• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Detection/Decoding Algorithm of Correlated Sources for the LDPC-Based Relay Systems

    2017-04-09 05:53:24HaiqiangChenHangCaoXiangchengLiYoumingSunHaibinWanTuanfaQin
    China Communications 2017年9期
    關鍵詞:泥塊幫部離層

    Haiqiang Chen, Hang Cao, Xiangcheng Li, Youming Sun, Haibin Wan, Tuanfa Qin

    The School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

    Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China

    Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing, Guangxi University,Nanning 530004, China

    * The corresponding author, email: tfqin@gxu.edu.cn

    I. INTRODUCTION

    The basic single relay system was first investigated by Van de Meulen in 1971 [1]. Early research work on the relay system mainly focuses on the capacity analysis under some fundamental coding strategies, such as the decode-and-forward strategy and the estimate-and-forward strategy [2-6]. Parallel with these work, coding/decoding designs of how to approach the relay channel capacity have also been extensively studied [7-11]. The decoding schemes therein commonly adopt the iterative turbo-like strategy, such as the partial factor-graph decoupling in [8] and the cooperative constellation decoding in [9], where the transmitted data can be recovered based on two consecutive received signals at the destination between two detection/decoding systems.

    In [12], Daneshgaran et al. invented a de-coding algorithm of correlated sources based on low density parity-check code (LDPC)for a basic communication model with three nodes, where two of which send correlated data blocks to the third destination node. It is shown that, the destination node can use the correlation of the data blocks to obtain coding gains.

    Two iterative detection/decoding algorithms, the traditional turbo-like algorithm and the presented algorithm of correlated sources are investigated and compared in this paper.

    Simulation results show that the presented algorithm performs slightly better than the traditional turbo-like algorithm. Besides, the presented algorithm requires fewer computing operations per iteration and has faster decoding convergence rate. Therefore, the presented algorithm of correlated sources provides a candidate for decoding the LDPC-based relay systems.

    II. PRELIMINARIES

    2.1 Relay structure

    Fig. 1 (a) Relay system (b) Distance-oriented relay model

    A single relay channel can be simply described in figure 1(a) with three nodes: the source (S), the relay (R) and the destination(D) nodes. The authors in [11] presented a corresponding physical model, as shown in figure 1(b). In this physical description, the R-node is positioned in the same line with the S-node and the D-node. Besides, the physical communication distance of the S-D link is normalized to 1. Consequently, the distance of S-R link isand the distance of R-D link isSimilar to the large-scale path loss model in [8], the channel coefficients of the three links are defined asandwhere the parametersandrepresent the channel gains of the S-D, the S-R and the R-D links, respectively. The parameter α is the pathloss-exponent, whose value is typically chosen from 2 to 5, depending on different channel conditions [13].

    2.2 System model

    Transmitting: 1)S-node:Letbe the k-bit information block at time t. The block utis encoded into a codeword wtwith length n. For simplicity, we only consider the BPSK modulation here. The modulated signal vector with respect to wtcan be denoted aswhereThen the S-node sends the modulated signalto the S-R and S-D channels. 2) R-node:During time t, the R-node re-encodes the hard-decision resultof the previous information blockresulting a codewordSimilarly, the modulated vector ofwhereThen the R-node transmits the modulated signalto the D-node.

    Receiving: 1)R-node: the R-node receives the noised version offrom the S-node at time t, as follows

    巷道幫部噴漿層壁后0.3 m范圍內圍巖非常破碎,成塊狀分布;幫部在0.3~1.2 m范圍內圍巖以裂隙帶向節(jié)理帶轉換形式分布,裂隙密度逐步減??;頂板1.5 m以上區(qū)域圍巖完整性相對較好,未見明顯裂隙、離層,但孔壁存在泥塊剝離現(xiàn)象。

    Detection/Decoding: 1)R-node: at time t, the R-node performs the decoder and gets the hard-decision result(an estimate of ut). Thenis re-encoded and will be sent to the D-node at the next time2) D-node:two detectors/decoders are employed at the D-node. When both of the signalsandhave been received, the presented decoding algorithm of correlated sources can be applied to recover the transmitted block ut.

    Note:the power allocation strategy will affect the decoding performance. Letdenote the power allocation parameter, whereis the total transmit power. Similarly to [9], the parameteris determined by simulations in this paper.

    III. THE ITERATIVE JOINT DECODING ALGORITHMS FOR THE RELAY SYSTEMS

    3.1 The iterative decoding algorithm using turbo-equalization principle

    The turbo-like decoding system at the D-node includes two blocks: 1) the detector’s soft output computing (figure 2(a)); 2) the iterative turbo-like decoding (figure 2(b)).

    Detector 1 and Detector 2 in figure 2(b)are designed to computeandas follows:

    Fig. 2 (a) Soft output of the detector (side information) (b) Turbo-like decoding unit

    and

    The turbo-like detection/decoding algo-rithm can be described in Algorithm 1.

    Algorithm 1: The turbo-like iterative decoding algorithm for LDPC-based relay systems:

    3.2 The iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems

    3.2.1 Motivation

    Considering a basic communication model with three nodes A, B and C, where A and B have correlated data blocks to be transmitted to C. The empirical cross-correlation between two binary correlated data blocks is defined as follows

    The task of the D-node is to recover the data utbased on two consecutive received signals.Evidently, bothandcontain the information about ut. Based on this fact, the system model can be transformed equivalently into a coded correlated source (see figure 3).At time t, utis encoded into wtand then sent to the S-D link. The corresponding received signal at the D-node isAt time t + 1,an estimateof utis encoded intoat the R-node. A binary vectoris intro-

    where α is the number of places in which the two data blocks take the same value and k is the data block size [12]. The authors in[12] proposed an LDPC-based iterative decoding algorithm of correlated messages for this model. It is shown that, node C can use the correlation between two received blocks to achieve coding gains, especially when the blocks are highly correlated (ρ is nearly 1 or 0). Motivated by this work, we will show in the next subsection that the relay systems can be re-formulated and then decoded as correlated sources.

    3.2.2 Re-formulating the LDPC-coded relay systems as correlated sources duced to indicate the (possibly existing) difference between utand. The codewordis transmitted over the R-D channel. Taking the signal from S-D link at timeas interferences, the superposition received signal can be formulated as

    Note that, the data blocks utandare highly correlated, especially when the channel condition between the S-node and the R-node is good enough. Hence, the two consecutive received blocks at the D-node can be treated as correlated encoded blocks. We then present the iterative decoding algorithm of correlated sources to recover the transmitted data for LDPC-based relay systems.

    Remarks:the cross-correlation coefficientmay vary from block to block in this paper.This is different from the work in [12], where the performance is evaluated under a fixed value.

    3.2.3 Algorithm description

    Figure 4 shows the iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems. Detector 1 is to computeaccording to (5), from which we can obtainone of the soft inputs to Decoder 1. Similarly, Detector 2 is to computeaccording to (6) to obtainone of the soft inputs to Decoder 2.

    The extrinsic information passed to Decoder 1 and Decoder 2 can be evaluated by [12]

    The iterative decoding algorithm of correlated sources for the relay systems can be described in Algorithm 2.

    Algorithm 2: The iterative detection/decoding algorithm of correlated sources for LDPC-based relay systems:

    IV. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

    4.1 Complexity analysis

    Fig. 4 The iterative joint decoding scheme of correlated sources

    Table I The complexities of the two algorithms

    Fig. 5 The BER performances of the (255,175) EG-LDPC code under different power ratios

    Fig. 6 The BLER performances of the (255,175) EG-LDPC code under different power ratios

    Fig. 7 Convergence rates of the (255,175) EG-LDPC code under different power ratios

    Since the turbo-like decoding algorithm and the correlated source decoding algorithm both employ the same detectors and decoders, the complexity differences between these two algorithms are mainly caused by the computation of the soft messages involved. For the turbo-like decoding algorithm, we need 4n real multiplications (RM) to compute the soft inputs for the detectors and n real additions(RA) to compute the soft inputs for Decoder 1. Besides, 2n real substractions (RS) are required to compute the extrinsic information.For the correlated source decoding algorithm,we need 2k real additions to compute the soft inputs for the decoders and 2k real comparisons to compute the extrinsic information. To compute the sequencewe need k XOR operations (modulo-2 additions). The complexities of the two algorithms are shown in table 1. It can be seen that, compared to the turbo-like algorithm, the correlated source algorithm has less computational complexity and can be more convenient for hardware implements.

    4.2 Simulation results

    In our simulations, the sum-product algorithm(SPA) is employed for the decoders. The simulation parameters are listed as follows: 1) The distance of the S-node and the R-node d is set to be 0.25; 2) The pathloss-exponent α is set to be 2; 3) The maximum local iteration number is set to be 30; 4) The global iteration number between the two decoders is set to be 3; 5) The max block number is set to be 1000000. We give two examples here to compare the performances of the turbo-like decoding algorithm and the presented correlated source decoding algorithm.

    Example 1:Consider the (255, 175) LDPC code designed by the Euclidean geometry(EG) method [16]. The bit error rate (BER)and the block error rate (BLER) performances of the two decoding strategies for this code are shown in figure 5 and figure 6, respectively.It can be seen that, with a (sub)optimal power ratiothe performance gaps between the two decoding algorithms can be negligible in the low SNR region; while the correlated sources decoding algorithm performs slightly better (about 0.1dB performance gains around BLER=10-4) than turbo-like algorithm, especially for the high SNR. Figure 7 indicates the convergence rates. The total iteration is counted when wtis successfully decoded (no matter decoded by Decoder 1 or Decoder 2), which is calculated by the sum of the local iteration performed by Decoder 1 and Decoder 2, respectively.

    It is shown that, compared to the turbo-like decoding algorithm, the presented iterative correlated sources decoding algorithm can achieve much faster decoding convergence speed. For example, at, it takes only about 32 iterations for the presented algorithm, while the turbo-like algorithm requires about 63 iterations.

    Example 2:Consider the (961,721) quasi-cyclic (QC) LDPC code [17] designed with finite fields. The BER performance and the convergence rate are shown in figure 8 and figure 9, respectively. As expected, we have a similar observation: the two decoding algorithms have equivalent performances. Compared to the turbo-like decoding algorithm, the presented iterative correlated sources decoding algorithm can achieve about two times faster decoding convergence speed.

    V. CONCLUSION

    Two iterative detection/decoding algorithms,the traditional turbo-like algorithm and the presented algorithm of correlated sources are investigated and compared in this paper. The first algorithm is designed as the iterative turbo-like detection/decoding algorithm, whereby the information from the previous block is taken as side information. Then we re-formulate the relay system as correlated sources and present the second decoding algorithm. For the presented algorithm, the previous block is treated as a highly correlated codeword instead of side information to the current block and the extrinsic information is computed by the LLR associated with the XOR vector derived from two correlated hard decision results. It has been shown by simulations that the presented algorithm has slightly better performance than the traditional turbo-like algorithm. Besides, the presented algorithm requires fewer computing operations per iteration and has faster decoding convergence rate.Therefore, the presented algorithm provides a candidate for decoding the LDPC-based relay systems, which may find applications in the extremely energy-constrained system.

    Fig. 8 The BER performances of the (961,721) QC-LDPC code under different power ratios

    Fig. 9 Convergence rates of the (961,721) QC-LDPC code under different power ratios

    ACKNOWLEDGEMENTS

    This work was supported by NSF of China (No. 61362010, 61661005) and NSF of Guangxi (No. 2015GXNSFAA139290,2014GXNSFBA118276, 2012GXNSFAA053217). Part of this work was done when H. Chen was working on his doctoral degree. The authors would like to thank Prof.X. Ma from Sun Yat-sen University for his helpful comments.

    [1] E. C. van de Meulen, “Three-terminal communication channels”, Advanced Applied Probability,vol. 3, pp. 120-154, 1971.

    [2] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel”, IEEE Transactions on Information Theory, vol. IT-25, pp. 572-582, Sep.1979.

    [3] F. M. Willems, “Information theoretical results for the discrete memoryless multiple access channel”, Ph.D. dissertation, Katholieke Univ.Leuven, Leuven, Belgium, Oct. 1982.

    [4] C. M. Zeng, F. Kuhlmann, and A. Buzo, “Achievability proof of some multiuser channel coding theorems using backward decoding”, IEEE Transactions on Information Theory, vol. 35, no.6, pp. 1160–1165, Nov. 1989.

    [5] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks”, IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3037-3063, Sep. 2005.

    [6] Z. Zhang and T. M. Duman, “Capacity-approaching turbo coding and iterative decoding for relay channels”, IEEE Transactions on Communications, vol. 53,no. 11, pp. 1895-1905, Nov.2005.

    [7] M. A. Khojastepour, N. Ahmed, and B. Aazhang,“Code design for the relay channel and factor graph decoding”, in Proceedings of the 38th Asilomar Conference on. Signals, Systems &Computers, pp. 2000-2004, Nov. 2004.

    [8] J. Hu and T. M. Duman, “Low density parity check codes over wireless relay channels”, IEEE Transactions on Wireless Communications, vol.6, no. 9, pp. 3384-3394, Sep. 2007.

    [9] C. Li, G. Yue, M. A. Khojastepour, X. Wang, and M. Madihian, “LDPC coded cooperative relay systems: performance analysis and code design”, IEEE Transactions on Communications, vol.56, no. 3, pp. 485-496, Mar. 2008.

    [10] H. Chen, D. Yu, and X. Ma, “Cooperative signal constellation for LDPC-coded relay system”,IEEE Communications Letters, vol. 15, no. 7, Jul.2011.

    [11] X. Huang, H. Chen and X. Ma, “Achievable rates and forward-backward decoding algorithms for the Gaussian relay channels under the onecode constraint”, in Proceedings of the 2014 IEEE International Conference on Communications(ICC), Sydney, Australia, pp. 2135-2140, Jun.2014.

    [12] F. Daneshgaran, M. Laddomada, and M. Mondin, “LDPC-based channel coding of correlated sources with iterative joint decoding”, IEEE Transactions on Communications, vol. 54, no. 4,pp. 577-582, Apr. 2006.

    [13] T. S. Rappaport, “Wireless communications,principles and practice, seconded”, Upper Saddle River, NJ: Prentice Hall PTR, 1996.

    [14] A. de Baynast and D. Declercq, “Gallager codes for multiple user applications”, in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland, pp.335, Jun. 2002.

    [15] X. Ma and P. Li, “Coded modulation using superimposed binary codes”, IEEE Transactions on Information Theory, vol.50, no. 12, pp. 3331-3343, Dec. 2004.

    [16] Y. Kou, S. Lin and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries:A discovery and new results”, IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2711-2736, Nov. 2001.

    [17] L. Lan, L. Zeng, Y. Tai, L. Chen, et al., “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach”,IEEE Transactions on Information Theory, vol. 53,no. 7, pp. 2429-2458, Jul. 2007.

    猜你喜歡
    泥塊幫部離層
    不同鹽度固結黏性泥沙的沖刷試驗研究
    強礦壓顯現(xiàn)巷道錨桿支護方案特征研究
    馬蘭礦回采巷道強幫護頂支護技術應用
    WBY-10型頂板離層儀的優(yōu)化設計
    煤(2022年3期)2022-03-17 01:40:04
    煤巷掘進工作面幫部前探梁臨時支護結構的設計探析
    山西化工(2022年1期)2022-03-08 08:27:28
    花泥塊扦插三角梅
    花卉(2021年7期)2021-12-07 00:36:11
    對《建設用砂》中泥塊含量的意見
    商品混凝土(2020年5期)2020-11-30 05:45:46
    動力災害礦井巷道頂板離層特征研究*
    車集煤礦2611工作面煤巷片幫機理分析與控制技術研究
    濟寧三號煤礦采場頂板離層水對生產的影響
    久久国产精品男人的天堂亚洲| 伊人久久大香线蕉亚洲五| 动漫黄色视频在线观看| 自线自在国产av| 亚洲第一av免费看| 精品人妻熟女毛片av久久网站| 十八禁网站免费在线| 国产精品自产拍在线观看55亚洲 | av线在线观看网站| 久久亚洲精品不卡| 黄色视频不卡| 狠狠狠狠99中文字幕| 交换朋友夫妻互换小说| 香蕉国产在线看| 精品免费久久久久久久清纯 | 久久人人爽av亚洲精品天堂| 又大又爽又粗| 国产一区二区三区在线臀色熟女 | 超色免费av| 俄罗斯特黄特色一大片| 国产精品麻豆人妻色哟哟久久| 九色亚洲精品在线播放| 一区二区三区乱码不卡18| 成人18禁高潮啪啪吃奶动态图| 成人国语在线视频| 波多野结衣一区麻豆| 精品免费久久久久久久清纯 | 国产精品国产av在线观看| 日本91视频免费播放| 99久久人妻综合| 少妇粗大呻吟视频| 性色av一级| 不卡av一区二区三区| 欧美成人午夜精品| 午夜影院在线不卡| 五月开心婷婷网| 久久毛片免费看一区二区三区| 大香蕉久久网| 制服诱惑二区| 丁香六月欧美| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| 欧美日韩福利视频一区二区| 在线观看免费高清a一片| 美女视频免费永久观看网站| 999精品在线视频| 亚洲五月色婷婷综合| 亚洲中文字幕日韩| 黄片小视频在线播放| 中国美女看黄片| 国产片内射在线| 欧美精品亚洲一区二区| 亚洲成人国产一区在线观看| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 国产精品二区激情视频| tocl精华| 热re99久久国产66热| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 最黄视频免费看| 正在播放国产对白刺激| 在线观看www视频免费| 日本91视频免费播放| 男女床上黄色一级片免费看| 美女大奶头黄色视频| 最新的欧美精品一区二区| 日本vs欧美在线观看视频| 亚洲欧洲精品一区二区精品久久久| 精品高清国产在线一区| 超碰97精品在线观看| 男女午夜视频在线观看| 国产欧美亚洲国产| 亚洲七黄色美女视频| 久久久久国内视频| 91成人精品电影| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 久久精品成人免费网站| 色综合欧美亚洲国产小说| xxxhd国产人妻xxx| 国产日韩欧美视频二区| 爱豆传媒免费全集在线观看| 少妇人妻久久综合中文| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 12—13女人毛片做爰片一| 欧美黑人精品巨大| 亚洲七黄色美女视频| 日本一区二区免费在线视频| 法律面前人人平等表现在哪些方面 | 他把我摸到了高潮在线观看 | 男女无遮挡免费网站观看| 亚洲久久久国产精品| 欧美激情高清一区二区三区| 一区二区av电影网| 五月天丁香电影| 日韩精品免费视频一区二区三区| tocl精华| 国产精品自产拍在线观看55亚洲 | 欧美国产精品va在线观看不卡| 国产视频一区二区在线看| 亚洲成人免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 一边摸一边做爽爽视频免费| 亚洲第一青青草原| 亚洲欧美成人综合另类久久久| 99久久综合免费| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| av有码第一页| 91麻豆av在线| 999精品在线视频| 国产亚洲欧美在线一区二区| 亚洲国产av影院在线观看| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| www.自偷自拍.com| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影在线观看一区二区三区| 国产精品一二三区在线看| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 亚洲成人手机| 久久毛片免费看一区二区三区| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 99国产极品粉嫩在线观看| 欧美日韩亚洲综合一区二区三区_| 大码成人一级视频| 悠悠久久av| 国产av精品麻豆| 91麻豆av在线| 亚洲成人免费电影在线观看| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆| 曰老女人黄片| 久久亚洲国产成人精品v| 麻豆国产av国片精品| 热re99久久国产66热| 国产精品久久久av美女十八| 汤姆久久久久久久影院中文字幕| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 一级毛片精品| 国产亚洲av片在线观看秒播厂| 欧美xxⅹ黑人| 窝窝影院91人妻| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲av国产电影网| 亚洲av成人一区二区三| 热99久久久久精品小说推荐| 久久这里只有精品19| 女性被躁到高潮视频| 亚洲第一青青草原| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 午夜免费观看性视频| 青草久久国产| 超碰成人久久| 十八禁网站网址无遮挡| 日本vs欧美在线观看视频| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 亚洲男人天堂网一区| 热99re8久久精品国产| 国产老妇伦熟女老妇高清| 国产91精品成人一区二区三区 | 免费一级毛片在线播放高清视频 | 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频 | 如日韩欧美国产精品一区二区三区| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| 黄片大片在线免费观看| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 欧美一级毛片孕妇| 激情视频va一区二区三区| 最近中文字幕2019免费版| 国产成人啪精品午夜网站| 国产精品久久久久久精品古装| 国产一区二区三区在线臀色熟女 | 91精品三级在线观看| 少妇人妻久久综合中文| 蜜桃国产av成人99| 欧美精品一区二区大全| 精品少妇内射三级| 日本精品一区二区三区蜜桃| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| av超薄肉色丝袜交足视频| 丁香六月欧美| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 一二三四在线观看免费中文在| 美女高潮到喷水免费观看| 大片电影免费在线观看免费| 天天躁夜夜躁狠狠躁躁| 麻豆av在线久日| 窝窝影院91人妻| 精品视频人人做人人爽| 99久久国产精品久久久| 国产精品国产三级国产专区5o| 国产成人精品在线电影| 两个人看的免费小视频| 青春草视频在线免费观看| 后天国语完整版免费观看| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| www.精华液| 成年av动漫网址| 建设人人有责人人尽责人人享有的| 亚洲精品国产精品久久久不卡| 91麻豆av在线| 极品少妇高潮喷水抽搐| 国产欧美日韩一区二区精品| 久久人人爽人人片av| 亚洲av电影在线进入| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 国产黄频视频在线观看| 亚洲国产精品成人久久小说| 成在线人永久免费视频| 免费在线观看日本一区| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 亚洲三区欧美一区| 免费观看人在逋| 久久久久久久精品精品| 国产淫语在线视频| 亚洲精品乱久久久久久| 亚洲专区中文字幕在线| 制服诱惑二区| 日韩一区二区三区影片| 亚洲七黄色美女视频| 两个人看的免费小视频| 日韩电影二区| 国产区一区二久久| 午夜精品国产一区二区电影| 超色免费av| 热99国产精品久久久久久7| 十八禁网站网址无遮挡| 久久国产精品人妻蜜桃| h视频一区二区三区| 人人妻人人澡人人看| 国产精品免费视频内射| 免费观看人在逋| 精品一区在线观看国产| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 高清欧美精品videossex| 日韩三级视频一区二区三区| 欧美大码av| tube8黄色片| 在线观看免费午夜福利视频| 天堂俺去俺来也www色官网| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| 在线观看免费视频网站a站| 18禁黄网站禁片午夜丰满| 一级a爱视频在线免费观看| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 亚洲精品一二三| 国产男人的电影天堂91| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| 亚洲国产精品999| 婷婷丁香在线五月| 午夜免费成人在线视频| tocl精华| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 亚洲av片天天在线观看| 久久久水蜜桃国产精品网| 欧美国产精品一级二级三级| 在线观看免费视频网站a站| 最新在线观看一区二区三区| 欧美xxⅹ黑人| 无限看片的www在线观看| 国产精品.久久久| 欧美大码av| 一区福利在线观看| 777米奇影视久久| 国产深夜福利视频在线观看| 视频区图区小说| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 国产老妇伦熟女老妇高清| 精品国产一区二区三区久久久樱花| 国产av国产精品国产| 亚洲,欧美精品.| 法律面前人人平等表现在哪些方面 | 纵有疾风起免费观看全集完整版| 国产成+人综合+亚洲专区| 亚洲精品国产精品久久久不卡| 搡老乐熟女国产| 国产真人三级小视频在线观看| 久久这里只有精品19| 久久久久久人人人人人| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 亚洲黑人精品在线| 女性被躁到高潮视频| 久久中文字幕一级| 国产成+人综合+亚洲专区| 午夜福利免费观看在线| 久久99热这里只频精品6学生| 日韩欧美一区二区三区在线观看 | 精品国产乱码久久久久久男人| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 高清在线国产一区| 蜜桃在线观看..| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 亚洲成国产人片在线观看| 欧美+亚洲+日韩+国产| tocl精华| 成人av一区二区三区在线看 | videos熟女内射| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三区在线| 男人操女人黄网站| 久久久久久久大尺度免费视频| 一区二区三区精品91| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 国产老妇伦熟女老妇高清| 男女之事视频高清在线观看| 老司机影院成人| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 99国产精品一区二区蜜桃av | 免费一级毛片在线播放高清视频 | a在线观看视频网站| 精品福利观看| a级毛片在线看网站| 丝袜脚勾引网站| 日本a在线网址| 99国产精品99久久久久| 男女床上黄色一级片免费看| 搡老乐熟女国产| kizo精华| 亚洲av电影在线观看一区二区三区| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 久久久精品免费免费高清| 一级片'在线观看视频| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| av天堂在线播放| 色婷婷av一区二区三区视频| 欧美av亚洲av综合av国产av| av网站在线播放免费| 国产成人系列免费观看| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 国产区一区二久久| 国产真人三级小视频在线观看| 各种免费的搞黄视频| 国产野战对白在线观看| 国产成人欧美在线观看 | 亚洲欧美激情在线| 久久久久国内视频| 一区二区三区激情视频| 日本av免费视频播放| 国产亚洲av高清不卡| 亚洲激情五月婷婷啪啪| 一边摸一边做爽爽视频免费| tocl精华| 日韩制服丝袜自拍偷拍| 成人国语在线视频| 成年动漫av网址| 人妻久久中文字幕网| av欧美777| av一本久久久久| 欧美变态另类bdsm刘玥| 中国国产av一级| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 一个人免费在线观看的高清视频 | 中文字幕人妻丝袜一区二区| 免费一级毛片在线播放高清视频 | 国产欧美日韩综合在线一区二区| 精品人妻1区二区| 十分钟在线观看高清视频www| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 欧美黑人精品巨大| 久久综合国产亚洲精品| 19禁男女啪啪无遮挡网站| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 欧美性长视频在线观看| 美女大奶头黄色视频| 亚洲精品成人av观看孕妇| 十八禁人妻一区二区| 韩国高清视频一区二区三区| 久久久国产成人免费| 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 一个人免费看片子| 夫妻午夜视频| 一本一本久久a久久精品综合妖精| 91老司机精品| 国产成人精品在线电影| www日本在线高清视频| cao死你这个sao货| 麻豆乱淫一区二区| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 成年女人毛片免费观看观看9 | 免费日韩欧美在线观看| 亚洲精华国产精华精| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区| 久久久久久久国产电影| 少妇的丰满在线观看| 精品一区二区三卡| 成人影院久久| 国产亚洲欧美在线一区二区| 老司机深夜福利视频在线观看 | 亚洲国产欧美日韩在线播放| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区在线观看国产| 啦啦啦 在线观看视频| 在线观看舔阴道视频| 满18在线观看网站| 国产亚洲一区二区精品| 国产极品粉嫩免费观看在线| 纵有疾风起免费观看全集完整版| 老司机在亚洲福利影院| 国产精品偷伦视频观看了| 免费在线观看影片大全网站| 女人精品久久久久毛片| 在线观看免费视频网站a站| 丰满迷人的少妇在线观看| 美女高潮到喷水免费观看| 国产在视频线精品| 麻豆av在线久日| 亚洲国产欧美日韩在线播放| 日韩大片免费观看网站| 9色porny在线观看| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 视频在线观看一区二区三区| 悠悠久久av| 国产97色在线日韩免费| 另类亚洲欧美激情| 91精品国产国语对白视频| 国产有黄有色有爽视频| 国产精品一区二区精品视频观看| 69精品国产乱码久久久| tube8黄色片| 丰满人妻熟妇乱又伦精品不卡| 十八禁网站网址无遮挡| 在线观看舔阴道视频| 久久99一区二区三区| 日韩一区二区三区影片| 人人妻人人澡人人看| 国产xxxxx性猛交| 午夜成年电影在线免费观看| 啦啦啦 在线观看视频| 一区二区三区乱码不卡18| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 香蕉丝袜av| 丰满少妇做爰视频| 一级,二级,三级黄色视频| 久热爱精品视频在线9| 一级片免费观看大全| 九色亚洲精品在线播放| 国产极品粉嫩免费观看在线| 亚洲国产看品久久| 久久青草综合色| 最近中文字幕2019免费版| 国产精品一区二区精品视频观看| 日韩有码中文字幕| 巨乳人妻的诱惑在线观看| 成人影院久久| 黑丝袜美女国产一区| 男人爽女人下面视频在线观看| 制服诱惑二区| 少妇精品久久久久久久| 久久久久久久久免费视频了| 久久中文字幕一级| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 日韩欧美一区二区三区在线观看 | 久9热在线精品视频| 亚洲国产毛片av蜜桃av| 91大片在线观看| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说| 男人操女人黄网站| 巨乳人妻的诱惑在线观看| 黑人欧美特级aaaaaa片| 久久人妻福利社区极品人妻图片| 97精品久久久久久久久久精品| 18禁黄网站禁片午夜丰满| 国产精品香港三级国产av潘金莲| 国产99久久九九免费精品| 狠狠婷婷综合久久久久久88av| 又紧又爽又黄一区二区| 极品人妻少妇av视频| 热99久久久久精品小说推荐| 亚洲av片天天在线观看| 最近最新免费中文字幕在线| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 亚洲视频免费观看视频| 丝袜美足系列| 国产精品 国内视频| 男人舔女人的私密视频| 黑人猛操日本美女一级片| 久久精品人人爽人人爽视色| 久热爱精品视频在线9| 国产麻豆69| 午夜免费观看性视频| 少妇猛男粗大的猛烈进出视频| 男女免费视频国产| 在线亚洲精品国产二区图片欧美| 中文精品一卡2卡3卡4更新| 捣出白浆h1v1| 欧美精品啪啪一区二区三区 | 少妇 在线观看| 国产一区二区在线观看av| 欧美午夜高清在线| 午夜日韩欧美国产| 亚洲激情五月婷婷啪啪| 新久久久久国产一级毛片| 丰满迷人的少妇在线观看| 狠狠婷婷综合久久久久久88av| 超碰97精品在线观看| 国产男人的电影天堂91| 亚洲精品粉嫩美女一区| 一边摸一边抽搐一进一出视频| 99热国产这里只有精品6| 日韩欧美一区视频在线观看| 亚洲av成人一区二区三| 黄片大片在线免费观看| 午夜影院在线不卡| 一级毛片精品| 一级,二级,三级黄色视频| 日本五十路高清| 国产高清国产精品国产三级| 精品国产乱码久久久久久男人| 超碰97精品在线观看| 老司机福利观看| 国产精品.久久久| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 黄片小视频在线播放| 99国产精品一区二区三区| 午夜精品久久久久久毛片777| 国产又爽黄色视频| 91精品国产国语对白视频| 亚洲av国产av综合av卡| 丝袜喷水一区| 国精品久久久久久国模美| 国产精品久久久久久人妻精品电影 | 男女免费视频国产| 狠狠精品人妻久久久久久综合| av一本久久久久| 日韩欧美免费精品| 超碰97精品在线观看| 久久久国产一区二区| 日韩,欧美,国产一区二区三区| 国产精品99久久99久久久不卡| 日本撒尿小便嘘嘘汇集6| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一出视频| 三级毛片av免费| 欧美激情 高清一区二区三区| 欧美国产精品va在线观看不卡| 国产极品粉嫩免费观看在线| 国产一卡二卡三卡精品| 热99国产精品久久久久久7| 18禁黄网站禁片午夜丰满| 18禁国产床啪视频网站| av不卡在线播放| 99精品久久久久人妻精品| 国产精品国产av在线观看| 亚洲自偷自拍图片 自拍| 欧美日韩福利视频一区二区| 国产不卡av网站在线观看| 热99国产精品久久久久久7| 国产成人av教育| 亚洲av美国av| 欧美日韩av久久| 菩萨蛮人人尽说江南好唐韦庄| 国产精品二区激情视频| 国产精品99久久99久久久不卡|