• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE MILITARU-STEFAN LIFTING THEOREM OVER WEAK HOPF ALGEBRAS

    2017-04-12 14:31:39WANGYong
    數(shù)學(xué)雜志 2017年2期
    關(guān)鍵詞:曉莊王勇工程學(xué)院

    WANG Yong

    (College of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China)

    THE MILITARU-STEFAN LIFTING THEOREM OVER WEAK HOPF ALGEBRAS

    WANG Yong

    (College of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China)

    The paper is concerned with extension modules for weak Hopf-Galois extensions. By using faithfully flat weak Hopf-Galois extension theory,we investigative the Militaru-Stefan lifting theorem over weak Hopf algebras,which extends the corresponding result given in[10]. Moreover,we characterizer weak stable modules by a weak cleft extension of endomorphism rings of induced modules.

    weak Hopf algebra;weak Hopf-Galois extension;weak cleft extension

    1 Introduction and Preliminaries

    Let H be a Hopf algebra,A a faithfully flat Hopf-Galois extension over its subalgebra of coinvariants B and M a B-module.Generalizing a result due to Dade[7]on strongly graded rings,Militaru and Stefan checked the following classical result:the B-action on M can be extended to an A-action if and only if there exists a total integral and algebra map φ :H → ENDA(M ?BA),where ENDA(M ?BA),consisting of the rational space of EndA(M ?BA),was introduced by Ulbrich[17].Moreover,Caenepeel also studied and obtained this result using isomorphisms of small categories in[4].

    The purpose of the present paper is to investigate the above result in the case of weak Hopfalgebras.But this is not a direct promotion,we give a new simple proof.

    Weak bialgebras(or weak Hopfalgebras),as a generalization ofordinary bialgebras(or Hopf algebras)and groupoid algebras,were introduced by B¨ohm and Szlach′anyi in[3](see also their joint work with Nillin[2]).The main difference between ordinary and weak Hopf algebras comes from the fact that the comultiplication of the latter is no longer required to preserve the unit(equivalently,the counit is not required to be an algebra homomorphism). Consequently,there are two canonical subalgebras(HLand HR)playing the role of “noncommutative bases” in a weak Hopf algebra H.Moreover,the wellknown examples of weakHopfalgebras are groupoid algebras,face algebras and generalized Kac algebras(see[8,20]). The main motivation for studying weak Hopfalgebras comes from quantum field theory and operator algebras.It turned out that many results of classical Hopf algebra theory can be generalized to weak Hopf algebras.

    This paper is organized as follows.In Section 1,we recall some basic definitions and give a summary of the fundamental properties concerning weak Hopf algebras.In Section 2,based on the work of[19],we obtain the main result of this paper by a new method,that is,the Militaru-Stefan lifting theorem over weak Hopf algebras.As an application,we check that if A/B is a weak right H-Galois extension,then the weak smash product EndB(M)#H is isomorphic to ENDA(M ?BA)as an algebra for any M ∈ MA,which extends Theorem 2.3 in[18],given for a finite dimensional Hopf algebra.Moreover,for any B-module M, we prove that there exists a one-to-one correspondence between all A-isomorphism classes of extensions of M to a right A-module and the conjugation classes of total integrals and algebra maps t:H → ENDA(M ?BA).In Section 3,under the condition “faithfully flat weak Hopf-Galois extensions”,we mainly prove that a right B-module M is weak H-stable if and only if ENDA(M ?BA)/EndB(M)is a weak cleft extension,which generalizes Theorem 3.6 in[15].

    We always work over a fixed field k and follow Montgomery’s book[11]for terminologies on algebras,coalgebras and comodules,butomitthe usualsummation indicesand summation symbols.

    In what follows,we recallsome concepts and results used in this paper.

    Defi nition 1.1[2]Let H be both an algebra and a coalgebra.If H satisfies conditions (1.1)–(1.3)below,then it is called a weak bialgebra.If it satisfies conditions(1.1)–(1.4) below,then it is called a weak Hopf algebra with antipode S.

    For any x,y,z ∈ H,

    where Δ2=(Δ ? id)Δ.

    where Δ(1)=11? 12.

    For any weak bialgebra H,define the mapsL,R:H → H by the formulas

    We have that HL=Im(L)and HR=Im(R)(see[2,5]).

    By[2],the antipode S of a weak Hopf algebra H is anti-multiplicative and anticomultiplicative,that is,for any h,g ∈ H,

    The unit and counit are S-invariants,that is,S(1H)=1H,ε ? S= ε.

    H is always considered as a weak Hopf algebra.The following results(W1)? (W9)are given in[2].For any x ∈ HL,y ∈ HRand h,g ∈ H,

    Let H be a weak Hopf algebra with bijective antipode S.Then it is clear that S?1is anti-multiplicative and anti-comultiplicative such that

    The following results(W13)? (W14)are given in[12].

    If the antipode S is bijective,then for any h ∈ H,

    Defi nition 1.2[5]Let H be a weak bialgebra,and A a right H-comodule,which is also an algebra,such that

    for any a,b ∈ A.In this case we call A a weak right H-comodule algebra.

    Defi nition 1.3[5]Let H be a weak Hopf algebra and A a weak right H-comodule algebra.If M is both a right A-module and a right H-comodule such that for any m ∈M,a ∈ A,then M is called a weak right(A,H)-Hopf module.

    Similarly,we can define the weak left right(A,H)-Hopf modules.We denote by MHAthe category of weak right(A,H)-Hopf modules,and right A-linear H-colinear maps,andAMHthe category ofweak left right(A,H)-Hopfmodules,and left A-linear right H-colinear maps.

    Defi nition 1.4[12] Let H be a weak bialgebra.The algebra A is called a weak left H-module algebra if A is a left H-module via h ? a → h ·a such that for any a,b ∈ A and h∈H,

    Defi nition 1.5[12]Let H be a weak Hopfalgebra and A a weak left H-module algebra. A weak smash product A#H of A with H is defined on a k-vector space A ?HLH,where H is a left HL-module via its multiplication and A is a right HL-module via

    Its multiplication is given by the familiar formula:for any a,b ∈ A and h,g ∈ H,

    Then by[12],A#H is an associative algebra with unit 1A#1H.

    Defi nition 1.6[1]Let H be a weak Hopf algebra and A a weak right H-comodule algebra.A map φ :H → A is called a total integral if φ is a right H-comodule map and φ(1H)=1A.

    2 The Militaru-Stefan Lifting Theorem

    In this section,we always assume that H is a weak Hopfalgebra with bijective antipode S and A a weak right H-comodule algebra.

    Denote B=AcoH={a ∈ A|ρ(a)=a(0)?L(a(1))}.Then by[9,23],we know that B is a subalgebra of A,McoH={m ∈ M|ρ(m)=m(0)?L(m(1))}is a right B-submodule of M for any M ∈ MHA.Set

    for any N ∈ MA.Then by[19],N ? H ∈ MHA,whose action and coaction are given by

    Defi nition 2.1[9]If the given map

    is a bijection,we say that A/B is a weak right H-Galois extension,where A is a left and right B-module via its multiplication.

    We will write for any h ∈ H, β?1(1A? h)=h[1]?Bh[2]∈ A ?BA.

    Lemma 2.2Let N ∈ MA.If A/B is a weak right H-Galois extension,then N ? H ~= N ?BA as weak right(A,H)-Hopfmodules,where the A-action and H-coaction on N ?BA are given by

    for any a,b ∈ A,n ∈ N.

    ProofDefine a map ? to be the composite

    that is, ?(n ? h)=n ·h[1]?Bh[2].This implies ? is a bijection.Additionally,by Lemma 2.2 in[13],we can easily check that ? is both a right A-module map and a right H-comodule map.Thus N ? H ~=N ?BA as weak right(A,H)-Hopf modules.

    Lemma 2.3The following assertions are equivalent.

    (1)There exists a totalintegral and algebra map φ :H → A.

    (2)B#H ~=A as weak right H-comodule algebras.

    If these assertions hold then B is a weak left H-module algebra via the adjoint action h ·b= φ(h1)bφ(S(h2)).

    ProofDefine a map τ:H → B#H,h → 1#h.For any h,g ∈ H,(1#h)(1#g)=1#hg. This implies that τ is an algebra map.Obviously, τis a total integral.Hence the map φ = λ ? τ:H → A is also a totalintegraland algebra map,where the map λ :B#H → A is an isomorphism of right H-comodule algebras.

    Conversely,assume that there exists a totalintegraland algebra map φ :H → A.Then B is a weak left H-module algebra via the adjoint action h ·b= φ(h1)bφ(S(h2)).

    In fact,since φ is a right H-comodule map,(φ ? idH)Δ(1H)= ρAφ(1H),that is,φ(11)?12=1(0)? 1(1).Hence

    In view of Theorem 3.3 in[22],we know that the rest is true.

    Take M,N ∈ MHA.Consider ρ(f) ∈ HomA(M,N ? H)as

    for any f ∈ HomA(M,N),m ∈ M,where the A-action on N ? H is induced by the A-action on N.Then by[19], ρ(f)is right A-linear.In addition,by[19],we know that HomA(M,N) becomes a right HR-module via

    for any f ∈ HomA(M,N)and y ∈ HR,where M is a left HR-module via

    Recall from[19],we say that a map f ∈ HomA(M,N)is rationalif there is an element fi? fj∈ HomA(M,N)? H such that

    for any m ∈ M,where Δ(1H)=11? 12.Set HOMA(M,N)={f ∈ HomA(M,N)|f is rational}.Then by(2.3)and(2.6),for any f ∈ HOMA(M,N),

    By[19],we know that HOMA(M,N)is a right H-comodule via(2.7),ENDA(M)= HOMA(M,M)is a weak right H-comodule algebra,ENDA(M)coH=EndHA(M),and(2.6) is equivalent to that

    for any m ∈ M and f ∈ HOMA(M,N).

    From(2.8),for any M ∈ MHA,we can easily check that M ∈ENDA(M)MHthe category of weak left right(ENDA(M),H)-Hopf modules,and left ENDA(M)-linear right H-colinear maps,where M is a left ENDA(M)-module via f ·m=f(m)for any f ∈ E N DA(M),m ∈ M.

    Let M ∈ MHA.Consider the induction functor ? ?HRM and the functor HOMA(M,?) between MHand MHA:

    where for a right H-comodule P,it is a right HR-module via p ·y=p(0)ε(p(1)y)for any p ∈ P,y ∈ HR,M is a left HR-module via(2.5),and the A-action and H-coaction on P ?HRM are given by

    With notation as above,the following assertion holds.

    Lemma 2.4Let M ∈ MHA.Then(? ?HRM,HOMA(M,?))is an adjoint pair.

    ProofTo show that(? ?HRM,HOMA(M,?))is an adjoint pair,it suffi ces to prove that HomH(P,HOMA(M,N)) ~=HomHA(P ?HRM,N)for any P ∈ MH,M,N ∈ MHA.

    Define a map F:HomHA(P ?HRM,N) → HomH(P,HOMA(M,N))by

    The map F is welldefined.In fact,for any f ∈ HomHA(P ?HRM,N),p ∈ P,m ∈ M,

    that is, ρ(F(f)(p))=F(f)(p(0)) ← 11? p(1)12.The right A-linearity of f implies that F(f)(p)is also a right A-linear map.Hence F(f)(p) ∈ HOMA(M,N).Moreover,in the light ofthe right H-colinearity of f,we can easily show that F(f)is also a right H-colinear map.

    Now,we define a map G:HomH(P,HOMA(M,N)) → HomHA(P ?HRM,N)by

    Obviously,G is welldefined,and F is a bijection with inverse G.Hence HomH(P,HOMA(M,N))~=HomHA(P ?HRM,N).

    Consider H as a right H-comodule via its comultiplication,hence by(2.9),H ?HRM ∈MHA.Then the following assertion holds.

    Lemma 2.5Let M ∈ MHA.Then H ?HRM ~=M ? H as weak right(A,H)-Hopf modules,where M ? H is a weak right(A,H)-Hopf module via(2.1).

    ProofDefine a map

    Using(W2),we can check that δis well defined.It is easy to see that δis both a right A-module map and a right H-comodule map.

    In what follows,we show that δis a bijection with inverse

    The map γ is well defined,since for any m ∈ M,h ∈ H,y ∈ HR,

    that is,Imγ ? H ?HRM.

    Now we calculate that

    for any h ?HRm ∈ H ?HRM,and

    where the fifth equality follows by the fact that m(0)?R(m(1))=m ·1(0)? S(1(1))for any m ∈ M(see[19]).Therefore H ?HRM ~=M ? H as weak right(A,H)-Hopf modules.

    In what follows,we obtain the Militaru-Stefan lifting theorem over weak Hopfalgebras,

    which extends Theorem 2.3 in[10].

    Theorem 2.6Let A/B be a weak right H-Galois extension and A faithfully flat as a

    left B-module.Assume that(M,?)is a right B-module.Then the following assertions are equivalent.

    (1)M can be extended to a right A-module.

    (2)There exists a total integral and algebra map φ :H → ENDA(M ?BA),where

    M ?BA is a weak right(A,H)-Hopf module via(2.2).

    (3)There is a weak left H-module algebra structure on EndB(M)such that

    as weak right H-comodule algebras.

    Proof(1) ? (2)Since A/B is a weak right H-Galois extension and A is faithfully flat as a left B-module,the functor ? ?BA is an equivalence between MBand MHAaccording to[6].Hence we have a sequence of isomorphisms:

    where the first isomorphism follows by Lemma 2.4,the second one by Lemma 2.5 and the third one by Lemma 2.2.This resulting isomorphism relates the desired A-action ? on M to the multiplicative total integralφ on ENDA(M ?BA).

    In fact,the associativity and unitality of the action ? are equivalent to the multiplicativity and unitality of φ,respectively.Indeed,there are further similar isomorphisms:

    and

    They relate,respectively,

    with

    and

    with

    while

    with(?) ? 1A:M → M;furthermore the unit of ENDA(M ?BA)with the identity map on M.So(1) ? (2)holds.

    (2)? (3)Since A/B is a weak right H-Galois extension and A is faithfully flat as a left B-module,the functor ? ?BA is an equivalence between MBand MHAaccording to[6], hence

    So by Lemma 2.3,(2)? (3)holds.

    The following conclusion extends Theorem 3.5 in[16].

    Proposition 2.7Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Assume that(M,?)is a right B-module.Then the following assertions are equivalent.

    (1) ι:M → M ?BA,m → m ?B1Ais a B-split monomorphism.

    (2)ENDA(M ?BA)is a relative injective H-comodule.

    ProofWe only sketch the proof.This result can be derived from the isomorphism HomH(H,ENDA(M ?BA)) ~=HomB(M ?BA,M)together with Theorem 1.7 in[1]and the observation in the proofof Theorem 2.6 about the simultaneous unitality of the corresponding morphisms κ ∈ HomB(M ?BA,M)and φ ∈ HomH(H,ENDA(M ?BA)).

    Remark(1)Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Assume that(M,?)is a right A-module.Then(M,?)is also a right B-module, which can be extended to a right A-module.Therefore,by Theorem 2.6,EndB(M)#H ~= ENDA(M ?BA)as weak right H-comodule algebras,which extends Theorem 2.3 in[18], given for a finite dimensional Hopf algebra.

    (2)By[6,21],we know that H is a weak right H-Galois extension of HL,hence,by(1), EndHL(H)#H ~=ENDH(H ?HLH)as algebras.In particular,if H is a finite dimensional

    weak Hopfalgebra,then by Corollary 3.4 in[12],we have H#H?~=E ndHL(H)as algebras. Then there exists an algebra isomorphism(H#H?)#H ~=ENDH(H ?HLH).

    Set

    For any φ1,φ2∈ ?E,if there exists ψ ∈ AutB(M)such that

    for any h ∈ H,we say that φ1,φ2are conjugate,denoted by φ1~ φ2.It is obvious that ~is an equivalence relation on ?E.We denote by ?Ethe quotient set of ?Erelative to this equivalence relation ~.

    With notation as above,the following assertion holds.

    Theorem 2.8Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Consider M as a right B-module.Then there is a bijection between all A-isomorphism classes of extensions of M to a right A-module and ?E.

    ProofBy the proof of Theorem 2.6,we know that HomH(H,ENDA(M ?BA)) ~= HomB(M ?BA,M).This isomorphism relates

    with the map

    where ψ ∈ AutB(M).Therefore,the bijection between ?Eand the set of extensions of M, induces a bijection between ?Eand the set of A-isomorphism classes of extensions of M.

    Recall from Remark 2.8(1)in[19],we know that ENDA(A) ~=A as weak right H-comodule algebras.Hence ENDA(B ?BA) ~=ENDA(A) ~=A as weak right H-comodule algebras.Let M=B,then ?E= ?A={φ ∈ HomH(H,A)|φ is an algebra map}.At the same time,it is easy to see that equation(2.10)is replaced by the equation

    where b ∈ U(B)={b ∈ B|b is invertible}.That is,for any φ1,φ2∈ ?A,φ1,φ2are conjugate if there exists b ∈ U(B)such that for any h ∈ H,(2.11)holds.Denote by ?Athe quotient set of ?Arelative to this conjugate relation.Then by Theorem 2.6 and Theorem 2.8,the following assertion holds.

    Corollary 2.9Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Consider M as a right B-module.Then the following assertions are equivalent.

    (1)B can be extended to a right A-module.

    (2) ?A/= ?.

    (3)There exists a weak left H-module algebra structure on B such that B#H ~=A as weak right H-comodule algebras.

    Furthermore,there exists a one-to-one correspondence between the set of isomorphism classes of extensions of B and ?A.

    3 Weak Stable Modules

    In this section,we always assume that H is a weak Hopfalgebra with bijective antipode S,A a weak right H-comodule algebra and B=AcoH.

    Defi nition 3.1If there exists a right H-comodule map φ :H → A,called a weak cleaving map,and a map ψ :H → A that satisfy the following conditions

    for any h ∈ H.Then we say that A/B is a weak cleft extension(see[14]).

    Defi nition 3.2Let M be both a right B-module and a left HL-module.M is called weak H-stable if M ?BA and H ?HLM are isomorphic as right H-comodules and right B-modules,where H is a right HL-module via

    for any h ∈ H,x ∈ HL,and the actions and coactions are given by

    for any b ∈ B,m ?Ba ∈ M ?BA,h ?HLm ∈ H ?HLM.

    Lemma 3.3Let M ∈ MHA.Then H ?HLM is a weak right(A,H)-Hopfmodule,where H is a right HL-module as in(3.1),M is a left HL-module via x ·m=m(0)ε(m(1)S(x))for any x ∈ HL,m ∈ M,and the A-action and H-coaction on H ?HLM are given by

    for any h ?HLm ∈ H ?HLM,a ∈ A.

    ProofThe A-action on H ?HLM is welldefined,since for any x ∈ HL,a ∈ A,h?HLm ∈H ?HLM,

    where the third equality follows by the fact that m(0)?R(m(1))=m ·1(0)? S(1(1))for any m ∈ M.Using(W2)and the fact that S(HL) ? HR,we can easily show that the H-coaction on H ?HLM is also well defined.What is more,it is easy to see that H ?HLM is a weak right(A,H)-Hopf module.

    Let M ∈ MHA.By Lemma 2.5,we know that H ?HRM is a weak right(A,H)-Hopf module.In view of Lemma 3.3,we obtain the following result.

    Lemma 3.4Let M ∈ MHA.Then H ?HRM ~=H ?HLM as weak right(A,H)-Hopf modules.

    ProofWe first have a welldefined map

    In fact,for any h ?HLm ∈ H ?HLM,x ∈ HL,

    where the fourth equality follows by(W3)and the fact that S(HL) ? HR.And for any h ∈ H,m ∈ M,y ∈ HR,

    that is,Imθ ? H?HRM.Moreover,from(1.6),we can easily show thatθ is a right A-module map,and θ is a right H-comodule map,because

    Next,we show that θis a bijection with inverse

    The map ? is well defi ned,since for any y ∈ HR,h ?HLm ∈ H ?HLM,

    and for any h ∈ H,m ∈ M,x ∈ HL,

    where the second equality follows by(W9)and the fact that S(HL) ? HR.This implies Im? ? H ?HLM.

    Now we calculate that

    that is,θ is a bijection with inverse ?.

    Therefore,H ?HRM ~=H ?HLM as weak right(A,H)-Hopf modules.

    With notation as above,we obtain the following result which extends Theorem 3.6 in [15].

    Theorem 3.5Let A/B be a weak right H-Galois extension and A faithfully flat as a left B-module.Let M be both a right B-module and a left HL-module.Then the following assertions are equivalent.

    (1)M is weak H-stable.

    (2)ENDA(M ?BA)/EndB(M)is a weak cleft extension.

    ProofBy the proof of Theorem 2.6,we have a sequence of isomorphisms

    where the second isomorphism is given by

    for any f ∈ HomB(M ?BA,M),g ∈ HomHB(M ?BA,H ?HLM).This resulting isomorphism relates Φ ∈ HomHB(M ?BA,H ?HLM)with φ ∈ HomH(H,ENDA(M ?BA))which is given by

    Moreover,by Theorem 2.6 and Lemma 3.4,we have the following sequence of isomorphisms

    This resulting isomorphism relates Ψ ∈ HomHB(H ?HLM,M ?BA)with ψ ? S?1∈ HomH(H, ENDA(M ?BA))which is given by

    Therefore, φ and ψ ? S?1satisfy conditions(1)and(2)in Definition 3.1 if and only if Φ is a bijection with inverse Ψ,that is,ENDA(M ?BA)/EndB(M)is a weak cleft extension if and only if M is weak H-stable.

    [1]Alonso ′Alvarez J N,Fern′andez Vilaboa J M,Gonz′alez Rodr′?guez R,Rodr′?guez Raposo A B.A Maschke type theorem for weak Hopf algebras[J].Acta Math.Sin.,2008,24:2065–2080.

    [2]B¨ohm G,Nill F,Szlach′anyi K.Weak Hopf algebras I.integral theory and C?-structure[J].J.Alg., 1999,221:385–438.

    [3]B¨ohm G,Szlach′anyi K.A coassociative C?-quantum group with nonintegral dimensions[J].Lett. Math.Phys.,1996,35:437–456.

    [4]Caenepeel S.Hopf-Galois extensions and isomorphisms of small categories[J].Math.,2010,52:121–142.

    [5]Caenepeel S,De Groot E.Modules over weak entwining structures[J].Contemp.Math.,2000,267: 31–54.

    [6]Caenepeel S,De Groot E.Galois theory for weak Hopf algebras[J].Rev.Roumaine Math.Pures Appl.,2007,52:51–76.

    [7]Dade E C.Extending irreducible modules[J].J.Alg.,1981,72:374–403.

    [8]Hayashi T.Quantum group symmetry of partition functions of IRF models and its applications to Jones’s index theory[J].Comm.Math.Phys.1993,157:331–345.

    [9]Kadison L.Galois theory for bialgebroids,depth two and normal Hopf subalgebras[J].Ann.Univ. Ferrara Sez.VII(N.S.),2005,51:209–231.

    [10]Militaru G,Stefan D.Extending modules for Hopf Galois extensions[J].Comm.Alg.,1994,22: 5657–5678.

    [11]Montgomery S.Hopf algebras and their actions on rings[M].Chicago:CBMS,1993.

    [12]Nikshych D.A duality theorem for quantum groupoids[J].Contemp.Math.,2000,267:237–243.

    [13]Niu R F,Wang Y,Zhang L Y.The structure theorem for endomorphism algebras of weak Doi-Hopf modules[J].Acta Math.Hungar.,2010,127:273–290.

    [14]Rodr′?guez Raposo A B.Crossed products for weak Hopf algebras[J].Comm.Alg.,2009,37:2274–2289.

    [15]Schneider H J.Representation theory of Hopf Galois extensions[J].Israel J.Math.,1990,72:196–231.

    [16]Schneider H J.Hopf Galois extensions,crossed products and Cliff ord theory[A].Bergen J,Montgomery S.Advances in Hopf Algebras[C].FL,USA:CRC Press,1994:267–298.

    [17]Ulbrich L H.Smash products and comodules oflinear maps[J].Tsukuba J.Math.,1990,14:371–378.

    [18]Van Oystaeyen F,Zhang Y H.H-module endomorphism rings[J].J.Pure Appl.Alg.,1995,102: 207–219.

    [19]Wang Y,Zhang L Y.The structure theorem and duality theorem for endomorphism algebras of weak Hopf algebras[J].J.Pure Appl.Alg.,2011,215:1133–1145.

    [20]Yamanouchi T.Duality for generalized Kac algebras and a characterization of finite groupoid algebras[J].J.Alg.,1994,163:9–50.

    [21]Zhang L Y.Weak Galois extensions over H-module algebras[J].J.Math.,2008,28:647–652.

    [22]Zhang L Y.The structure theorem for weak comodule algebras[J].Comm.Alg.,2010,38:254–260.

    [23]Zhang L Y,Zhu S L.Fundamental theorems of weak Doi-Hopf modules and semisimple weak smash product Hopf algebras[J].Comm.Alg.,2004,32:3403–3415.

    弱Hopf代數(shù)上的Militaru-Stefan提升定理

    王勇
    (南京曉莊學(xué)院信息工程學(xué)院,江蘇 南京 211171)

    本 文 研 究 了 弱Hopf-Galois擴 張 的 擴 張 模. 利 用 忠 實 平 坦 的 弱Hopf-Galois擴 張 理 論, 研 究 了弱Hopf代數(shù)上 的Militaru-Stefan提 升定理, 推廣了文獻[10]中的相應(yīng)結(jié)果. 進一步地, 通過誘導(dǎo)模的自同態(tài)環(huán)的cleft擴張刻畫了弱穩(wěn)定模.

    弱Hopf代數(shù); 弱Hopf-Galois擴張; 弱cleft擴張

    :16T05;16T15

    O153.3

    tion:16T05;16T15

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0325-15

    0255-7797(2017)02-0325-15

    ?Received date:2015-09-14 Accepted date:2016-03-04

    Foundation item:Supported by National Natural Science Foundation of China(11401522);Natural Science Foundation for Colleges and Universities in Jiangsu Province(13KJD110008);Postdoctoral Research Program of Zhejiang Province(BSH1402029);Qing Lan Project.

    Biography:Wang Yong(1982–),male,born at Xuzhou,Jiangsu,associate professor,major in Hopf algebras.

    猜你喜歡
    曉莊王勇工程學(xué)院
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    福建工程學(xué)院
    福建工程學(xué)院
    南京曉莊學(xué)院美術(shù)學(xué)院作品選登
    南京曉莊學(xué)院手繪作品選登
    福建工程學(xué)院
    王勇智斗財主
    王勇:我的想法就是“堅持”
    金橋(2018年12期)2019-01-29 02:47:44
    MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION?
    中文字幕人妻熟女乱码| a在线观看视频网站| 国产欧美日韩综合在线一区二区| 黑人欧美特级aaaaaa片| 9热在线视频观看99| av天堂在线播放| 亚洲久久久国产精品| 久久国产精品大桥未久av| 国产精品偷伦视频观看了| 亚洲国产中文字幕在线视频| 精品久久久精品久久久| 精品卡一卡二卡四卡免费| 男男h啪啪无遮挡| 午夜免费鲁丝| 日日夜夜操网爽| 国产成人免费观看mmmm| 中文欧美无线码| 一二三四社区在线视频社区8| 天天躁夜夜躁狠狠躁躁| 99久久综合免费| 免费不卡黄色视频| 一级,二级,三级黄色视频| 亚洲一区二区三区欧美精品| 亚洲av日韩精品久久久久久密| 蜜桃在线观看..| 少妇 在线观看| 一区二区三区四区激情视频| 中文字幕最新亚洲高清| 精品欧美一区二区三区在线| 极品人妻少妇av视频| 亚洲av国产av综合av卡| 久久天躁狠狠躁夜夜2o2o| 99香蕉大伊视频| 国产成人免费观看mmmm| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区三区| 韩国精品一区二区三区| 久久精品亚洲熟妇少妇任你| 99久久99久久久精品蜜桃| 丝袜美足系列| 亚洲精品国产区一区二| 国产精品九九99| 国产欧美日韩一区二区精品| 脱女人内裤的视频| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| av福利片在线| 99久久99久久久精品蜜桃| 亚洲精品一区蜜桃| 一个人免费在线观看的高清视频 | 男女床上黄色一级片免费看| 久久99一区二区三区| bbb黄色大片| 9色porny在线观看| 黄色 视频免费看| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| 黄色 视频免费看| 国产一区二区三区综合在线观看| 热99re8久久精品国产| 欧美久久黑人一区二区| 欧美日韩亚洲高清精品| 日韩三级视频一区二区三区| 少妇人妻久久综合中文| 欧美精品啪啪一区二区三区 | 精品熟女少妇八av免费久了| 国产99久久九九免费精品| 午夜日韩欧美国产| 天天躁日日躁夜夜躁夜夜| 国产高清视频在线播放一区 | 亚洲av成人一区二区三| 日韩视频在线欧美| 国产成人影院久久av| 欧美精品av麻豆av| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 久久久国产成人免费| 久久久久久久精品精品| 久久久久久久国产电影| 叶爱在线成人免费视频播放| 欧美另类亚洲清纯唯美| 黄网站色视频无遮挡免费观看| 久久天堂一区二区三区四区| 69精品国产乱码久久久| 午夜日韩欧美国产| 精品一品国产午夜福利视频| 久久久久国内视频| 亚洲精品av麻豆狂野| 久久久久久久大尺度免费视频| 亚洲精品粉嫩美女一区| 亚洲av男天堂| 精品福利观看| 在线精品无人区一区二区三| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 考比视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产精品一区二区三区在线| 国产人伦9x9x在线观看| 国产欧美日韩一区二区三区在线| 日韩欧美免费精品| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区mp4| 人妻一区二区av| 成人手机av| 久久久久久久久免费视频了| 国产欧美日韩一区二区三区在线| 狠狠狠狠99中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女 | 国产欧美日韩一区二区三 | 老司机影院成人| 考比视频在线观看| 精品国产一区二区久久| 欧美乱码精品一区二区三区| 午夜福利视频在线观看免费| 欧美97在线视频| 99久久99久久久精品蜜桃| 97精品久久久久久久久久精品| 好男人电影高清在线观看| 国产淫语在线视频| 亚洲久久久国产精品| 在线看a的网站| 最近最新免费中文字幕在线| tocl精华| 国产精品一区二区免费欧美 | 亚洲人成电影观看| 中文字幕高清在线视频| 啦啦啦免费观看视频1| 久久久久久久久久久久大奶| 青青草视频在线视频观看| 男人舔女人的私密视频| 电影成人av| 久久人人爽av亚洲精品天堂| 国产野战对白在线观看| 人成视频在线观看免费观看| 久久国产精品人妻蜜桃| 国产日韩欧美亚洲二区| 亚洲七黄色美女视频| 婷婷丁香在线五月| 熟女少妇亚洲综合色aaa.| 18禁国产床啪视频网站| 精品一区二区三卡| 亚洲第一av免费看| 久久精品aⅴ一区二区三区四区| 国产一区二区三区在线臀色熟女 | 免费不卡黄色视频| 国产成人av激情在线播放| 欧美激情久久久久久爽电影 | 下体分泌物呈黄色| 新久久久久国产一级毛片| 国产在线免费精品| tocl精华| 日本猛色少妇xxxxx猛交久久| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 国产97色在线日韩免费| 亚洲精品在线美女| 91av网站免费观看| 午夜成年电影在线免费观看| 久久久久久久大尺度免费视频| 国内毛片毛片毛片毛片毛片| 伦理电影免费视频| 极品少妇高潮喷水抽搐| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| av在线app专区| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 亚洲第一av免费看| a在线观看视频网站| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品自产自拍| av在线播放精品| 在线观看人妻少妇| 免费高清在线观看视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 最黄视频免费看| 国产精品久久久久成人av| 另类亚洲欧美激情| 亚洲伊人久久精品综合| 久久久精品区二区三区| 精品久久久久久久毛片微露脸 | 男女午夜视频在线观看| 欧美精品人与动牲交sv欧美| 欧美日韩国产mv在线观看视频| h视频一区二区三区| 后天国语完整版免费观看| 丰满少妇做爰视频| 亚洲,欧美精品.| 人人妻人人澡人人看| 五月天丁香电影| 一本一本久久a久久精品综合妖精| 午夜老司机福利片| 亚洲熟女毛片儿| 色94色欧美一区二区| 大片电影免费在线观看免费| 成人国产一区最新在线观看| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 亚洲国产精品999| 日韩制服骚丝袜av| 动漫黄色视频在线观看| cao死你这个sao货| 99久久99久久久精品蜜桃| 久久毛片免费看一区二区三区| 操出白浆在线播放| 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看 | 性少妇av在线| 亚洲精品国产区一区二| 最近最新免费中文字幕在线| 无限看片的www在线观看| 久久亚洲国产成人精品v| 日韩一卡2卡3卡4卡2021年| 麻豆乱淫一区二区| 满18在线观看网站| netflix在线观看网站| 国产精品久久久人人做人人爽| 国产极品粉嫩免费观看在线| 亚洲专区国产一区二区| 久久99一区二区三区| 啦啦啦在线免费观看视频4| 日韩 欧美 亚洲 中文字幕| av福利片在线| 侵犯人妻中文字幕一二三四区| 欧美日韩中文字幕国产精品一区二区三区 | 午夜老司机福利片| 蜜桃国产av成人99| 亚洲激情五月婷婷啪啪| 欧美激情久久久久久爽电影 | 性少妇av在线| 老熟妇仑乱视频hdxx| 欧美精品人与动牲交sv欧美| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产一区二区精华液| 飞空精品影院首页| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 脱女人内裤的视频| 亚洲av美国av| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 亚洲av成人一区二区三| 美女高潮到喷水免费观看| svipshipincom国产片| 99久久人妻综合| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 俄罗斯特黄特色一大片| 一级毛片精品| 高清视频免费观看一区二区| 国产片内射在线| 国产野战对白在线观看| bbb黄色大片| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 夫妻午夜视频| 少妇粗大呻吟视频| 免费人妻精品一区二区三区视频| a级毛片黄视频| 性高湖久久久久久久久免费观看| 啦啦啦中文免费视频观看日本| 国产精品国产av在线观看| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网 | 亚洲av成人不卡在线观看播放网 | 精品亚洲成国产av| 日韩人妻精品一区2区三区| 热re99久久国产66热| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 精品福利观看| 一边摸一边抽搐一进一出视频| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 国产成人免费无遮挡视频| 国产又爽黄色视频| 国产区一区二久久| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| 色播在线永久视频| 一本一本久久a久久精品综合妖精| 三级毛片av免费| 久久国产精品影院| 亚洲黑人精品在线| 无限看片的www在线观看| 亚洲精品一二三| 亚洲综合色网址| 中文字幕制服av| 国产福利在线免费观看视频| 午夜91福利影院| 一个人免费看片子| 91av网站免费观看| 美女高潮喷水抽搐中文字幕| tube8黄色片| 午夜福利,免费看| 91av网站免费观看| 久久九九热精品免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美清纯卡通| 日韩欧美国产一区二区入口| 他把我摸到了高潮在线观看 | 超碰成人久久| 午夜福利免费观看在线| 欧美久久黑人一区二区| 久久毛片免费看一区二区三区| 成人国语在线视频| 亚洲av成人不卡在线观看播放网 | 天天躁夜夜躁狠狠躁躁| 国产精品二区激情视频| 超色免费av| 国产区一区二久久| 老司机深夜福利视频在线观看 | 久久久精品国产亚洲av高清涩受| av在线播放精品| 国产在线一区二区三区精| 国产一区二区激情短视频 | 一级毛片女人18水好多| 亚洲精品久久午夜乱码| 人人妻,人人澡人人爽秒播| 五月开心婷婷网| 亚洲五月婷婷丁香| av国产精品久久久久影院| 成年av动漫网址| 国产在线免费精品| 欧美日韩福利视频一区二区| 日本av手机在线免费观看| 韩国精品一区二区三区| 免费观看人在逋| 中文精品一卡2卡3卡4更新| 国产精品久久久久成人av| 久热这里只有精品99| 青草久久国产| 亚洲国产欧美网| 久久亚洲精品不卡| 成人手机av| 丝袜美足系列| 久久久欧美国产精品| 青草久久国产| 老司机深夜福利视频在线观看 | 狂野欧美激情性xxxx| 欧美日韩精品网址| 黄色视频不卡| 国产成人免费观看mmmm| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| bbb黄色大片| 曰老女人黄片| 高清视频免费观看一区二区| 日本wwww免费看| www日本在线高清视频| 他把我摸到了高潮在线观看 | 国产精品秋霞免费鲁丝片| 国产成+人综合+亚洲专区| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 日日夜夜操网爽| 老熟女久久久| 纵有疾风起免费观看全集完整版| av天堂久久9| 久久久久久人人人人人| 久久国产精品大桥未久av| 亚洲成国产人片在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 黄色片一级片一级黄色片| 亚洲国产欧美网| 两个人免费观看高清视频| 香蕉国产在线看| 丰满少妇做爰视频| 久热这里只有精品99| 国产一区二区三区av在线| 午夜福利视频精品| 在线观看一区二区三区激情| 一个人免费在线观看的高清视频 | 日韩 亚洲 欧美在线| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 女警被强在线播放| 一边摸一边抽搐一进一出视频| 人妻一区二区av| 日本撒尿小便嘘嘘汇集6| 精品福利观看| av有码第一页| 中文精品一卡2卡3卡4更新| 婷婷色av中文字幕| 黄色视频,在线免费观看| 午夜激情久久久久久久| 99热全是精品| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 丝袜脚勾引网站| 久久久久精品人妻al黑| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 国产区一区二久久| 麻豆乱淫一区二区| 最近最新中文字幕大全免费视频| 色精品久久人妻99蜜桃| 精品高清国产在线一区| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 亚洲精品在线美女| 亚洲人成77777在线视频| 国产精品免费大片| 悠悠久久av| 国产福利在线免费观看视频| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 超色免费av| 又黄又粗又硬又大视频| 一本一本久久a久久精品综合妖精| 少妇人妻久久综合中文| 亚洲专区国产一区二区| 大香蕉久久网| 中文精品一卡2卡3卡4更新| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲三区欧美一区| 国产一区二区激情短视频 | 日本vs欧美在线观看视频| 午夜91福利影院| 一本一本久久a久久精品综合妖精| 国产成人欧美在线观看 | 亚洲国产中文字幕在线视频| 亚洲精品一区蜜桃| 别揉我奶头~嗯~啊~动态视频 | 欧美精品一区二区大全| 丝袜美足系列| www.999成人在线观看| 夫妻午夜视频| 日本91视频免费播放| 久久久国产成人免费| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 午夜免费鲁丝| 国产精品国产av在线观看| 大片电影免费在线观看免费| 成年av动漫网址| 成人黄色视频免费在线看| 色老头精品视频在线观看| 免费高清在线观看日韩| 国产成人av激情在线播放| 久久狼人影院| 一区二区av电影网| 亚洲国产成人一精品久久久| 午夜福利在线观看吧| 夜夜骑夜夜射夜夜干| 大香蕉久久网| 黄色a级毛片大全视频| 一区福利在线观看| av片东京热男人的天堂| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 男男h啪啪无遮挡| 深夜精品福利| 国产亚洲午夜精品一区二区久久| 他把我摸到了高潮在线观看 | 99久久综合免费| 捣出白浆h1v1| 伦理电影免费视频| 精品一品国产午夜福利视频| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 黄片大片在线免费观看| 狂野欧美激情性bbbbbb| 老鸭窝网址在线观看| a 毛片基地| 纵有疾风起免费观看全集完整版| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸 | 亚洲伊人色综图| 日本wwww免费看| www.自偷自拍.com| bbb黄色大片| 在线亚洲精品国产二区图片欧美| 久9热在线精品视频| 国产日韩欧美视频二区| 人成视频在线观看免费观看| 国产老妇伦熟女老妇高清| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 国产精品 欧美亚洲| 久热这里只有精品99| av一本久久久久| 久久天堂一区二区三区四区| 国产精品一区二区在线不卡| 亚洲视频免费观看视频| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 国产成人啪精品午夜网站| 两个人免费观看高清视频| 中文字幕最新亚洲高清| 十八禁网站免费在线| 丁香六月欧美| 久久精品人人爽人人爽视色| 91九色精品人成在线观看| 亚洲精品中文字幕一二三四区 | 午夜精品国产一区二区电影| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区久久| 97在线人人人人妻| 精品久久蜜臀av无| 无遮挡黄片免费观看| 成人国语在线视频| 国产xxxxx性猛交| 国产男女内射视频| 久久久欧美国产精品| 欧美大码av| 国产精品久久久人人做人人爽| svipshipincom国产片| 国产成人av激情在线播放| 欧美午夜高清在线| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 91大片在线观看| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区| 大片免费播放器 马上看| 国产av精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 建设人人有责人人尽责人人享有的| 又大又爽又粗| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 欧美+亚洲+日韩+国产| 两人在一起打扑克的视频| 新久久久久国产一级毛片| 两人在一起打扑克的视频| 日韩视频在线欧美| 午夜激情久久久久久久| 久久精品国产亚洲av香蕉五月 | 亚洲国产av影院在线观看| 嫩草影视91久久| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 男女无遮挡免费网站观看| 欧美大码av| 十八禁网站免费在线| av国产精品久久久久影院| 成人亚洲精品一区在线观看| 丝袜美足系列| 久久中文字幕一级| 我要看黄色一级片免费的| 母亲3免费完整高清在线观看| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 91大片在线观看| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 亚洲精品中文字幕一二三四区 | 动漫黄色视频在线观看| 制服诱惑二区| 黑人巨大精品欧美一区二区蜜桃| 女人精品久久久久毛片| videos熟女内射| 777米奇影视久久| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 美女中出高潮动态图| 国产成人一区二区三区免费视频网站| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| 亚洲专区中文字幕在线| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产男人的电影天堂91| 亚洲国产精品999| 精品国产国语对白av| 亚洲av欧美aⅴ国产| 999精品在线视频| 久久久久视频综合| 两个人免费观看高清视频| 久久99热这里只频精品6学生| 老司机影院毛片| 欧美国产精品va在线观看不卡| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 国产精品久久久人人做人人爽| 一级毛片精品| 99国产精品免费福利视频| 在线观看舔阴道视频|