• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY

    2017-04-12 14:31:39LIZhenweiLIBiwenLIUWeiWANGGan
    數(shù)學雜志 2017年2期
    關(guān)鍵詞:食餌時滯分支

    LI Zhen-wei,LI Bi-wen,LIU Wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY

    LI Zhen-wei,LI Bi-wen,LIU Wei,WANG Gan

    (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

    In this paper,we mainly study the Hopf bifurcation and the stability of modifi ed predator-prey biological economic system with nonselective harvesting and time delay.By using the stability and bifurcation theory of diff erential-algebraic system,the conditions for stability of the positive equilibrium point are obtained,let time delay as bifurcation parameter,the existence of Hopf bifurcation and direction of Hopf bifurcation are obtained.We have improved the Leslie-Gower predator-prey system,make the system which we established more practical,so the conclusions are made more scientifi c.

    stability;Hopf bifurcation;time delay;non-selective;predator-prey system; periodic solution

    1 Introduction

    In recent years,the increasingly serious problem of environmental degradation and resource shortage,made the analysis and modeling of biological systems more interested. The predator-prey system played a crucial role among the relationships between the biological population,and it naturally attracted much attention both for mathematicians and biologists,especially on predator-prey systems with or without time delay.As we know, delay differential equation models exhibit much more complicated dynamics than differential equation models without delay,see[1–12].A lot of researchers studied the dynamics of predator-prey models with harvesting and obtained many dynamic behaviors,such as stability of equilibrium,Hopf bifurcation,periodic solution,Bogdanov-Takens bifurcation, Neimark-Sacker bifurcation,and so on,see[10–15].

    In[16],Lucas studied the dynamic properties of the following Leslie-Gower predatorprey system

    where x and y denote prey and predator population densities at time t,respectively,a,d, and k are positive constants that represent the prey intrinsic growth rate,predator mortality rate,and the maximum value of the per capita reduction rate of x due to y,respectively.

    At present,economic profit is a very important factor for merchants,governments and even every citizen,so it is necessary to research biologicaleconomic systems,which are often described by differential-algebraic equations or differentialdifference-algebraic equations.

    In 1954,Gordon[13]studied the effect of the harvest effort on ecosystem from an economic perspective and proposed the following economic theory:

    Net Economic Revenue(NER)=Total Revenue(TR)-Total Cost(TC).

    This provides theoretical evidence for the establishment of diff erential-algebraic equation.

    Based on the economic theory as mentioned above and system(1.1),Liu and Fu[12] considered the following Leslie-Gower predator-prey system

    They investigated the Hopf bifurcation of the above system without considering the effect of time delay and the harvesting of predator.

    As is known to all,delay differential equation models exhibit much more complicated dynamics than ordinary differential equation models,see[1–12],as was pointed by Kuang [17]that any modelof species dynamics without delays is an approximation at best.When we considered the model with non-selective harvesting,namely at the same time there are also the harvesting of predator and harvesting of the prey in the model,it will be more in line with the actualsituation of the predator-prey systems.

    Motivated by the above discussion,in this paper,by choosing the time delay as a bifurcation parameter and consider the predator-prey systems with non-selective harvesting, we investigate a modifi ed Leslie-Gower predator-prey systems with non-selective harvesting and time delay described by the following system

    where p1> 0 and p2> 0 are harvesting reward per unit harvesting effort for unit prey and predator,respectively;c1and c2are harvesting cost per unit harvesting effort for prey and predator,respectively;m is the economic profit per unit harvesting effort.

    In this paper,we mainly discuss the effects ofeconomic profit on the dynamics ofsystem (1.3)in the region R3+={(x,y,E)|x > 0,y > 0,E > 0)}.

    For convenience,we let

    where Xt=(x,y)T.

    The rest ofthe paperisarranged asfollows:in Section 2,the localstability ofthe positive equilibrium points are investigated by the corresponding characteristic equation of system (1.3).In Section 3,by using the normal form and Hopf bifurcation theorem,we study the Hopfbifurcation ofthe nonnegative equilibrium depending on the parameter where we show that the positive equilibrium loses its stability and system(1.3)exhibits Hopfbifurcation in the second section.In Section 4,the theoretical result is supplied by a numerical example. Finally,this paper ends with a brief discussion.

    2 Local Stability Analysis of System

    In this section,we discuss the local stability of a positive equilibrium for system(1.3). Now,we try to find all possible positive equilibrium points of system(1.3).A point Y0= (x0,y0,E0)is an equilibrium point of system(1.3)if and only if Y0satisfy the following equations

    From(2.1),we can easy get E0satisfy

    where Based on the root and coeffi cient relationship of equation and γ3< 0,we can find at least one positive root E0,so system(1.3)has at least one positive equilibrium point,where r1> E0,r2> E0.

    Now,we derive the formula for determining the properties of the positive equilibrium point ofsystem(1.3).As in[13],first we consider the localparametric ψ ofthe third equation of system(1.3),which is defined as follows

    where

    is a smoothing mapping,that is

    Then we can obtain the parametric system of system(1.3)as follows (

    Noticing that g(ψ(Z(t)))=0,so we can get the linearized system of parametric system(2.3) at(0,0)as follows

    From(2.4),we can obtain the characteristic equation of the linearized system of parametric system(2.2)at(0,0)as follows

    By eq.(2.5),when τ=0,it is obvious that,then,two roots of eq. (2.5)has always negative teal parts,i.e.,the positive equilibrium point of system(1.3)is locally asymptotically stable.

    Now,based on the above discussion,we study the local stability around the positive equilibrium point for system(1.3)and the existence of Hopf bifurcation occurring at the positive equilibrium point when τ> 0.

    If iω is a root of eq.(2.5),and substituting iω (ω is a positive real number)into eq. (2.5),and separating the real and imaginary parts,two transcendental equations can be obtained as follows

    Since sin(ω τ)2+cos(ω τ)2=1 and adding(2.6)and(2.7),we obtain

    Substituting ω0into(2.6)and solving for τ,we get

    Thus when τ= τn,the characteristic equation(2.5)has a pair of purely imaginary roots iω0.

    Lemma 2.1Denote by λn(τ)= ηn(τ)+iωn(τ)the root of(2.5)such that ηn(τn)=0, ωn(τn)= ω0,n=0,1,2,···.Then the following transversality condition η′n(τn)is satisfied.

    ProofDifferentiating eq.(2.5)with respect to τ,we obtain

    Noting that

    The proof is completed.

    From the above analysis and[17,18],we have the following results.

    Theorem 2.1(i)For system(1.3),its positive equilibrium point Y0is locally asymptotically stable for τ∈ [0,τ0)and unstable for τ> τ0.

    (ii)System(1.3)undergoes Hopf bifurcation at the positive equilibrium point Y0for τ= τn,n=0,1,2,···.

    3 Direction and the Stability of Hopf Bifurcation

    In this section,we investigate the direction ofbifurcation and the stability ofbifurcation periodic orbits from the positive equilibrium point Y0of system(1.3)at τ= τ0by using the normalform approach theory and center manifold theory introduced by Hassard[15].

    Now,we re-scare the time by

    for simplicity,we continue to use Z said ˉZ,then the parametric system(2.3)of system (1.3)is equivalent to the following functional differential equation(FDE)system in C= C([?1,0],R2),

    where Z(T)=(y1(t),y2(t))T,and Lμ:C → R,f:R × C → R are given,respectively,by

    where

    and φ =(φ1,φ2) ∈ C.By the Riesz representation theorem,there exists a matrix whose components are bounded variation functions θ ∈ [?1,0]such that

    where

    Then system(3.1)can be rewritten as

    For ψ ∈ C1([0,1],(R2)?),the adjoint operator A?of A as

    where ηTis the transpose of the matrix η.

    For φ ∈ C1([?1,0],R2)and for ψ ∈ C1([0,1],(R2)?),in order to normalize the eigenvectors of operator A and adjoint operator A?,we define a bilinear inner product

    where η(θ)= η(θ,0).It is easy to verify that A(0)and A?are a pair of adjoint operators.

    By the discussion in Section 2,we know that ±iωτ0are eigenvalues of A(0).Thus they are also eigenvalues of A?.Next we calculate the eigenvector q(θ)of A associated to the eigenvalue iω τ0and the eigenvector q?(s)of A?associated to the eigenvalue ?iω τ0.Then it is not diffi cult to show that

    where

    Moreover,〈q?(s),q(θ)〉=1 and 〈q?(s),ˉq(θ)〉=0.

    In the reminder of this section,we use the same notations as those in[15].We fi rst compute the coordinates to describe the center manifold C0at μ =0.Define

    On the center manifold C0,we have

    In fact,z and ˉz are local coordinates for center manifold C0in the direction of q and ˉq?. Note that W is real if ztis real.We consider only real solutions.For the solution zt∈ C0, since μ =0 and(3.3),we have

    rewrite it as

    where

    From(3.3)and(3.8),we have

    Rewrite(3.11)as

    where

    Substituting the corresponding series into(3.12)and comparing the coeffi cient,we obtain

    Notice that

    and(3.6)we obtain

    According to(3.8)and(3.9),we know that

    where

    By(3.7),it follows that

    That is,

    Comparing the coeffi cients with(3.10),it follows that

    Now we compute W20(θ)and W11(θ).From(3.11)and(3.15),we have that for θ ∈ [?1,0),

    Comparing the coeffi cients with(3.13),we can obtain that

    Substituting the above equalities into(3.14),it follows that

    Solving(3.18),we have

    In what follows,we seek appropriate E and F in(3.19).From(3.11)and(3.15),we have

    where

    Substituting(3.19)–(3.21)into(3.14)and noting that

    We obtain

    It is easy to obtain E and F from(3.22)and(3.23),that is

    Therefore we can compute the following quantitieswhich determine the direction of Hopf bifurcation and stability of bifurcated periodic solutions of system(1.3)at the critical value τ0.

    Theorem 3.1(i)The direction of Hopfbifurcation is determined by the sign ofμ2:the Hopfbifurcation is supercritical if μ2> 0 and the Hopf bifurcation is subcriticalif μ2< 0.

    (ii)The stability of bifurcated periodic solution is determined by β2:the periodic solution are stable if β2> 0 and unstable if β2< 0.

    (iii)The period ofbifurcation periodic solution is determined by t2:the period increase if t2> 0,decrease if t2< 0.

    4 Numerical Simulations

    As an example we consider the differential-algebraic predator-prey system(1.3)with the parameters r1=1.6,r2=1.3,b=k=m=0.5,p1=7,p2=6,c1=5,c2=3,that is,

    And by the discussions in Section 2 and Section 3,we determine the stability of the positive equilibrium point and Hopf bifurcation.Here,for convenience,we only discuss one of the positive equilibrium point Y0of system(4.1),and others positive equilibrium points of system(4.1)can be similar studied.we can easily get Y0=(2.0053,3.1480,0.0256),and by computing,we get ω0=0.9942, τ0=0.6473.So by Theorem 2.1,the equilibrium point Y0is asymptotically stable when τ∈ [0,τ0)=[0,0.6473)and unstable when τ> 0.6473.

    When τ=0,we can easily show that the positive equilibrium point

    is asymptotically stable.

    By the theory of Hassard[15],as it is discussed in former section,we also determine the direction of Hopf bifurcation and the other properties of bifurcating periodic solution.By computing,we can obtain the following values C1(0)=0.5303 ? 0.4428i, λ′(τ0)=1.6352+ 1.1431i,it follows that μ2= ?0.3243 < 0,β2=1.0607 > 0,t2=1.2643 > 0,from which and Theorem 3.1 we conclude that the Hopf bifurcation of system(4.1)occurring at τ0=0.6473 is subcriticaland the bifurcating periodic solution exists when τcross τ0to the left and the bifurcating periodic solution is unstable.

    By Theorem 3.1,the positive equilibrium point Y0of system(4.1)is locally asymptotically stable when τ=0.62 < τ0as is illustrated by computer simulation in Fig.1.And periodic solutions occur from Y0when τ=0.682 > τ0as is illustrated by computer simulation in Fig.2.

    5 Discussion

    Nowadays,economic profit is a very important factor for governments,merchants,and even citizen,and the harvested biologicalresources in the predator-prey systems are usually sold as commodities in the market in order to achieve the economic interest.So modelling and qualitative analysis for bio-economic system are necessary.

    Compared with most other researches on dynamics ofpredator-prey population,see[1, 5,12,18],the main contribution ofthis paper lies in the following aspect.The predator-prey system we consider incorporate delay and non-selective harvesting,which could make our model more realistic and the analysis result in this paper is more scientific.So our paper provide a new ideal and a effi cacious method for the qualitative analysis of the Hopf bifurcation of the differential-algebraic biologicaleconomic system.In addition,stage structure, diffusion effects,disease effects may be incorporated into our bio-economic system,which would make the bio-economic system exhibit much more complicated dynamics.

    [1]Li K,Wei J.Stability and Hopf bifurcation analysis of a prey-predator system with two delays[J]. Chaos Solitions Fract.,2009,42:2606–2613.

    [2]Ma Y F.Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays[J]. Nonlinear Anal.Real World Appl.,2012,13:370–375.

    [3]Sadhukhan D,Mondal B,Maiti M.Discrete age-structured population model with age dependent harvesting and its stability analysis[J].Appl.Math.Comput.,2008,201:631–639.

    [4]Huo H F,Li W T.Existence and global stability of periodic solutions of a discrete predator-prey system with delays[J].Appl.Math.Comput.,2004,153:337–351.

    [5]Zhang G D,Shen Y,Chen B S.Bifurcation analysis in a discrete diff erential-algebraic predator-prey system[J].Appl.Math.Model.,2014,38:4835–4848.

    [6]Li X,Ruan S,Wei J.Stability and bifurcation in delay-diff erential equations with two delays[J].J. Math.Anal.Appl.,1999,236:254–280.

    [7]Pan K,Li B W.Existence of positive periodic solution for two-patches predator-prey impulsive diff usion delay systems with functional response[J].J.Math.,.2010,30(1):183–190.

    [8]Zhao H,Wang L,Ma C.Hopf bifurcation in a delayed Lotka-Volterra predator-prey system[J].Nonl. Anal.RWA.,2008,9(1):114–127.

    [9]Wei J,Ruan S.Stability and bifurcation in a neural model with two delays[J].Phys.D.,1999,130: 255–272.

    [10]Celik C.The stability and Hopf bifurcation for a predator-prey system with time delay[J].Chaos Solitons Fract.,2008,37:87–99.

    [11]Pan S X.Asymptotic spreading in a Lotka-Volterra predator-prey system[J].J.Math.Anal.Appl., 2013,407:230–236.

    [12]Liu W,Fu C J,Chen B S.Hopf bifurcation and center stability for a predator-prey biological economic modelwith prey harvesting[J].Commun.Nonlinear.Sci.,doi:10.1016/j.cnsns.2012.02.025.

    [13]Gordon H S.Economic theory of a common property resource:the fi shery[J].J.Polit.,1954,62(2): 124–142.

    [14]Li P L,Yu CC,Zeng XW.The qualitative analysis of a class ofpredator-prey system with functional responses[J].J.Math.,2006,26(2):217–222.

    [15]Hassard N D,Kazarinoff Y H,Wan Y H.Theory and application of Hopf bifurcation[M].Cambridge: Lodon Mathematical Society Lecture Notes,vol.41,Cambridge Univ.Press,1981.

    [16]Lucas W F.Modules in applied mathematics:diff erential equation models[M].New York:Springer, 1983.

    [17]Kuang Y.Delay diff erential equations with applications in population dynamics[M].Boston:Academic Press,1993.

    [18]Zhang G D,Shen Y,Yin Q,Sun J W.Passivity analysis for memristor-based recurrent neural networks with discrete and distributed delays[J].Neural Networks,2015,61:49–58.

    [19]Zhang X,Zhang Q L.Bifurcation analysis and control of a class of hybrid biological economic models[J].Nonlinear Anal HS.,2009,3:578–87.

    [20]Chen B S,Liao X X,Liu Y Q.Normal forms and bifurcations for the diff erential-algebraic systems (in Chinese)[J].Acta Math.Appl.Sinica.,2000,23(3):429–443.

    [21]Lv X,Lu S P,Yan P.Existence and global attractivity of positive periodic solutions of Lotka-Volterra predator-prey systems with deviating arguments[J].Nonl.Anal.Real World Appl.,2010, 11:574–583.

    一類帶無選擇性捕獲和時滯的捕食食餌系統(tǒng)的Hopf分支分析

    李震威,李必文,劉 煒,汪 淦
    (湖北師范學院數(shù)學與統(tǒng)計學院,湖北 黃石 435002)

    本文主要研究了一個改進的帶時滯和無選擇捕獲函數(shù)的捕食-食餌生態(tài)經(jīng)濟系統(tǒng)的穩(wěn)定性和Hopf分支. 利用微分代數(shù)系統(tǒng)的穩(wěn)定性理論和分支理論, 得到了系統(tǒng)正平衡點穩(wěn)定性的條件, 以及當時滯τ 作為分支參數(shù)時系統(tǒng)產(chǎn)生Hopf分支的條件. 對Leslie-Gower捕食-食餌模型進行了一定程度的完善, 使得建立的模型更符合實際情況,因此得到的結(jié)論也更加科學.

    穩(wěn)定性;Hopf分支; 時滯; 無選擇性; 捕食食餌系統(tǒng); 周期解

    34D20;34K18;34C23

    O29;O193

    tion:34D20;34K18;34C23

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0257-14

    0255-7797(2017)02-0257-14

    ?Received date:2014-11-16 Accepted date:2015-02-26

    Foundation item:Supported by the Funding Program of Higher School Outstanding Youth Scientifi c and Technological Innovation Team in Hubei of China(T201412).

    Biography:Li Zhenwei(1991–),male,born at Qianjiang,Hubei,major in ordinary diff erential equations and control theory.

    猜你喜歡
    食餌時滯分支
    捕食-食餌系統(tǒng)在離散斑塊環(huán)境下強迫波的唯一性
    一類具有修正的Leslie-Gower項的捕食-食餌模型的正解
    具有兩個食餌趨化項的一個Ronsenzwing-MacArthur捕食食餌模型的全局分歧
    帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
    巧分支與枝
    學生天地(2019年28期)2019-08-25 08:50:54
    一類帶有交叉擴散的捕食-食餌模型的正解
    一類擬齊次多項式中心的極限環(huán)分支
    一階非線性時滯微分方程正周期解的存在性
    一類時滯Duffing微分方程同宿解的存在性
    生成分支q-矩陣的零流出性
    伊人久久大香线蕉亚洲五| 老鸭窝网址在线观看| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 看黄色毛片网站| 国产99白浆流出| 成人三级黄色视频| 亚洲精品在线观看二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜两性在线视频| 国产91精品成人一区二区三区| 久久中文字幕人妻熟女| 可以在线观看的亚洲视频| 国产麻豆成人av免费视频| 国产精品一区二区免费欧美| 精品国产亚洲在线| 免费高清视频大片| 日韩高清综合在线| 亚洲精品乱码久久久v下载方式 | 色综合婷婷激情| 九九在线视频观看精品| 免费电影在线观看免费观看| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕| 一二三四在线观看免费中文在| 欧美在线黄色| 亚洲国产欧美一区二区综合| 国产又黄又爽又无遮挡在线| 国产午夜福利久久久久久| 久久精品国产清高在天天线| 禁无遮挡网站| 夜夜躁狠狠躁天天躁| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频 | av欧美777| 在线永久观看黄色视频| 国产精品一及| 国产三级黄色录像| 99国产综合亚洲精品| 少妇裸体淫交视频免费看高清| 国产精品久久视频播放| 久久久久精品国产欧美久久久| 手机成人av网站| 欧美在线黄色| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区mp4| 两性夫妻黄色片| 欧美性猛交黑人性爽| 午夜亚洲福利在线播放| 亚洲精品久久国产高清桃花| 性色avwww在线观看| 欧美日韩福利视频一区二区| 国产成人一区二区三区免费视频网站| 最新在线观看一区二区三区| 老司机福利观看| 99热这里只有是精品50| 美女被艹到高潮喷水动态| 中文资源天堂在线| 亚洲欧美精品综合一区二区三区| 国内精品美女久久久久久| 国产三级中文精品| 亚洲国产看品久久| 19禁男女啪啪无遮挡网站| а√天堂www在线а√下载| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 国产精品 欧美亚洲| 亚洲中文av在线| 久久精品综合一区二区三区| 久久久久性生活片| 757午夜福利合集在线观看| 搡老岳熟女国产| 成在线人永久免费视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩黄片免| 中文字幕人妻丝袜一区二区| 久久久久性生活片| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| 香蕉国产在线看| 午夜精品一区二区三区免费看| 老汉色∧v一级毛片| 一二三四社区在线视频社区8| 午夜免费激情av| 91老司机精品| 久久欧美精品欧美久久欧美| 亚洲欧美日韩卡通动漫| 久久人妻av系列| 亚洲精品在线美女| 成在线人永久免费视频| 欧美乱码精品一区二区三区| www.自偷自拍.com| 日本免费a在线| 国产日本99.免费观看| netflix在线观看网站| 午夜影院日韩av| 制服丝袜大香蕉在线| 国产单亲对白刺激| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 精品一区二区三区四区五区乱码| 国产毛片a区久久久久| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华精| 国产av一区在线观看免费| 精品福利观看| 亚洲av成人av| 少妇的丰满在线观看| 亚洲欧美日韩东京热| 在线观看一区二区三区| 又大又爽又粗| 欧美高清成人免费视频www| 女人高潮潮喷娇喘18禁视频| 母亲3免费完整高清在线观看| 国产久久久一区二区三区| 国产精品久久久久久久电影 | 国产亚洲欧美在线一区二区| 日本黄色片子视频| 欧美日韩综合久久久久久 | 久久精品国产99精品国产亚洲性色| 成人国产综合亚洲| 男女午夜视频在线观看| 国产成年人精品一区二区| 亚洲av熟女| 久久这里只有精品19| 中文字幕最新亚洲高清| 无限看片的www在线观看| 精品国产超薄肉色丝袜足j| 国产高清视频在线播放一区| 欧美av亚洲av综合av国产av| 岛国视频午夜一区免费看| 日韩av在线大香蕉| 国产精品野战在线观看| 99re在线观看精品视频| 最近视频中文字幕2019在线8| 久久久国产成人免费| 中文字幕最新亚洲高清| 欧美日韩综合久久久久久 | 国产精品香港三级国产av潘金莲| 露出奶头的视频| 毛片女人毛片| 精品99又大又爽又粗少妇毛片 | 亚洲七黄色美女视频| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 国产三级黄色录像| 国产精品久久电影中文字幕| 97碰自拍视频| 欧美xxxx黑人xx丫x性爽| 久久久精品大字幕| 日韩成人在线观看一区二区三区| 免费看十八禁软件| 亚洲av成人一区二区三| 在线永久观看黄色视频| 国产日本99.免费观看| 国产精品一区二区三区四区免费观看 | 三级国产精品欧美在线观看 | 欧美精品啪啪一区二区三区| 午夜免费观看网址| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| www.999成人在线观看| 两性夫妻黄色片| 国产亚洲精品久久久com| www日本黄色视频网| 国产三级黄色录像| 1024手机看黄色片| 欧美精品啪啪一区二区三区| 国产成人福利小说| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| a级毛片a级免费在线| 久久久久国产一级毛片高清牌| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美人成| 精品久久久久久久久久久久久| 三级国产精品欧美在线观看 | 91久久精品国产一区二区成人 | 久9热在线精品视频| 我要搜黄色片| 丝袜人妻中文字幕| 亚洲人与动物交配视频| 国产成人av教育| 亚洲一区高清亚洲精品| 亚洲av电影不卡..在线观看| 精品久久久久久久人妻蜜臀av| 国产精品98久久久久久宅男小说| 亚洲国产精品999在线| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 淫妇啪啪啪对白视频| 怎么达到女性高潮| 天堂网av新在线| 成人18禁在线播放| 亚洲av片天天在线观看| 麻豆久久精品国产亚洲av| 色在线成人网| 亚洲国产欧洲综合997久久,| 嫁个100分男人电影在线观看| 中文字幕av在线有码专区| 精华霜和精华液先用哪个| 午夜精品在线福利| 精品福利观看| 丰满的人妻完整版| 舔av片在线| 1024香蕉在线观看| 亚洲国产欧美一区二区综合| 老司机福利观看| 在线观看66精品国产| 十八禁网站免费在线| 热99re8久久精品国产| 一个人看视频在线观看www免费 | 午夜两性在线视频| 色吧在线观看| 青草久久国产| 特大巨黑吊av在线直播| 超碰成人久久| 美女免费视频网站| 亚洲精品中文字幕一二三四区| 久久久久国产一级毛片高清牌| 国产成人精品久久二区二区免费| 欧美日韩精品网址| 美女免费视频网站| 女警被强在线播放| 全区人妻精品视频| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| 久9热在线精品视频| 国产毛片a区久久久久| 天堂√8在线中文| 亚洲欧美精品综合久久99| 人妻夜夜爽99麻豆av| cao死你这个sao货| 欧美乱色亚洲激情| 天堂动漫精品| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| www日本在线高清视频| 男女下面进入的视频免费午夜| 夜夜爽天天搞| 国产成人啪精品午夜网站| 黄色日韩在线| 1024香蕉在线观看| 亚洲五月天丁香| 校园春色视频在线观看| 国产精品一区二区精品视频观看| 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| 精品不卡国产一区二区三区| 国产精品av视频在线免费观看| 这个男人来自地球电影免费观看| 啦啦啦韩国在线观看视频| 久久久久亚洲av毛片大全| 在线观看美女被高潮喷水网站 | 久久久久久久久中文| 悠悠久久av| 国产av不卡久久| 亚洲人与动物交配视频| 亚洲国产日韩欧美精品在线观看 | 国内少妇人妻偷人精品xxx网站 | 欧美国产日韩亚洲一区| 韩国av一区二区三区四区| 国产av在哪里看| 日本精品一区二区三区蜜桃| 男人和女人高潮做爰伦理| 成人欧美大片| 国产精品,欧美在线| 久久草成人影院| 好男人电影高清在线观看| 在线观看午夜福利视频| 婷婷精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 窝窝影院91人妻| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 国产亚洲av高清不卡| 最近最新中文字幕大全免费视频| 搞女人的毛片| 久久久国产精品麻豆| 国产又黄又爽又无遮挡在线| 久久天堂一区二区三区四区| 亚洲第一电影网av| ponron亚洲| 黄频高清免费视频| 女生性感内裤真人,穿戴方法视频| а√天堂www在线а√下载| 日韩欧美在线二视频| 黑人巨大精品欧美一区二区mp4| 深夜精品福利| 免费在线观看亚洲国产| 久久精品国产综合久久久| 啦啦啦免费观看视频1| 高清毛片免费观看视频网站| 精品福利观看| 亚洲国产欧美一区二区综合| 精品福利观看| 亚洲欧美一区二区三区黑人| 国产成+人综合+亚洲专区| 欧美性猛交黑人性爽| 看免费av毛片| 床上黄色一级片| 午夜久久久久精精品| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| 婷婷精品国产亚洲av在线| 国产亚洲av嫩草精品影院| 三级男女做爰猛烈吃奶摸视频| 亚洲七黄色美女视频| 91九色精品人成在线观看| 欧美一区二区国产精品久久精品| 国产av麻豆久久久久久久| 88av欧美| 亚洲欧美日韩高清在线视频| 久久中文看片网| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 国产成人aa在线观看| 身体一侧抽搐| 欧美成狂野欧美在线观看| 九九在线视频观看精品| 日本一二三区视频观看| 亚洲精品在线美女| 一本久久中文字幕| 国产亚洲av高清不卡| 天天躁日日操中文字幕| 久久国产精品影院| 高清毛片免费观看视频网站| 精品国产亚洲在线| 亚洲欧美日韩高清专用| av在线蜜桃| 欧美成狂野欧美在线观看| 亚洲中文字幕日韩| 男人的好看免费观看在线视频| 久久国产精品影院| 嫁个100分男人电影在线观看| av福利片在线观看| 亚洲精华国产精华精| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看 | 久久热在线av| 免费看a级黄色片| 一本久久中文字幕| 国产亚洲精品综合一区在线观看| 色噜噜av男人的天堂激情| 天堂动漫精品| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 啦啦啦韩国在线观看视频| 亚洲av成人av| 99久久精品一区二区三区| 国产av不卡久久| 免费在线观看日本一区| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 欧美一区二区国产精品久久精品| 亚洲午夜理论影院| 观看美女的网站| 熟妇人妻久久中文字幕3abv| 日日干狠狠操夜夜爽| 亚洲最大成人中文| 天天躁日日操中文字幕| 九九在线视频观看精品| 男人和女人高潮做爰伦理| 老汉色∧v一级毛片| 1024手机看黄色片| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 99国产精品一区二区三区| 国产一区二区在线av高清观看| 脱女人内裤的视频| or卡值多少钱| 国产精品99久久久久久久久| 国产高清有码在线观看视频| 黄色日韩在线| 青草久久国产| 国内少妇人妻偷人精品xxx网站 | 老熟妇仑乱视频hdxx| 欧美日韩福利视频一区二区| 97碰自拍视频| 国产单亲对白刺激| 久久亚洲精品不卡| 两个人看的免费小视频| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 天天添夜夜摸| 亚洲最大成人中文| 久久香蕉国产精品| 一本精品99久久精品77| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线 | 久久久久久久久中文| 国产精品一区二区三区四区久久| 国产av麻豆久久久久久久| 亚洲无线在线观看| 搞女人的毛片| 精品久久久久久久末码| 亚洲 欧美 日韩 在线 免费| 操出白浆在线播放| 亚洲真实伦在线观看| 久久精品国产99精品国产亚洲性色| 亚洲国产精品sss在线观看| 欧美极品一区二区三区四区| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 日韩三级视频一区二区三区| 国产亚洲精品综合一区在线观看| 狠狠狠狠99中文字幕| 欧美日韩瑟瑟在线播放| 丝袜人妻中文字幕| 国产精品综合久久久久久久免费| 99热6这里只有精品| 久久国产乱子伦精品免费另类| 91麻豆av在线| 午夜免费观看网址| 成人欧美大片| 欧美日韩乱码在线| 亚洲专区国产一区二区| 99在线视频只有这里精品首页| 欧美+亚洲+日韩+国产| 色视频www国产| www日本黄色视频网| 色尼玛亚洲综合影院| 美女黄网站色视频| 一区二区三区国产精品乱码| 国产黄色小视频在线观看| 手机成人av网站| 俺也久久电影网| 一进一出抽搐gif免费好疼| 热99re8久久精品国产| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 国产主播在线观看一区二区| av黄色大香蕉| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片在线播放无| 国产高清有码在线观看视频| 亚洲中文字幕日韩| 美女 人体艺术 gogo| 在线视频色国产色| 国产人伦9x9x在线观看| 亚洲中文av在线| 无限看片的www在线观看| 欧美黑人巨大hd| 日本黄色视频三级网站网址| 国产成人av教育| 午夜福利18| 色av中文字幕| 亚洲av美国av| 看黄色毛片网站| 久久中文字幕一级| 一个人看的www免费观看视频| a在线观看视频网站| 1000部很黄的大片| 夜夜夜夜夜久久久久| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 久久久久久久久中文| 我的老师免费观看完整版| 日本 欧美在线| 特级一级黄色大片| 亚洲av电影在线进入| 亚洲一区二区三区不卡视频| 一边摸一边抽搐一进一小说| 91字幕亚洲| 久久久国产成人精品二区| 午夜a级毛片| 欧美一级a爱片免费观看看| 最近视频中文字幕2019在线8| 亚洲午夜精品一区,二区,三区| 给我免费播放毛片高清在线观看| 女人高潮潮喷娇喘18禁视频| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线观看网站| 国产熟女xx| 国产精品久久视频播放| 亚洲 国产 在线| 欧美成人免费av一区二区三区| 97超视频在线观看视频| 看黄色毛片网站| 欧美zozozo另类| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 亚洲在线自拍视频| 极品教师在线免费播放| 国产视频一区二区在线看| 亚洲人与动物交配视频| 精品国产三级普通话版| 国产av麻豆久久久久久久| av视频在线观看入口| 日本黄大片高清| 欧美3d第一页| 岛国视频午夜一区免费看| 中文资源天堂在线| www.www免费av| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 日韩三级视频一区二区三区| 国产成+人综合+亚洲专区| 一个人观看的视频www高清免费观看 | 97碰自拍视频| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 国产精品av久久久久免费| 成人国产综合亚洲| 后天国语完整版免费观看| 亚洲精品在线观看二区| www.熟女人妻精品国产| 国产精品一区二区三区四区久久| 香蕉久久夜色| 夜夜爽天天搞| 久久久久久九九精品二区国产| 国产69精品久久久久777片 | 99久久综合精品五月天人人| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 黄频高清免费视频| 午夜两性在线视频| 午夜激情福利司机影院| 久久精品国产亚洲av香蕉五月| 天堂av国产一区二区熟女人妻| 亚洲七黄色美女视频| 色哟哟哟哟哟哟| 中出人妻视频一区二区| 99在线人妻在线中文字幕| 亚洲国产精品合色在线| 日韩有码中文字幕| 国产伦精品一区二区三区视频9 | 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清专用| 色噜噜av男人的天堂激情| 一级毛片精品| 日本 欧美在线| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 在线视频色国产色| 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| a级毛片在线看网站| 一级黄色大片毛片| 国产亚洲精品久久久com| 精品国产亚洲在线| 好男人在线观看高清免费视频| 悠悠久久av| 桃色一区二区三区在线观看| 色吧在线观看| 无限看片的www在线观看| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av在线| 观看免费一级毛片| 精品免费久久久久久久清纯| 两个人的视频大全免费| 日韩欧美在线二视频| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久久久毛片| 久久久久性生活片| 美女高潮喷水抽搐中文字幕| 少妇熟女aⅴ在线视频| 麻豆国产av国片精品| 亚洲国产看品久久| 久久久久久久久中文| 一本久久中文字幕| 91av网一区二区| xxx96com| 国产精品自产拍在线观看55亚洲| 日本熟妇午夜| 日韩欧美免费精品| 国产淫片久久久久久久久 | 亚洲av免费在线观看| 脱女人内裤的视频| 性色av乱码一区二区三区2| 1000部很黄的大片| 久久伊人香网站| 国产精品av久久久久免费| 999精品在线视频| 午夜福利成人在线免费观看| 九九热线精品视视频播放| 亚洲熟女毛片儿| 18禁黄网站禁片午夜丰满| 成人三级黄色视频| svipshipincom国产片| 国产精品自产拍在线观看55亚洲| 亚洲精品在线美女| e午夜精品久久久久久久| 婷婷六月久久综合丁香| 国产成人av激情在线播放| 69av精品久久久久久| 精品人妻1区二区| 高潮久久久久久久久久久不卡| 老鸭窝网址在线观看| 久久人人精品亚洲av| 日日夜夜操网爽| 这个男人来自地球电影免费观看| 亚洲国产精品sss在线观看| 国产1区2区3区精品| 午夜福利在线观看吧| 91av网一区二区| 看黄色毛片网站| 一本一本综合久久|