• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Full Scale Test on Cost Effective Liquefaction Countermeasure for a Highway Embankment

    2017-04-10 18:16:35MitsuOKAMURA
    地震研究 2017年1期

    Mitsu+OKAMURA

    Abstract:Desaturation of ground by air injection attracts considerable attention in recent years as an innovative cost effective technique for liquefaction countermeasureThis paper describes an insitu air injection test which aimed to verify effectiveness of the use of higher air injection pressures to desaturate very wide zone from a single air injectorIn the test,air was injected in liquefiable foundation soils immediately below a highway embankmentObservations revealed that the soil around the injector was desaturated effectively and the zone of influence extended more than 9 m from the injectorThis radius was about 5 times larger than that achieved in the past test,leading to a dramatic reduction in execution cost

    Keywords:liquefaction,countermeasure,desaturation,embankment

    CLC Number:TU441Document Code:AArticle ID:1000-0666(2017)01-0045-07

    Introduction

    Liquefaction countermeasure techniques have been used to ameliorate liquefaction resistances of loose sand depositsMost of the techniques,however,are only available for improving foundation soils without any structuresTechniques that are applicable to soils blow existing structures are limited and particular costly,if anyA challenge that geotechnical engineers have been facing is that the remedial countermeasure works for a large number of existing structures including road embankment,river and coastal levees which are susceptible to liquefaction induced damage

    Desaturation of ground by air injection(Okamura et al,2011)attracts considerable attention in recent years as an innovative technique for liquefaction countermeasure,largely due to its cost effectivenessThe execution cost of the technique is approximately one-tenth of the other techniques available for soil improvement below existing structuresBut the cost is still too extensive for such long structures as road embankments and river levees,since the volume of liquefiable soils below the linear long structures are hugeThis is because ground improvement for liquefaction countermeasure has never executed for highway embankments

    Okamura et al(2011)has conducted insitu tests where air was injected at a depth of 6 m with the injection pressure of 45 kPa(the hydrostatic pressure 32 kPa+ the net injection pressure 13 kPa)in Kochi prefecture,ShikokuThe influence zone where soil was effectively desaturated extended around the injection point with a diameter of about 35 mThe execution cost of the technique at this time was similar to those ground improvement techniques such as sand compaction pilesThis is still far beyond allowable cost to remediate long road embankments which is susceptible to liquefaction damage

    Since the material of this technique is air alone,installation cost of injection pipes occupied a larger part of execution cost,more than a halfReduction of the number of injection pipes will make this technique more cost effectiveFor soils directly below high embankments,because of higher effective overburden pressures,air injection with higher injection pressure can be executed without disturbing soilsIt has reported that the higher the injection pressures,the wider the zone of influence around an injection pipe(Yasuhara et al,2008).

    This paper describes an insitu air injection test at a highway embankment aiming at verifying the effectiveness of the use of higher air injection pressure to widen the zone of influence and reduce the number of injection pipe by applying a higher injection pressure

    1Factors Controlling Liquefaction Resistance of Unsaturated SandExistence of air in pores of soil is considered to enhance a liquefaction resistanceAir in the pores plays a role of absorbing generated excess pore pressures by reducing its volumeChange in volume of the pore fluid,that is air water mixture,may be the factors dominating this mechanism

    Considering a soil mass of its pore filled with air and waterFor a small change in the pore pressure Δp,we obtain the volumetric strain of the soil using the Boyles law as Where p0 and e denote the pressure of the fluid and the void ratio of the soil mass respectivelyIn the above equation,compressibility of soil grain and water is ignoredThe highest value of the volumetric strain for a soil is achieved when the Δp attains its possible maximum value which is equal to the effective confining stress σc′This highest value of the volumetric strain is hereafter termed as the potential volumetric strain,εv*

    Effects of the factors appeared in Eq(1)were individually investigated through a series of triaxial tests on Toyoura sand specimens at a relative density of 40%Three testing parameters including the initial effective confining pressure,σc′,the buck pressure and the degree of saturation Sr,were varied between tests while the void ratio of the specimens was kept as a constant throughout the test seriesIt should be noted that the back pressure p0,is the absolute pressure instead of the ordinary used gauge pressureIt was found that the liquefaction resistances of the partially saturated sand increase with the initial confining pressures,with the liquefaction resistances being higher for lower SrAlso the liquefaction resistance depends on the back pressure;the liquefaction resistance decreases as the pressure increases(Okamura,Soga,2006).

    The liquefaction resistance ratio,which is the liquefaction resistance of partially saturated sand normalized with respect to that of fully saturated sand,is plotted against the potential volumetric strain in Figure 2All the data lies along a unique curve,confirming that the potential volumetric strain is the determining factor of the effect of degree of saturation on this specific sand at relative density of 40%It was also found that data retrieved from literature,which was obtained from tests on specimens prepared using different sand at different relative densities and at different confining pressures,lies along the same curve(Okamura,Soga,2006).This indicates that the effect of the degree of saturation on liquefaction resistance is dominated by the factor εv

    The test was conducted at a construction site of highway embankment of the West Nippon Expressway Company near the mouth of Imagiri River,Tokushima prefecture,as shown in Figure 1

    Figure 3 indicates the soil profile at the siteAlluvium loose sand deposit extends from the surface to the depth of about 12 mThis layer was judged liquefiable and set as the target layer of desaturation by air injectionFines content of the layer was mostly lower than 20% and several thin clay seams being sandwichedThe ground water table was below 05 m from the surfaceSoil water retention characteristics were tested on disturbed samples with a pressure plate apparatus and the minimum pressure observed at the onset of drainage,recognized as an air entry value,was in a range between 1 kPa to 10 kPa

    Figure 4 shows a more detailed boring log and locations of air injectorsThere were several thick clay seams at the depths of 5 m and between 9 m and 12 mAs these clay seams were expected to impede upward flow of injected air,injectors were set at several depths so that the whole the sand layer can be desaturatedIn order to monitor the evolution of desaturated zone during injection,electrodes were installed at intervals of 25 m in plan and 05 m in depthElectric resistivity of soil depends on several parameters including water content,void ratio,temperature,ionic content,resistivity of solid phase,particle size and pressureThe influences of these factors on the resistivity may be dissimilar among different soil types,however,desaturation technique by air injection does not alter these parameters with only exception of volumetric water content(degree of saturation).Therefore,change in the electric resistivity during air injection is expected to be uniquely related to change in the degree of soil saturation

    22Air Injection

    Air injection was conducted one by one from each air injectorIn this paper,two injection processes at a depth 83 m in the A-1 hole and 82 m in the S-1 hole are discussedThe photo of the injection controlling system at the site was depicted in Figure 5In the injection test,injection air pressure increased gradually until injected air started flowing into soilThe pressure was found to be 80 kPa

    Figure 1Locations of the expected Nankai Earthquake

    and Shikoku where insitu tests were conductedFigure 2Relationship between potential volumetric

    strain and liquefaction resistance ratioFigure 3Soil profile at the test siteFigure 4Arrangement of air injectors and electrodesFigure 5Air injection system at the siteAt the injection point,the effective vertical stress and the hydrostatic pressure were approximately σv′=100 kPa and Phyd= 75 kPa,respectivelyThe injection pressure increased further to 150 kPa,which is sum of Phyd and two thirds of σv′Figure 6 depicts time histories of injection pressures and flow rateAir flow rate increased with time while the pressure was kept to be constant,suggesting that the desaturated zone expanded and degree of saturation of soil in the zone decreasedFigure6Time histories of pressures and

    flow rate of injected air23Results and Discussions

    Figure 7 indicates variations in the electric resistivity change(ρa-ρb)/ρb observed during injection at 83 m in A-1 hole,where ρa and ρb denote the pre and postinjection resistivity,respectivelyThe yellow and red zones in the figure corresponds to resistivity increase due to the decrease in degree of saturation by the air injectionThe desaturated zone seems to have extended diagonally upwards from the injection point with timeAt 75 hours after initiation of injection,the zone of influence at the depth of injection point extended about 5 m and more than 9 m at a shallower depthMore than 16 hours after halting the injection at the A-1 hole,which was considered to be long enough to dissipate excess pore pressures,very similar injection test was conducted from the S-1 hole Although the zone of influence was somewhat narrower than the injection from the A-1 hole,soils in the radius of 5 m was effectively desaturated in 65 hours

    (a)Air injection from A-1 hole(b)Air injection from S-1 holeFigure 7Evolution of the electric resistivity changeThe diameters of the zone of influence attained in the tests are more than three times larger than that observed in the previous test at the Kochi site(Okamura et al,2011).This means that the number of boring wholes for air injector can be reduced less than one ninth,resulting in very significant reduction in execution costThe most important difference in test conditions between this study and Kochi site is the net injection pressure,ieair pressure at an injector minus hydrostatic pressureSince injected air tends to flow upward owing to the buoyancy force,a higher injection pressure pushes the injected air not only upward but also horizontallyHigher pressure is also effective to desaturate soil more uniformlySince the natural soil is inherently heterogeneous and injected air tends to flow only within preferential path ways where permeability is high and soils outside the ways will be remained in saturated conditionApplication of higher air pressure,that is higher suction pressure,can be effective to reduce such a heterogeneous distribution in degree of saturation in the zone of influence

    3Gas-liquid Two-phase Flow Simulation of In-situ Test31TOUGH2 Simulation

    Air injection at a certain location underground creates influence zone around the injection pointDuring the air injection,simultaneous flow of water and air occurs,and thus the effects of capillary pressures and the mutual flow interaction between the two phases should be addressed in a computational mannerIn this study,a gas-liquid two-phase simulator TOUGH2(Pruess et al,1999)that accounts for the above requisites was utilized to estimate the extent of the influence zone

    In TOUGH2,a mass balance may be expressed in integral form for arbitrary subvolume Vn,bounded by a surface area of Γn,given asddt∫VnMКdVn=∫ΓnFК·ndΓn+∫VnqКdVn(2)where К denotes the component,MК is the amount of component К with a dimension of mass per volume,FК is the flux of component К,n is the outward unit vector normal to the volume surface,qК is the rate of generation of component К within the volume

    Eq(2)is discretized in space to numerically solve multiphase flow processesAfter discretized as a first-order finite difference,the flux and sink and source terms are evaluated at the next time stepAn iterative procedure is adopted to solve in time until a prescribed time

    The simulated domain with a dimension of 28 m wide and 13 m deep has no-flow boundaries for both water and air except a top surface boundary open for flow,and has be five different layers as shown in Figure 8,compatible to Figure 3Air pressure exerted at injection points is fixed to 150 kPa following the in-situ test conditionThe hydraulic conductivity for each layer was evaluated by constant-head permeability tests using the boring samplesThe relation between the capillary pressure and the degree of saturation for each layer was determined through soil water retention experiments,together with the well-fitted predictions

    Figure 8Mesh for TOUGH2 simulation32Comparison between Observations and PredictionsPredictions of the evolution in degree of saturation utilizing the ground model and parameters constrained in the previous section are shown in Figure 9A desaturated bulb augments as the prediction proceeds both upward and laterally,and upward evolution is impeded by the bottom of clay layer at -31 mThis is quite similar to that observed in the injection from S-1 holeAlthough insitu observations did not provide magnitude of degree of saturation,observed electric resistivity(Figure 7)and simulated degree of saturation(Figure 9)are qualitatively quite comparable This indicates that the model may be capable of predicting desaturation processes mediated by air injectionFigure 9Predicted evolution in degree of saturation during air injection under arbitrary conditions,and be applicable to field problems as flow characteristics are identified

    4Conclusions

    In this study,an insitu air injection test was conducted which aimed to examine the effectiveness of the use of higher air injection pressures to desaturate very wide zone from a single air injectorIn the test,air was injected in liquefiable foundation soils immediately below a highway embankment with the net injection pressure as high as 75 kPaObservations revealed that soils around the injector effectively desaturated and the zone of influence extended more than 5 m from the injectorThis radius is about 3 times larger than that achieved in the past test,leading to a dramatic reduction in execution cost

    The insitu injection tests were numerically simulated with a gas-liquid two phase flow simulator TOUGH2The simulated desaturated zone augments as time in very similar manner to the evolution of observed electric resistivity changeThe simulator may be capable of predicting desaturation processes mediated by air injection under arbitrary conditions,and be applicable to field problems as flow characteristics are identified

    References:

    Japanese Geotechnical Society.1998.Remedial measures against soil Liquefaction.

    KIMURA T.1988.Development of geotechnical centrifuges in Japan[J].Proc Int Conf Centrifuge,98(2):945-954.

    OKAMURA M,INOUE T.2012.Preparation of fully saturated model ground[J].Int J Physical Modelling in Geotechnics,12(1):39-46.

    OKAMURA M,NOGUCHI K.2009.Liquefaction resistance of unsaturated non-plastic silt[J].Soils and Foundations,49(2):221-229.

    OKAMURA M,SOGA Y.2006.Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand[J].Soils and Foundations,46(5):93-104.

    OKAMURA M,TAKEBAYASHI M,NISHIDA K,et al.2011.In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation[J].ASCE J of Geotechnical and Geoenvironmental Engineering,137(7):643-652.

    PURESS K,OLDENBURG C,MORIDIS G.1999.TOUGH2 Users Guide Version 2.0[K].Berkeley,CA,197.

    Public Works Research Institute Soil Dynamics Division.1998.Design manual of sheet piling as a countermeasure against liquefaction-induced river dike failure(Revised version)[M].Public Works Research Institute,Ministry of Construction.

    SCHOFIDLD A N.1980.Cambridge geotechnical centfifuge operations[J].Geotechnique,30(3):227-268.

    Shin-etsu Chemical Co.,Ltd.2010.Metolose Brochure,Cellulose Dept,2-6-1 Ohtemachi,Chiyoda-ku,Tokyo.

    YASHUHARA H,OKAMURA M,KOCHI Y.2008.Experiments and Predictions of Soil Desaturation by Air-Injection Technique and the Implications Mediated by Multiphase Flow Simulation[J].Soils and Foundations,48(6):791-804.

    国产精品久久视频播放| 看免费av毛片| 日本成人三级电影网站| 国产一区二区在线观看日韩| 99国产综合亚洲精品| 午夜老司机福利剧场| 中文字幕免费在线视频6| 国产欧美日韩精品一区二区| 麻豆成人av在线观看| 91av网一区二区| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器| 国产成人a区在线观看| h日本视频在线播放| 亚洲国产精品999在线| 亚洲无线在线观看| 久久99热6这里只有精品| 真人做人爱边吃奶动态| 男人舔奶头视频| 99久久精品热视频| 在线观看午夜福利视频| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| 久久亚洲精品不卡| 免费观看人在逋| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 91字幕亚洲| 一二三四社区在线视频社区8| 日韩高清综合在线| 精品一区二区三区av网在线观看| 亚洲成人久久性| 色吧在线观看| 最近在线观看免费完整版| 国产高清三级在线| 日韩欧美 国产精品| 亚州av有码| 久久久久九九精品影院| 一本精品99久久精品77| 亚洲 欧美 日韩 在线 免费| 床上黄色一级片| 午夜精品在线福利| 窝窝影院91人妻| 身体一侧抽搐| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 97人妻精品一区二区三区麻豆| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 国产成人欧美在线观看| 国产毛片a区久久久久| 亚洲国产精品999在线| 制服丝袜大香蕉在线| 首页视频小说图片口味搜索| 亚洲av五月六月丁香网| 在线免费观看的www视频| 最后的刺客免费高清国语| 色尼玛亚洲综合影院| 亚洲经典国产精华液单 | 亚洲在线自拍视频| 此物有八面人人有两片| 欧美成人性av电影在线观看| 亚洲avbb在线观看| 日韩精品中文字幕看吧| 热99在线观看视频| 久久久久国内视频| 国产大屁股一区二区在线视频| 又紧又爽又黄一区二区| 亚洲av成人av| 亚洲一区高清亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美精品v在线| 18禁在线播放成人免费| 免费黄网站久久成人精品 | 一本久久中文字幕| 国产激情偷乱视频一区二区| 国产乱人视频| 国产精品精品国产色婷婷| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 日韩亚洲欧美综合| 国产午夜精品论理片| 精品久久久久久,| 在线观看美女被高潮喷水网站 | 大型黄色视频在线免费观看| 国产精品一区二区三区四区久久| 午夜激情福利司机影院| 一个人看视频在线观看www免费| 深夜a级毛片| 男女之事视频高清在线观看| 中文在线观看免费www的网站| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 免费观看的影片在线观看| 国产在线精品亚洲第一网站| 午夜免费成人在线视频| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 日韩欧美国产一区二区入口| 日本免费a在线| 老司机福利观看| 黄色日韩在线| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 色综合婷婷激情| av在线观看视频网站免费| 免费看美女性在线毛片视频| 日本在线视频免费播放| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 国产视频内射| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 午夜精品在线福利| 在线国产一区二区在线| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 亚洲成av人片在线播放无| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 色综合婷婷激情| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 日韩人妻高清精品专区| 欧美在线一区亚洲| 国产又黄又爽又无遮挡在线| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av第一区精品v没综合| 亚洲久久久久久中文字幕| 午夜两性在线视频| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av| 能在线免费观看的黄片| 91狼人影院| 欧美bdsm另类| 国产人妻一区二区三区在| 国产伦在线观看视频一区| 久久精品久久久久久噜噜老黄 | 真实男女啪啪啪动态图| 波多野结衣高清无吗| 嫩草影院新地址| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 午夜老司机福利剧场| 国产欧美日韩精品一区二区| 久久国产乱子免费精品| 亚洲成av人片免费观看| 国产免费男女视频| 亚洲,欧美精品.| 一进一出抽搐动态| 三级男女做爰猛烈吃奶摸视频| 精品午夜福利在线看| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 亚洲内射少妇av| 色视频www国产| 黄色日韩在线| 99国产综合亚洲精品| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 嫩草影院精品99| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 99热这里只有是精品50| av天堂在线播放| 免费搜索国产男女视频| 少妇的逼水好多| 亚洲国产精品sss在线观看| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区 | 99久久精品一区二区三区| 亚洲国产精品sss在线观看| 嫁个100分男人电影在线观看| 天堂影院成人在线观看| 亚洲av五月六月丁香网| 国产视频一区二区在线看| 91九色精品人成在线观看| 99国产精品一区二区三区| 91av网一区二区| 一个人观看的视频www高清免费观看| 日本在线视频免费播放| av天堂中文字幕网| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 18+在线观看网站| 精品人妻视频免费看| 精品免费久久久久久久清纯| 久久久色成人| 亚洲国产精品久久男人天堂| 国产精品乱码一区二三区的特点| 午夜福利欧美成人| 性色avwww在线观看| 亚洲三级黄色毛片| 免费观看精品视频网站| 亚洲专区国产一区二区| 草草在线视频免费看| 免费看美女性在线毛片视频| 亚洲男人的天堂狠狠| 波野结衣二区三区在线| 国产高清视频在线观看网站| 成人午夜高清在线视频| 一级黄片播放器| av专区在线播放| 成人永久免费在线观看视频| 国产免费一级a男人的天堂| 亚洲真实伦在线观看| 男女床上黄色一级片免费看| 一个人免费在线观看电影| 久久午夜福利片| 久久午夜福利片| 精品日产1卡2卡| 欧美一级a爱片免费观看看| 国产乱人伦免费视频| 亚洲成人精品中文字幕电影| 香蕉av资源在线| 欧美xxxx黑人xx丫x性爽| 色综合婷婷激情| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 人妻夜夜爽99麻豆av| 亚洲七黄色美女视频| 看免费av毛片| 丰满人妻一区二区三区视频av| 性欧美人与动物交配| 国产精品一区二区性色av| 最近中文字幕高清免费大全6 | 午夜福利成人在线免费观看| 人人妻,人人澡人人爽秒播| 18禁裸乳无遮挡免费网站照片| 搡老熟女国产l中国老女人| 搡女人真爽免费视频火全软件 | 亚洲性夜色夜夜综合| 精品人妻一区二区三区麻豆 | 欧美日韩国产亚洲二区| 国产一区二区激情短视频| www.熟女人妻精品国产| 国产一区二区在线观看日韩| 一级黄片播放器| 精品国产亚洲在线| 在线观看午夜福利视频| 伦理电影大哥的女人| 综合色av麻豆| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 成人午夜高清在线视频| 搞女人的毛片| or卡值多少钱| 免费一级毛片在线播放高清视频| 久久中文看片网| 一级av片app| 91久久精品电影网| 国产亚洲精品久久久com| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 亚洲成人久久爱视频| 99精品在免费线老司机午夜| 亚洲av中文字字幕乱码综合| 亚洲第一区二区三区不卡| 少妇人妻一区二区三区视频| 香蕉av资源在线| 一区二区三区四区激情视频 | 欧美最新免费一区二区三区 | 非洲黑人性xxxx精品又粗又长| 赤兔流量卡办理| 色尼玛亚洲综合影院| 亚洲精品456在线播放app | 色综合欧美亚洲国产小说| av天堂中文字幕网| 久久人人爽人人爽人人片va | 窝窝影院91人妻| 动漫黄色视频在线观看| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| h日本视频在线播放| 色在线成人网| 久久久久久国产a免费观看| 精品无人区乱码1区二区| 免费在线观看日本一区| 国产精品1区2区在线观看.| 草草在线视频免费看| 狠狠狠狠99中文字幕| 如何舔出高潮| 久久久久国产精品人妻aⅴ院| 3wmmmm亚洲av在线观看| 国内毛片毛片毛片毛片毛片| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 国产精品久久久久久精品电影| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 欧美xxxx性猛交bbbb| 亚洲精品在线美女| 国产精华一区二区三区| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 国产精品亚洲美女久久久| 久久久久久大精品| 看黄色毛片网站| www.999成人在线观看| 欧美国产日韩亚洲一区| 九九久久精品国产亚洲av麻豆| 首页视频小说图片口味搜索| 97碰自拍视频| 亚洲欧美激情综合另类| 此物有八面人人有两片| 免费在线观看亚洲国产| 色哟哟哟哟哟哟| 免费高清视频大片| 天堂网av新在线| www.色视频.com| 国产精品久久电影中文字幕| 少妇丰满av| 免费看日本二区| 国产野战对白在线观看| 首页视频小说图片口味搜索| 国产野战对白在线观看| 有码 亚洲区| 高潮久久久久久久久久久不卡| 免费av毛片视频| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 校园春色视频在线观看| 搡女人真爽免费视频火全软件 | 男女之事视频高清在线观看| 免费看光身美女| 欧美性猛交黑人性爽| 99热精品在线国产| 亚洲成人久久爱视频| 免费av观看视频| 成年女人永久免费观看视频| 国产色婷婷99| 亚洲内射少妇av| 亚洲三级黄色毛片| 国产精品三级大全| av专区在线播放| 长腿黑丝高跟| 国产探花在线观看一区二区| 亚洲国产欧美人成| 免费av观看视频| 亚洲国产欧美人成| 赤兔流量卡办理| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 亚洲美女搞黄在线观看 | 国产乱人伦免费视频| 久久久久久久精品吃奶| 国产精品98久久久久久宅男小说| 午夜老司机福利剧场| 在线a可以看的网站| 天美传媒精品一区二区| 欧美最黄视频在线播放免费| avwww免费| 18美女黄网站色大片免费观看| 直男gayav资源| 日韩人妻高清精品专区| av视频在线观看入口| www.熟女人妻精品国产| 成人av一区二区三区在线看| www.999成人在线观看| 精品人妻熟女av久视频| 美女被艹到高潮喷水动态| 成人av一区二区三区在线看| 亚洲熟妇中文字幕五十中出| 久久久久国内视频| 中文在线观看免费www的网站| 国产三级中文精品| 岛国在线免费视频观看| 又爽又黄a免费视频| 亚洲第一区二区三区不卡| 波多野结衣高清作品| 97超级碰碰碰精品色视频在线观看| 天堂av国产一区二区熟女人妻| 久久这里只有精品中国| 免费看日本二区| 婷婷色综合大香蕉| 别揉我奶头 嗯啊视频| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 丰满的人妻完整版| 久久久久精品国产欧美久久久| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 国产av不卡久久| 99久久精品一区二区三区| 麻豆国产97在线/欧美| 麻豆一二三区av精品| 中文字幕熟女人妻在线| 亚洲最大成人中文| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 亚洲五月婷婷丁香| 在线观看av片永久免费下载| 欧美xxxx性猛交bbbb| 国产av在哪里看| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 别揉我奶头 嗯啊视频| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 男女床上黄色一级片免费看| 国产在线男女| 我要搜黄色片| 亚洲精品一卡2卡三卡4卡5卡| 中亚洲国语对白在线视频| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 身体一侧抽搐| 在线看三级毛片| 亚洲精品日韩av片在线观看| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| 色综合站精品国产| 免费看光身美女| 亚洲精华国产精华精| 亚洲国产高清在线一区二区三| 麻豆国产av国片精品| 大型黄色视频在线免费观看| 一级av片app| 久久亚洲精品不卡| 国产成人a区在线观看| 国产三级黄色录像| 日韩欧美在线乱码| 欧美在线一区亚洲| 国产午夜福利久久久久久| 99精品久久久久人妻精品| 男人舔奶头视频| 久久草成人影院| 国产伦精品一区二区三区视频9| 老鸭窝网址在线观看| 在线天堂最新版资源| 欧美色视频一区免费| 国产乱人视频| 欧美中文日本在线观看视频| www.色视频.com| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 国产免费男女视频| 中亚洲国语对白在线视频| 国产午夜福利久久久久久| 国产麻豆成人av免费视频| 日韩成人在线观看一区二区三区| 亚洲第一电影网av| 国产国拍精品亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 韩国av一区二区三区四区| 岛国在线免费视频观看| 精品国产亚洲在线| 久久久久性生活片| 亚洲美女视频黄频| 国产精品电影一区二区三区| 日本免费a在线| 国产精品1区2区在线观看.| 久久久色成人| 久久人人精品亚洲av| 欧美极品一区二区三区四区| 91麻豆精品激情在线观看国产| 成人欧美大片| 日日干狠狠操夜夜爽| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 精品久久久久久,| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 免费搜索国产男女视频| 两个人的视频大全免费| 亚洲精品456在线播放app | 狠狠狠狠99中文字幕| 在线天堂最新版资源| 国产成人av教育| eeuss影院久久| 久久人妻av系列| 久久久久久大精品| 网址你懂的国产日韩在线| 亚洲最大成人手机在线| 国产野战对白在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟妇熟女久久| 少妇熟女aⅴ在线视频| 久久性视频一级片| 午夜影院日韩av| 尤物成人国产欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 久久久国产成人免费| 国产真实伦视频高清在线观看 | 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 亚洲人成网站高清观看| 一级毛片久久久久久久久女| 国产老妇女一区| 国产中年淑女户外野战色| 精品国产三级普通话版| 成人一区二区视频在线观看| 最近中文字幕高清免费大全6 | 国产三级在线视频| 中文在线观看免费www的网站| 久久久久久大精品| 国产精品98久久久久久宅男小说| 一进一出抽搐动态| 亚洲美女视频黄频| 中文字幕高清在线视频| 啪啪无遮挡十八禁网站| 日韩欧美 国产精品| 亚洲欧美精品综合久久99| 精品乱码久久久久久99久播| 韩国av一区二区三区四区| 成人无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 成人性生交大片免费视频hd| 久久热精品热| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 我的老师免费观看完整版| 久9热在线精品视频| 午夜两性在线视频| 欧美成狂野欧美在线观看| 精品一区二区三区视频在线观看免费| 久久久久九九精品影院| 亚洲中文字幕日韩| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 久久性视频一级片| 两个人的视频大全免费| 男人的好看免费观看在线视频| 亚洲中文字幕一区二区三区有码在线看| 男插女下体视频免费在线播放| 国产精品亚洲一级av第二区| 久久久久国内视频| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 午夜福利在线观看免费完整高清在 | 老熟妇乱子伦视频在线观看| 18美女黄网站色大片免费观看| 熟女电影av网| 国产亚洲av嫩草精品影院| 国内精品美女久久久久久| 简卡轻食公司| 国产av在哪里看| 精品日产1卡2卡| 国产精品久久久久久精品电影| 99热这里只有是精品50| 亚洲国产欧美人成| 欧美日韩国产亚洲二区| 51午夜福利影视在线观看| h日本视频在线播放| 青草久久国产| 国产精品综合久久久久久久免费| 成人av在线播放网站| 欧美又色又爽又黄视频| 国产v大片淫在线免费观看| 99久久精品热视频| 人妻丰满熟妇av一区二区三区| 精品久久国产蜜桃| 韩国av一区二区三区四区| 岛国在线免费视频观看| 婷婷亚洲欧美| 久久久久国内视频| 欧美三级亚洲精品| 国产精品美女特级片免费视频播放器| 国语自产精品视频在线第100页| 亚洲五月天丁香| 免费av不卡在线播放| 听说在线观看完整版免费高清| 国产精品野战在线观看| 亚洲av成人av| 国产成人a区在线观看| 丁香欧美五月| 国产v大片淫在线免费观看| www.色视频.com| 国内精品久久久久精免费| 90打野战视频偷拍视频| 窝窝影院91人妻| 亚洲最大成人av| 欧美日韩国产亚洲二区| 国产高清有码在线观看视频| 国产精品98久久久久久宅男小说| 男插女下体视频免费在线播放| 国内少妇人妻偷人精品xxx网站| 欧美色欧美亚洲另类二区| 国内揄拍国产精品人妻在线| 老女人水多毛片| 90打野战视频偷拍视频| 少妇高潮的动态图| 国产亚洲av嫩草精品影院| 久久久久亚洲av毛片大全| 中文字幕免费在线视频6| 精品午夜福利在线看| 亚洲中文日韩欧美视频| 国产高清有码在线观看视频| 女同久久另类99精品国产91| 中国美女看黄片| 永久网站在线| 午夜激情欧美在线| 日本与韩国留学比较|