• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STRONG DUALITY WITH STRICT EFFICIENCY IN VECTOR OPTIMIZATION INVOLVING NONCONVEX SET-VALUED MAPS

    2017-04-12 14:31:39YUGuolinZHANGYanLIUSanyang
    數(shù)學雜志 2017年2期
    關鍵詞:集值西安電子科技大學三陽

    YU Guo-lin,ZHANG Yan,LIU San-yang

    (1.Institute of Applied Mathematics,Beifang University of Nationalities,Yinchuan 750021,China)

    (2.Department of Mathematics,Xidian University,Xi’an 710071,China)

    余國林1,張 燕1,劉三陽2

    (1.北方民族大學應用數(shù)學研究所, 寧夏 銀川 750021)

    (2.西安電子科技大學數(shù)學系, 陜西 西安 710071)

    STRONG DUALITY WITH STRICT EFFICIENCY IN VECTOR OPTIMIZATION INVOLVING NONCONVEX SET-VALUED MAPS

    YU Guo-lin1,ZHANG Yan1,LIU San-yang2

    (1.Institute of Applied Mathematics,Beifang University of Nationalities,Yinchuan 750021,China)

    (2.Department of Mathematics,Xidian University,Xi’an 710071,China)

    This paper is diverted to the study of two strong dual problems of a primal nonconvex set-valued optimization in the sense of strict effi ciency.By using the principles of Lagrange duality and Mond-Weir duality,for each dual problem,a strong duality theorem with strict effi ciency is established.The conclusions can be formulated as follows:starting from a strictly effi cient solution of the primal problem,it can be constructed a strictly effi cient solution of the dual problem such that the corresponding objective values of both problems are equal.The results generalize the strong dual theorems in which the set-valued maps are assumed to be cone-convex.

    strict effi ciency;strong duality;set-valued optimization;ic-cone-convexlikeness

    1 Introduction

    One of the most important topics of set-valued optimization is related to proper efficiency,this is because that the range ofthe set of(weak)effi cient solutions is often too large. In order to contract the solution range,several kinds of proper effi ciency were presented.For example,Benson effi ciency[1],Henig effi ciency[2],Geoffrion effi ciency[3],Super effi ciency [4]and Strictly effi ciency[5]etc.Especially,super effi ciency,given by Borwein and Zhuang [4],was shown to have some desirable properties.However,the condition to guarantee its existence is rather strong.Later,weakening the existence condition,Professor Cheng and Fu [5]improved the concept ofsupper effi ciency and introduced the concept of strict effi ciency.

    Since duality assertions allow to study a minimization problem through a maximization problem and to know what one can expect in the bestcase.At the same time,duality resulted in many applications within optimization,and it provided many unifying conceptualinsights into economics and management science.So it is not surprising that duality is one of the important topics in set-valued optimization.There were many papers dedicated to dualitytheory ofset-valued optimization(see[6–11]).Among results obtained in this field,we want to mention the strong duality.In vector optimization,it is often said that strong duality holds between primaland dualproblems,if a weakly effi cient solution ofa primalproblem is a weakly effi cient solution ofdualproblem and such that the corresponding objective values of the primaland dualproblems are equal.If in this problem “weakly effi cient solution”is replaced by “properly effi cient solution”,then it is said that strong duality with proper effi ciency holds between the primaland dualproblems.However,strong duality with proper effi ciency was considered only for the case when proper effi ciency was understood in the sense of Geoffi ron[10]and Benson[11].

    On the other hand,it is wellknown that the concept of cone-convexity and its generalizations play an important role in establishing duality theorems for set-valued optimization problems.Up to now,there are many notions of generalized convexity for set-valued maps which are introduced and are proved to be usefulfor optimization theory and related topics. Among them,the notion of ic-cone-convexlikeness seemed to be more general one[12],and was successfully applied to strict effi ciency and Henig effi ciency in set-valued optimization [13–16].

    Based upon the above observation,the aim of this note is to establish the strong duality theorems with strict effi ciency for set-valued optimization problems under the ic-coneconvexlikenessassumptions.Thispaperisarranged as follows:In Section 2,some well-known definitions and results used in the sequelare recalled.In Section 3,two improved dualmodels are introduced,and strong duality theorems with strict effi ciency are established under the assumption of ic-cone-convexlikeness,respectively.

    2 Preliminaries

    In this paper,let X,Y and Z be real topological spaces.Let D ? Y and E ? Z be pointed convex cones,and denoted

    Defi nition 2.1Let M be a nonempty subset of Y, ˉy ∈ M is called a minimize (maximize)point of M,if

    The set of minimize(maximize)point of M is denoted by Min[M,D](Max[M,D]).

    For a set A ? Y,we write cone(A)={λ ·a: λ ≥ 0,a ∈ A}.The closure and interior of set A is denoted by cl(A)and int(A).A convex subset B of a cone D is a base of D if 0Y/∈ cl(B)and D=cone(B).

    Throughout this paper,it is always assumed that the pointed convex cone D ? Y has a base B.

    Defi nition 2.2[5,13]Let M be a nonempty subset of Y, ˉy ∈ M is called a strictly minimize point of M with respect to B,if there is a neighbourhood U of 0Ysuch that

    The set of strictly effi cient point of M with respect to B is denoted by Strmin[M,B].

    Remark 2.1[5,13](1)With respect to the defi nition of strictly minimize points, equality(2.1)is equivalent to

    Moreover,if necessary,the neighbourhood U of 0Ycan be chosen to be open,convex or balanced.

    (2)Strmin[M,B]? Min[M,D].

    (3)Similarly, ˉy ∈ M is called a strictly maximize point of M with respect to B,ifthere is a neighbourhood V of 0Ysuch that

    Remark 2.2In Defi nition 2.2,if equality(2.1)holds,then

    In fact,if not,there exist λ > 0,m ∈ M,d ∈ D{0Y},u ∈ U and b ∈ B,such that λ(m ? ˉy+d)=u ? b.Since B is the base of D,there exist μ > 0 and b1∈ B such that d= μ ·b1.Since B is convex set,we get that

    Therefore,we can get

    which contradicts equality(2.1).

    Defi nition 2.3[12]The set-valued map F:X → 2Yis called ic-D-convexlike if int(cone(im(F)+D))is convex and

    where im(F)is the image of F,and that is

    Assume that F:X → 2Yand G:X → 2Zare set-valued maps.This note considers the following set-valued optimization problem(SOP):

    The set of feasible solution of(SOP)is denoted by ?,that is

    Defi nition 2.4If ˉx ∈ S and ˉy ∈ F(ˉx) ∩ Strmin£F(S),B,then we say that(ˉx,ˉy)is a strictly effi cient solution of problem(SOP).

    Let L(X,Y)be the family of(single-valued)linear continuous maps from X into Y.Let

    Defi nition 2.5[13]Let F:X → 2Ybe a set-valued map, ˉx ∈ X and ˉy ∈ F(ˉx).A map T ∈ L(X,Y)is said to be a strict subgradient of F at(ˉx,ˉy)if

    The set of allstrict subgradients of F at(ˉx,ˉy)is denoted by ?strF(ˉx,ˉy).

    Assumption(A)[12]In problem(SOP),let ˉx ∈ S, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E). It is said that Assumption(A)is satisfied if there exists β ∈ [0,1)such that the set-valued map Hβ:=(F ? ˉx)× (G ? β ·ˉz):X → 2Y×Zis ic-D × E-convexlike.

    Defi nition 2.6[12]It is said that condition(CQ)holds if cl£cone(im G+E) =Z.

    Lemma 2.7[13]Let ˉx ∈ S, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0Yand

    3 Strong Duality

    3.1 Lagrange-Wolfe Strong Duality

    We firstrewrite the Lagrange dualproblem in the form similar to the Wolfe dualproblem [17],which is denoted by problem(LWD)as follows:

    Denote by Q1the set of allfeasible points of(LWD),i.e.,the set of points(ξ,u,v,T) ∈X × Y × Z × L(Z,Y)satisfying(3.1)–(3.3).Let S1be the set of all points u+T(v)such that there exists ξ∈ X with(ξ,u,v,T) ∈ Q1.

    Defi nition 3.1If(ξ,u,v,T) ∈ Q1,and u+T(v) ∈ Strmax£S,B,then we say that (ξ,u,v,T)is a strictly effi cient solution of problem(LWD).

    Theorem 3.2(Weak Duality)If x ∈ ? and(ξ,u,v,T) ∈ Q1,then

    ProofSince x ∈ ?,it holds that G(x) ∩ (?E)/= ?.So we can take a point.Hence

    On the other hand,(3.2)shows that there exists a neighbourhood U of 0Ysuch that

    It follows from Remark 2.2 that

    So we get(3.4),as desired.

    Remark 3.1In weak duality Theorem 3.2,it follows from(3.4)and Remark 2.1 that u+T(v) ∈ min£F(x),D.This leads to

    so(3.4)means that y/≤ u+T(v), ?y ∈ F(x),which is the sense of generalweak duality in literatures[6–8].

    Theorem 3.3(Strong Duality)Let ˉx ∈ X, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0,(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient solution of(LWD),and the corresponding objective values of(SOP)and(LWD)are equal.

    ProofIt yields from Lemma 2.7 that there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0 and (ˉx,ˉy,ˉz, ˉT) ∈ Q1.It remains to prove that ˉy= ˉy+ ˉT(ˉz) ∈ Strmax[S1,B].In fact,otherwise there exist the neighbourhood U0of 0Ysuch that

    Hence,there exist b0∈ (B ? U0), λ > 0 and ?u+T(?v) ∈ S1such that b0= λ(?u+T(?v) ? ˉy) or,equivalently,

    This indicates that

    a contradiction to the weak duality property(3.4)with x= ˉx.

    3.2 Mond-Weir Strong Duality

    This subsection is devoted to construct another duality problem on the basis ofthe idea of Mond-Weir[18],called the Mond-Weir duality problem(MWD),and establish a strong duality result between(SOP)and(MWD).The next problem is named the Mond-Weir dual problem of(SOP)and is denoted by(MWD):

    Denote by Q2the set ofallfeasible points of(MWD),i.e.,the set ofpoints(ξ,u,v,T) ∈X × Y × Z × L(Z,Y)satisfying(3.5)–(3.8).Let S2be the set ofallpoints u such that there exists(ξ,v,T) ∈ X × Z × L(Z,Y)with(ξ,u,v,T) ∈ Q2.

    Lemma 3.4It holds that Q2? Q1and S2? S1? D.

    ProofAccording to the definitions of Q1and Q2,it is obviously that Q2? Q1is satisfied.So it is to prove the second one only.Let u ∈ S2.Then there exists(ξ,v,T) ∈X × Z × L(Z,Y)such that(ξ,u,v,T) ∈ Q2? Q1is satisfied.We get that

    Thus,u ∈ S1? D.This completes proof.

    Theorem 3.5(Weak Duality)If x ∈ ? and(ξ,u,v,T) ∈ Q2,then there exists a neighbourhood U of 0Ysuch that

    ProofBy Lemma 3.4,we obtain that Q2? Q1.Again,we get from Theorem 3.2 that there exists a neighbourhood U of 0Ysuch that

    Hence it follows from Remark 2.2 that

    On the other hand,it yields from(3.8)that

    Combing above inquality with(3.10)yields(3.9),as required.

    In order to formulating the strong duality between(SOP)and(MWD),we need propose the following Lemma 3.6.

    Lemma 3.6If(ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(LWD)and ˉT(ˉv)=0,then ( ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(MWD)and the corresponding objective values of both problems are equal.

    ProofBecause(ˉξ,ˉu,ˉv, ˉT)is a strictly effi cient solution of(LWD),it follows from the definition of set S1that there exists a neighbourhood U of 0Ysuch that

    Therefore,we get from Remark 2.2 that

    On the other hand,according to Lemma 3.4,we have S2? S1? D.Then we derive from ˉT(ˉv)=0 that

    Together(3.11)with(3.12),it is clear thatwhich is the desired result.

    Theorem 3.7(Strong Duality)Let ˉx ∈ X, ˉy ∈ F(ˉx)and ˉz ∈ G(ˉx) ∩ (?E).Let Assumption(A)and condition(CQ)be satisfied.If(ˉx,ˉy)is a strictly effi cient solution of problem(SOP),then there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0,(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient of(MWD),and the corresponding objective values of(SOP)and(MWD)are equal.

    ProofIt follows from Lemma 2.7 that there exists ˉT ∈ L+(Z,Y)such that ˉT(ˉz)=0 and(ˉx,ˉy,ˉz, ˉT) ∈ Q2? Q1.Hence,we get from the strong duality Theorem 3.3 between (SOP)and(LWD)that(ˉx,ˉy,ˉz, ˉT)is a strictly effi cient solution of(LWD)and the corresponding objective values of(SOP)and(LWD)are equal.Therefore,it yields from Lemma 3.6 that(ˉx,ˉy,ˉz, ˉT)is also a strictly effi cient of(MWD)and the corresponding objective values of(LWD)and(MWD)are equal.This can obtain the desired results.

    [1]Benson H P.An improved defi nition of proper effi ciency for vector maximization with respect to cones[J].J.Math.Anal.Appl.,1979,71:232–241.

    [2]Henig M I.Proper effi ciency with respect to cones[J].J.Optim.The.Appl.,1982,36:387–407.

    [3]Geoff rion A M.Proper effi ciency and the theory of vector maximization[J].J.Math.Anal.Appl., 1968,22:618–630.

    [4]Borwein J M,Zhuang D M.Super effi ciency in convex vector optimization[J].Math.Meth.Oper. Res.,1991,35:175–184.

    [5]Cheng Y H,Fu W T.Strong effi ciency in a locally convex space[J].Math.Meth.Oper.Res.,1999, 50:373–384.

    [6]Bhatia Davinder.Lagrangian duality for preinvex set-valued functions[J].J.Math.Anal.Appl., 1997,214:599–612.

    [7]Song Wen.Duality for vector optimization of set-valued functions[J].J.Math.Anal.Appl.,1996, 201:212–225.

    [8]Azimov A Y.Duality for set-valued multiobjective optimization problems,part 1:mathematical programming[J].J.Optim.The.Appl.,2008,137:61–74.

    [9]Frank Heydea,Carola Schrage.Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization[J].J.Math.Anal.Appl.,2013,397:772–784.

    [10]Sach P H,Lee G M,Kim D S.Strong duality for proper effi ciency in vector optimization[J].J. Optim.The.Appl.,2006,130:139–151.

    [11]Sach Pham Huu,Tuan Le Anh.Strong duality with proper effi ciency in multiobjective optimization involving nonconvex set-valued maps[J].Numer.Funct.Anal.Optim.,2009,30:371–392.

    [12]Sach P H.New generalized convexity notion for set-valued maps and application to vector optimization[J].J.Optim.The.Appl.,2005,125:157–179.

    [13]Li Taiyong,Xu Yihong.The stictly effi cient subgradient of set-valued opttimization[J].Bull.Austr. Math.Soc.,2007,75:361–371.

    [14]Yu Guolin,Liu Sanyang.Globally proper saddle point in ic-cone-convexlike set-valued optimization problems[J].Acta Math.Sinica,Eng.Ser.,2009,25:1921–1928.

    [15]Yu Guolin,Lu Yangyang,Moreau-Rockafellar theorems for globally proper effi cient subgradients of set-valued maps[J].J.Math.,2012,32(6):1069–1074.

    [16]Yu Guolin,Liu Sanyang.Strong effi cient solutions of nearly conesubconvexlike set-valued vector optimizaiton problems characterized by generalized saddle pointr[J].J.Math.,2008,28(1):61–66.

    [17]Wolfe P.A duality theorem for nonlinear programing[J].Quart.Appl.Math.,1969,19:239–244.

    [18]Weir T,Mond B.Pre-invex functions in multiple objective optimization[J].J.Math.Anal.Appl., 1988,136:29–38.

    非凸集值優(yōu)化問題嚴有效解的強對偶定理

    本文研究了非凸集值向量優(yōu)化的嚴有效解在兩種對偶模型的強對偶問題.利用Lagrange對偶和Mond-Weir對偶原理, 獲得了如下結(jié)果: 原集值優(yōu)化問題的嚴有效解, 在一些條件下是對偶問題的強有效解,并且原問題和對偶問題的目標函數(shù)值相等;推廣了集值優(yōu)化對偶理論在錐-凸假設下的相應結(jié)果.

    嚴有效性;強對偶;集值優(yōu)化;生成錐內(nèi)部凸-錐類凸性

    類 號:90C29;90C46

    O224

    余國林1,張 燕1,劉三陽2

    (1.北方民族大學應用數(shù)學研究所, 寧夏 銀川 750021)

    (2.西安電子科技大學數(shù)學系, 陜西 西安 710071)

    tion:90C29;90C46

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0223-08

    0255-7797(2017)02-0223-08

    ?Received date:2015-01-27 Accepted date:2015-09-24

    Foundation item:Supported by Natural Science Foundation of China(11361001);Natual Science Foundation of Ningxia(NZ14101).

    Biography:Yu Guolin(1974–),male,born at Yinchuan,Ningxia,professor,major in optimization theory and applications,nonlinear analysis.

    猜你喜歡
    集值西安電子科技大學三陽
    Assessing edge-coupled interdependent network disintegration via rank aggregation and elite enumeration
    具有初邊值條件的集值脈沖微分方程的平均法
    大土三陽書畫作品
    上半連續(xù)集值函數(shù)的區(qū)間迭代
    Redefinition of Tragedy in Modern Age: The Case of Death of a Salesman
    圖像面積有限的集值映射
    《傷寒論》三陽三陰病證的證素辨證研究
    OnRadicalFeminism
    EmploymentAgeDiscriminationonWomen
    ItIsBetterToGiveThanItIsToReceive
    日日干狠狠操夜夜爽| 听说在线观看完整版免费高清| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣巨乳人妻| 身体一侧抽搐| 亚洲欧洲日产国产| 亚洲欧美一区二区三区国产| 日韩欧美在线乱码| 神马国产精品三级电影在线观看| 国产精品三级大全| 成人av在线播放网站| 国产 一区 欧美 日韩| 国产精品.久久久| 日本色播在线视频| 丝袜美腿在线中文| 久久精品国产亚洲av天美| 国产精品99久久久久久久久| 欧美日本亚洲视频在线播放| 久久99热这里只频精品6学生 | 午夜视频国产福利| 国产亚洲5aaaaa淫片| 欧美一区二区国产精品久久精品| 免费在线观看成人毛片| 亚洲无线观看免费| 日本午夜av视频| av在线天堂中文字幕| 免费黄色在线免费观看| 久久久久免费精品人妻一区二区| 国产极品天堂在线| 一夜夜www| 桃色一区二区三区在线观看| 国产精品99久久久久久久久| 久久久久精品久久久久真实原创| 97热精品久久久久久| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 九色成人免费人妻av| 99久国产av精品国产电影| 精品久久久久久久久久久久久| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 免费观看性生交大片5| 国产单亲对白刺激| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 国产淫片久久久久久久久| 国产精品麻豆人妻色哟哟久久 | 国产私拍福利视频在线观看| 国产老妇伦熟女老妇高清| 亚洲在线自拍视频| 免费观看在线日韩| 欧美精品国产亚洲| 在线免费观看不下载黄p国产| 美女被艹到高潮喷水动态| 高清午夜精品一区二区三区| 国产一区二区在线av高清观看| 中文乱码字字幕精品一区二区三区 | 国产亚洲av片在线观看秒播厂 | 国产三级中文精品| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 国产黄片美女视频| 亚洲av福利一区| 亚洲欧美日韩高清专用| 亚洲人成网站在线观看播放| 美女大奶头视频| 最近中文字幕高清免费大全6| 国产一级毛片在线| 国产毛片a区久久久久| 日韩中字成人| 久久午夜福利片| 99久久成人亚洲精品观看| 小说图片视频综合网站| 国国产精品蜜臀av免费| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| 秋霞伦理黄片| 成人三级黄色视频| 成人无遮挡网站| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 长腿黑丝高跟| 免费看av在线观看网站| 国产伦一二天堂av在线观看| 白带黄色成豆腐渣| 色综合色国产| 色5月婷婷丁香| 一区二区三区高清视频在线| 青春草亚洲视频在线观看| 国产乱来视频区| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 男人舔奶头视频| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 欧美区成人在线视频| 久久精品91蜜桃| 99久久精品热视频| 在现免费观看毛片| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 极品教师在线视频| 熟女电影av网| 91久久精品国产一区二区三区| 成年免费大片在线观看| 国产黄片美女视频| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说 | 少妇丰满av| 能在线免费看毛片的网站| 日韩视频在线欧美| 久久国产乱子免费精品| 久久国内精品自在自线图片| 久久久欧美国产精品| 村上凉子中文字幕在线| 日日摸夜夜添夜夜爱| 国产在视频线在精品| 大话2 男鬼变身卡| 久久99热这里只频精品6学生 | 免费观看a级毛片全部| 色播亚洲综合网| 男女那种视频在线观看| 亚洲乱码一区二区免费版| 最近中文字幕高清免费大全6| 亚洲国产精品久久男人天堂| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 成年av动漫网址| 在线天堂最新版资源| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 免费看日本二区| 成人亚洲欧美一区二区av| АⅤ资源中文在线天堂| 18禁动态无遮挡网站| 在线观看66精品国产| 亚洲av成人av| 99久国产av精品| 精品不卡国产一区二区三区| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| av.在线天堂| 精品久久国产蜜桃| 99热这里只有精品一区| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| 久久久久久久久久久丰满| 国内精品美女久久久久久| 中文字幕熟女人妻在线| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 国产成人freesex在线| 久久99热这里只有精品18| 亚洲欧美精品综合久久99| 亚洲丝袜综合中文字幕| 色噜噜av男人的天堂激情| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| 蜜臀久久99精品久久宅男| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 26uuu在线亚洲综合色| 亚洲欧美日韩高清专用| 亚洲色图av天堂| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 亚洲电影在线观看av| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 村上凉子中文字幕在线| 久久国内精品自在自线图片| 中文资源天堂在线| 久久人人爽人人爽人人片va| 老司机福利观看| 欧美高清性xxxxhd video| 熟女电影av网| 一夜夜www| 国产成人精品一,二区| 国产精品福利在线免费观看| 久久久久网色| 免费无遮挡裸体视频| 变态另类丝袜制服| 国产91av在线免费观看| 午夜福利高清视频| 成人无遮挡网站| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 三级国产精品片| 精品国产露脸久久av麻豆 | av卡一久久| 国产探花在线观看一区二区| 久久久成人免费电影| 亚洲国产色片| 精品不卡国产一区二区三区| av视频在线观看入口| 国产探花在线观看一区二区| 亚洲av男天堂| 中文字幕免费在线视频6| 永久免费av网站大全| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 久久久久久久国产电影| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 国产午夜精品论理片| 日韩三级伦理在线观看| 青春草国产在线视频| 成人毛片60女人毛片免费| 欧美一级a爱片免费观看看| 亚洲国产精品合色在线| 丰满乱子伦码专区| 欧美一级a爱片免费观看看| 日本午夜av视频| av女优亚洲男人天堂| 大香蕉久久网| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 少妇高潮的动态图| 综合色丁香网| 欧美性猛交黑人性爽| 成人亚洲精品av一区二区| 精品熟女少妇av免费看| 亚洲五月天丁香| 久久亚洲国产成人精品v| 黑人高潮一二区| 老司机福利观看| 男女啪啪激烈高潮av片| 毛片女人毛片| 人体艺术视频欧美日本| 成年女人永久免费观看视频| 国产色婷婷99| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 精品一区二区三区视频在线| av.在线天堂| 久久6这里有精品| 国产伦精品一区二区三区四那| 日本wwww免费看| 成年免费大片在线观看| 日韩av在线免费看完整版不卡| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 亚洲精品国产成人久久av| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 久久精品久久久久久久性| 寂寞人妻少妇视频99o| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 色哟哟·www| 丝袜喷水一区| 色综合亚洲欧美另类图片| 色视频www国产| 一区二区三区高清视频在线| 日韩亚洲欧美综合| 成人亚洲欧美一区二区av| 搡老妇女老女人老熟妇| 国产午夜精品论理片| 亚洲内射少妇av| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 桃色一区二区三区在线观看| 国产精品国产三级专区第一集| 99久国产av精品国产电影| 亚洲av二区三区四区| 超碰av人人做人人爽久久| av专区在线播放| 最近最新中文字幕免费大全7| 中文字幕免费在线视频6| 2021天堂中文幕一二区在线观| 国产老妇伦熟女老妇高清| 色网站视频免费| 欧美激情在线99| av在线亚洲专区| 精品久久国产蜜桃| 欧美潮喷喷水| 变态另类丝袜制服| 久久精品熟女亚洲av麻豆精品 | 亚洲内射少妇av| 国产色爽女视频免费观看| 午夜a级毛片| 欧美丝袜亚洲另类| 国产免费一级a男人的天堂| 丰满少妇做爰视频| av福利片在线观看| 国产精品久久久久久av不卡| 久久久久久久久久久免费av| 91精品伊人久久大香线蕉| 国产伦一二天堂av在线观看| 免费看美女性在线毛片视频| 麻豆成人av视频| 一级毛片电影观看 | 色综合亚洲欧美另类图片| 老司机福利观看| 中文欧美无线码| 亚洲欧美一区二区三区国产| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 久久热精品热| 日韩亚洲欧美综合| 永久免费av网站大全| 国产亚洲av嫩草精品影院| 亚洲av二区三区四区| 成人午夜高清在线视频| 亚洲国产精品合色在线| 国产黄色小视频在线观看| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区 | 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 春色校园在线视频观看| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 人人妻人人澡人人爽人人夜夜 | 久久久色成人| 亚洲最大成人中文| 有码 亚洲区| 久久99热6这里只有精品| 一级av片app| 99热这里只有是精品50| 亚洲精品成人久久久久久| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 久久久精品94久久精品| av线在线观看网站| 亚洲国产精品专区欧美| 在线播放国产精品三级| 搡女人真爽免费视频火全软件| 女人被狂操c到高潮| 国产精品福利在线免费观看| 亚洲精品456在线播放app| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 欧美日韩国产亚洲二区| 在线a可以看的网站| 汤姆久久久久久久影院中文字幕 | 小说图片视频综合网站| 亚洲婷婷狠狠爱综合网| 国语自产精品视频在线第100页| 日韩av在线大香蕉| 久久鲁丝午夜福利片| 免费观看性生交大片5| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 两个人视频免费观看高清| 久久亚洲国产成人精品v| 欧美性猛交╳xxx乱大交人| 国产午夜精品一二区理论片| 国产精品女同一区二区软件| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 黄色日韩在线| 国产在视频线精品| 永久免费av网站大全| 成人av在线播放网站| 国产爱豆传媒在线观看| 99热全是精品| 国产真实伦视频高清在线观看| 桃色一区二区三区在线观看| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 天堂网av新在线| 99在线人妻在线中文字幕| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 尾随美女入室| 色哟哟·www| 麻豆乱淫一区二区| 18+在线观看网站| 久久久久精品久久久久真实原创| 亚洲av免费高清在线观看| 精品一区二区三区人妻视频| 午夜爱爱视频在线播放| 人人妻人人澡欧美一区二区| 如何舔出高潮| 色综合亚洲欧美另类图片| 国产亚洲av片在线观看秒播厂 | 久久久精品94久久精品| 伦精品一区二区三区| 国产黄片视频在线免费观看| 国产精品一区二区在线观看99 | 国产黄色视频一区二区在线观看 | 亚洲国产精品久久男人天堂| 久久久久久伊人网av| 免费大片18禁| 亚洲最大成人中文| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 好男人在线观看高清免费视频| 午夜福利高清视频| 美女高潮的动态| 欧美日韩精品成人综合77777| 中文字幕制服av| 亚洲国产精品专区欧美| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 国产成人freesex在线| 久久99热这里只频精品6学生 | 一级二级三级毛片免费看| 国产免费男女视频| 欧美成人a在线观看| 小说图片视频综合网站| 亚洲欧美中文字幕日韩二区| 日韩精品青青久久久久久| 亚洲一区高清亚洲精品| 九九久久精品国产亚洲av麻豆| 国产综合懂色| 国产黄a三级三级三级人| 日韩在线高清观看一区二区三区| 久久6这里有精品| 欧美日韩综合久久久久久| 老司机影院成人| 亚洲国产精品合色在线| 午夜免费激情av| 欧美一区二区精品小视频在线| 三级国产精品片| 黄片wwwwww| 老师上课跳d突然被开到最大视频| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| 久久6这里有精品| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| 国产真实伦视频高清在线观看| 九九爱精品视频在线观看| 日韩三级伦理在线观看| 18+在线观看网站| 狠狠狠狠99中文字幕| 在线观看66精品国产| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 高清毛片免费看| 免费不卡的大黄色大毛片视频在线观看 | a级一级毛片免费在线观看| 精品国产露脸久久av麻豆 | 成年免费大片在线观看| 亚洲怡红院男人天堂| 夜夜爽夜夜爽视频| 青青草视频在线视频观看| 亚洲成色77777| 99久国产av精品国产电影| 久久久午夜欧美精品| 亚洲精品456在线播放app| 国产成人91sexporn| 久久精品熟女亚洲av麻豆精品 | 一本久久精品| 婷婷色麻豆天堂久久 | 国产高清视频在线观看网站| 久久亚洲国产成人精品v| 男女视频在线观看网站免费| 一区二区三区高清视频在线| 91精品国产九色| 国产成人免费观看mmmm| 中文字幕av在线有码专区| 欧美激情在线99| 日本-黄色视频高清免费观看| 久久人人爽人人片av| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 深爱激情五月婷婷| 欧美区成人在线视频| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 色综合站精品国产| www.av在线官网国产| 99久国产av精品国产电影| 亚洲精品久久久久久婷婷小说 | 国产精品福利在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 精品久久国产蜜桃| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 日韩中字成人| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月| 你懂的网址亚洲精品在线观看 | 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| av视频在线观看入口| 亚洲欧美精品自产自拍| 成人二区视频| av又黄又爽大尺度在线免费看 | 麻豆国产97在线/欧美| 熟妇人妻久久中文字幕3abv| 久久国内精品自在自线图片| 亚洲成人精品中文字幕电影| 十八禁国产超污无遮挡网站| 听说在线观看完整版免费高清| 在线观看66精品国产| 三级毛片av免费| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 成人午夜高清在线视频| 日韩欧美 国产精品| 女人被狂操c到高潮| 在线免费观看的www视频| 日韩在线高清观看一区二区三区| 丰满少妇做爰视频| 日本五十路高清| 国产在视频线在精品| 激情 狠狠 欧美| 老司机影院毛片| 99热6这里只有精品| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 成人午夜高清在线视频| ponron亚洲| 中文字幕免费在线视频6| 日本猛色少妇xxxxx猛交久久| 国产精品国产高清国产av| 亚洲欧美中文字幕日韩二区| 少妇丰满av| a级一级毛片免费在线观看| 一个人观看的视频www高清免费观看| 22中文网久久字幕| 亚洲图色成人| 亚洲最大成人av| 人体艺术视频欧美日本| 国产69精品久久久久777片| 美女黄网站色视频| 伦精品一区二区三区| 日本欧美国产在线视频| 日韩中字成人| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 蜜臀久久99精品久久宅男| 国产 一区 欧美 日韩| 在线观看美女被高潮喷水网站| 天堂中文最新版在线下载 | 一二三四中文在线观看免费高清| 国产爱豆传媒在线观看| 直男gayav资源| 国产高清国产精品国产三级 | 国产精品一二三区在线看| 亚洲av.av天堂| 麻豆成人av视频| 久久久久网色| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 国产在视频线精品| 免费观看a级毛片全部| 日韩视频在线欧美| 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 亚洲人成网站在线播| 国产视频首页在线观看| 九九在线视频观看精品| 国产一级毛片在线| 国产精品三级大全| 小说图片视频综合网站| 又爽又黄无遮挡网站| 高清av免费在线| .国产精品久久| 色视频www国产| 长腿黑丝高跟| 久久鲁丝午夜福利片| 最近的中文字幕免费完整| 最近最新中文字幕免费大全7| 一个人看视频在线观看www免费| 在线免费十八禁| 国产精品久久久久久精品电影| 伦精品一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲国产精品专区欧美| 熟妇人妻久久中文字幕3abv| 人妻少妇偷人精品九色| 色综合亚洲欧美另类图片| 久久久久久久久久成人| 久99久视频精品免费| 亚洲国产精品专区欧美| 两性午夜刺激爽爽歪歪视频在线观看| 国产片特级美女逼逼视频| 日本与韩国留学比较| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 久久久久久久久久成人| 亚洲高清免费不卡视频| 日本黄色视频三级网站网址| 精品一区二区三区视频在线| 国产亚洲5aaaaa淫片| 亚洲图色成人| 国产精品三级大全| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品自产自拍| 中文字幕精品亚洲无线码一区| 亚洲精品成人久久久久久|