二区三区av在线| 青春草国产在线视频| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| a级片在线免费高清观看视频| 欧美另类一区| 久久久精品免费免费高清| 熟女少妇亚洲综合色aaa.| 一级爰片在线观看| 国产男人的电影天堂91| 久久久a久久爽久久v久久| 亚洲国产av新网站| 日日啪夜夜爽| 99热网站在线观看| av在线app专区| 久久久久精品久久久久真实原创| 999久久久国产精品视频| 99香蕉大伊视频| 如何舔出高潮| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av天美| 美女国产视频在线观看| 免费少妇av软件| 国产精品三级大全| 亚洲男人天堂网一区| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 久久久久网色| 视频在线观看一区二区三区| 蜜桃国产av成人99| 亚洲伊人久久精品综合| 精品国产一区二区三区四区第35| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡| 9191精品国产免费久久| 永久免费av网站大全| 女性被躁到高潮视频| 中文字幕人妻丝袜制服| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 国产在线视频一区二区| 91久久精品国产一区二区三区| 国产av一区二区精品久久| 午夜激情久久久久久久| 亚洲国产看品久久| 国产女主播在线喷水免费视频网站| 一级毛片我不卡| 90打野战视频偷拍视频| 在线观看国产h片| 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 高清在线视频一区二区三区| 久久久久久伊人网av| 国产野战对白在线观看| 搡女人真爽免费视频火全软件| 国产爽快片一区二区三区| 少妇被粗大猛烈的视频| 香蕉精品网在线| 亚洲美女黄色视频免费看| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 免费观看无遮挡的男女| 久久鲁丝午夜福利片| xxxhd国产人妻xxx| 亚洲国产精品999| 91久久精品国产一区二区三区| 成年女人在线观看亚洲视频| 亚洲成国产人片在线观看| 亚洲国产精品国产精品| 成人手机av| 一区二区三区四区激情视频| 少妇被粗大的猛进出69影院| av又黄又爽大尺度在线免费看| 亚洲国产精品国产精品| 91国产中文字幕| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 中文字幕av电影在线播放| 人妻 亚洲 视频| 亚洲av福利一区| 丁香六月天网| 亚洲美女视频黄频| 999久久久国产精品视频| 免费观看a级毛片全部| 国产日韩欧美视频二区| 精品福利永久在线观看| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 9191精品国产免费久久| 色94色欧美一区二区| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区| 天美传媒精品一区二区| 久久av网站| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| av在线老鸭窝| 18禁裸乳无遮挡动漫免费视频| 国产野战对白在线观看| av免费在线看不卡| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 久久久久久人妻| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 卡戴珊不雅视频在线播放| 国产成人精品久久久久久| 99热全是精品| 日本vs欧美在线观看视频| 两个人免费观看高清视频| 亚洲,一卡二卡三卡| 成年美女黄网站色视频大全免费| 久久人人爽人人片av| 人人妻人人澡人人看| 午夜影院在线不卡| 黑人欧美特级aaaaaa片| 精品国产一区二区三区久久久樱花| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 欧美在线黄色| av在线播放精品| 大话2 男鬼变身卡| 久热久热在线精品观看| 777米奇影视久久| 在线精品无人区一区二区三| 超碰成人久久| 日本色播在线视频| 日本欧美视频一区| 看免费av毛片| 午夜福利网站1000一区二区三区| 国产精品蜜桃在线观看| 又粗又硬又长又爽又黄的视频| 中文字幕人妻丝袜一区二区 | 亚洲精品成人av观看孕妇| 亚洲欧洲国产日韩| 国产精品香港三级国产av潘金莲 | 男女高潮啪啪啪动态图| av有码第一页| 人妻少妇偷人精品九色| 日韩中字成人| 欧美在线黄色| 日日摸夜夜添夜夜爱| 精品福利永久在线观看| 免费黄网站久久成人精品| 国产亚洲欧美精品永久| 成年人免费黄色播放视频| 久久久精品94久久精品| 免费大片黄手机在线观看| 免费在线观看视频国产中文字幕亚洲 | 老鸭窝网址在线观看| 在现免费观看毛片| 天堂中文最新版在线下载| 久久精品国产综合久久久| 色94色欧美一区二区| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜一区二区 | 午夜日韩欧美国产| 99国产综合亚洲精品| 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 国产乱来视频区| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 在线天堂最新版资源| 99久久精品国产国产毛片| 亚洲国产精品一区二区三区在线| 欧美日韩av久久| 久久99精品国语久久久| 久久久久久免费高清国产稀缺| 国产一区二区三区av在线| 精品99又大又爽又粗少妇毛片| 亚洲综合色惰| 日韩视频在线欧美| 中文字幕最新亚洲高清| 老汉色av国产亚洲站长工具| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 中文天堂在线官网| 三级国产精品片| 最黄视频免费看| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 人妻 亚洲 视频| 黄色怎么调成土黄色| 色94色欧美一区二区| 超碰成人久久| 亚洲av国产av综合av卡| 国产一级毛片在线| 少妇人妻久久综合中文| 青春草视频在线免费观看| 中国国产av一级| 国产一区二区激情短视频 | videosex国产| 久久久久国产精品人妻一区二区| 女人精品久久久久毛片| 国产在线视频一区二区| 亚洲欧美精品综合一区二区三区 | 国产欧美日韩一区二区三区在线| 男女高潮啪啪啪动态图| av.在线天堂| 亚洲精品国产av蜜桃| 国产精品一区二区在线不卡| 永久网站在线| 晚上一个人看的免费电影| 色哟哟·www| 叶爱在线成人免费视频播放| 蜜桃国产av成人99| 欧美另类一区| av.在线天堂| 天天躁夜夜躁狠狠躁躁| 久久影院123| 午夜福利网站1000一区二区三区| 久久精品国产a三级三级三级| 人人澡人人妻人| 母亲3免费完整高清在线观看 | 久久精品国产自在天天线| 国产又色又爽无遮挡免| 亚洲av免费高清在线观看| 视频区图区小说| 人人妻人人爽人人添夜夜欢视频| 成年人午夜在线观看视频| 少妇人妻 视频| 欧美人与善性xxx| 国产黄色视频一区二区在线观看| 一本—道久久a久久精品蜜桃钙片| 岛国毛片在线播放|