• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Detection/Decoding Algorithm of Correlated Sources for the LDPC-Based Relay Systems

    2017-04-09 05:53:24HaiqiangChenHangCaoXiangchengLiYoumingSunHaibinWanTuanfaQin
    China Communications 2017年9期
    關鍵詞:泥塊幫部離層

    Haiqiang Chen, Hang Cao, Xiangcheng Li, Youming Sun, Haibin Wan, Tuanfa Qin

    The School of Computer and Electronic Information, Guangxi University, Nanning 530004, China

    Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China

    Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing, Guangxi University,Nanning 530004, China

    * The corresponding author, email: tfqin@gxu.edu.cn

    I. INTRODUCTION

    The basic single relay system was first investigated by Van de Meulen in 1971 [1]. Early research work on the relay system mainly focuses on the capacity analysis under some fundamental coding strategies, such as the decode-and-forward strategy and the estimate-and-forward strategy [2-6]. Parallel with these work, coding/decoding designs of how to approach the relay channel capacity have also been extensively studied [7-11]. The decoding schemes therein commonly adopt the iterative turbo-like strategy, such as the partial factor-graph decoupling in [8] and the cooperative constellation decoding in [9], where the transmitted data can be recovered based on two consecutive received signals at the destination between two detection/decoding systems.

    In [12], Daneshgaran et al. invented a de-coding algorithm of correlated sources based on low density parity-check code (LDPC)for a basic communication model with three nodes, where two of which send correlated data blocks to the third destination node. It is shown that, the destination node can use the correlation of the data blocks to obtain coding gains.

    Two iterative detection/decoding algorithms, the traditional turbo-like algorithm and the presented algorithm of correlated sources are investigated and compared in this paper.

    Simulation results show that the presented algorithm performs slightly better than the traditional turbo-like algorithm. Besides, the presented algorithm requires fewer computing operations per iteration and has faster decoding convergence rate. Therefore, the presented algorithm of correlated sources provides a candidate for decoding the LDPC-based relay systems.

    II. PRELIMINARIES

    2.1 Relay structure

    Fig. 1 (a) Relay system (b) Distance-oriented relay model

    A single relay channel can be simply described in figure 1(a) with three nodes: the source (S), the relay (R) and the destination(D) nodes. The authors in [11] presented a corresponding physical model, as shown in figure 1(b). In this physical description, the R-node is positioned in the same line with the S-node and the D-node. Besides, the physical communication distance of the S-D link is normalized to 1. Consequently, the distance of S-R link isand the distance of R-D link isSimilar to the large-scale path loss model in [8], the channel coefficients of the three links are defined asandwhere the parametersandrepresent the channel gains of the S-D, the S-R and the R-D links, respectively. The parameter α is the pathloss-exponent, whose value is typically chosen from 2 to 5, depending on different channel conditions [13].

    2.2 System model

    Transmitting: 1)S-node:Letbe the k-bit information block at time t. The block utis encoded into a codeword wtwith length n. For simplicity, we only consider the BPSK modulation here. The modulated signal vector with respect to wtcan be denoted aswhereThen the S-node sends the modulated signalto the S-R and S-D channels. 2) R-node:During time t, the R-node re-encodes the hard-decision resultof the previous information blockresulting a codewordSimilarly, the modulated vector ofwhereThen the R-node transmits the modulated signalto the D-node.

    Receiving: 1)R-node: the R-node receives the noised version offrom the S-node at time t, as follows

    巷道幫部噴漿層壁后0.3 m范圍內圍巖非常破碎,成塊狀分布;幫部在0.3~1.2 m范圍內圍巖以裂隙帶向節(jié)理帶轉換形式分布,裂隙密度逐步減??;頂板1.5 m以上區(qū)域圍巖完整性相對較好,未見明顯裂隙、離層,但孔壁存在泥塊剝離現(xiàn)象。

    Detection/Decoding: 1)R-node: at time t, the R-node performs the decoder and gets the hard-decision result(an estimate of ut). Thenis re-encoded and will be sent to the D-node at the next time2) D-node:two detectors/decoders are employed at the D-node. When both of the signalsandhave been received, the presented decoding algorithm of correlated sources can be applied to recover the transmitted block ut.

    Note:the power allocation strategy will affect the decoding performance. Letdenote the power allocation parameter, whereis the total transmit power. Similarly to [9], the parameteris determined by simulations in this paper.

    III. THE ITERATIVE JOINT DECODING ALGORITHMS FOR THE RELAY SYSTEMS

    3.1 The iterative decoding algorithm using turbo-equalization principle

    The turbo-like decoding system at the D-node includes two blocks: 1) the detector’s soft output computing (figure 2(a)); 2) the iterative turbo-like decoding (figure 2(b)).

    Detector 1 and Detector 2 in figure 2(b)are designed to computeandas follows:

    Fig. 2 (a) Soft output of the detector (side information) (b) Turbo-like decoding unit

    and

    The turbo-like detection/decoding algo-rithm can be described in Algorithm 1.

    Algorithm 1: The turbo-like iterative decoding algorithm for LDPC-based relay systems:

    3.2 The iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems

    3.2.1 Motivation

    Considering a basic communication model with three nodes A, B and C, where A and B have correlated data blocks to be transmitted to C. The empirical cross-correlation between two binary correlated data blocks is defined as follows

    The task of the D-node is to recover the data utbased on two consecutive received signals.Evidently, bothandcontain the information about ut. Based on this fact, the system model can be transformed equivalently into a coded correlated source (see figure 3).At time t, utis encoded into wtand then sent to the S-D link. The corresponding received signal at the D-node isAt time t + 1,an estimateof utis encoded intoat the R-node. A binary vectoris intro-

    where α is the number of places in which the two data blocks take the same value and k is the data block size [12]. The authors in[12] proposed an LDPC-based iterative decoding algorithm of correlated messages for this model. It is shown that, node C can use the correlation between two received blocks to achieve coding gains, especially when the blocks are highly correlated (ρ is nearly 1 or 0). Motivated by this work, we will show in the next subsection that the relay systems can be re-formulated and then decoded as correlated sources.

    3.2.2 Re-formulating the LDPC-coded relay systems as correlated sources duced to indicate the (possibly existing) difference between utand. The codewordis transmitted over the R-D channel. Taking the signal from S-D link at timeas interferences, the superposition received signal can be formulated as

    Note that, the data blocks utandare highly correlated, especially when the channel condition between the S-node and the R-node is good enough. Hence, the two consecutive received blocks at the D-node can be treated as correlated encoded blocks. We then present the iterative decoding algorithm of correlated sources to recover the transmitted data for LDPC-based relay systems.

    Remarks:the cross-correlation coefficientmay vary from block to block in this paper.This is different from the work in [12], where the performance is evaluated under a fixed value.

    3.2.3 Algorithm description

    Figure 4 shows the iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems. Detector 1 is to computeaccording to (5), from which we can obtainone of the soft inputs to Decoder 1. Similarly, Detector 2 is to computeaccording to (6) to obtainone of the soft inputs to Decoder 2.

    The extrinsic information passed to Decoder 1 and Decoder 2 can be evaluated by [12]

    The iterative decoding algorithm of correlated sources for the relay systems can be described in Algorithm 2.

    Algorithm 2: The iterative detection/decoding algorithm of correlated sources for LDPC-based relay systems:

    IV. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

    4.1 Complexity analysis

    Fig. 4 The iterative joint decoding scheme of correlated sources

    Table I The complexities of the two algorithms

    Fig. 5 The BER performances of the (255,175) EG-LDPC code under different power ratios

    Fig. 6 The BLER performances of the (255,175) EG-LDPC code under different power ratios

    Fig. 7 Convergence rates of the (255,175) EG-LDPC code under different power ratios

    Since the turbo-like decoding algorithm and the correlated source decoding algorithm both employ the same detectors and decoders, the complexity differences between these two algorithms are mainly caused by the computation of the soft messages involved. For the turbo-like decoding algorithm, we need 4n real multiplications (RM) to compute the soft inputs for the detectors and n real additions(RA) to compute the soft inputs for Decoder 1. Besides, 2n real substractions (RS) are required to compute the extrinsic information.For the correlated source decoding algorithm,we need 2k real additions to compute the soft inputs for the decoders and 2k real comparisons to compute the extrinsic information. To compute the sequencewe need k XOR operations (modulo-2 additions). The complexities of the two algorithms are shown in table 1. It can be seen that, compared to the turbo-like algorithm, the correlated source algorithm has less computational complexity and can be more convenient for hardware implements.

    4.2 Simulation results

    In our simulations, the sum-product algorithm(SPA) is employed for the decoders. The simulation parameters are listed as follows: 1) The distance of the S-node and the R-node d is set to be 0.25; 2) The pathloss-exponent α is set to be 2; 3) The maximum local iteration number is set to be 30; 4) The global iteration number between the two decoders is set to be 3; 5) The max block number is set to be 1000000. We give two examples here to compare the performances of the turbo-like decoding algorithm and the presented correlated source decoding algorithm.

    Example 1:Consider the (255, 175) LDPC code designed by the Euclidean geometry(EG) method [16]. The bit error rate (BER)and the block error rate (BLER) performances of the two decoding strategies for this code are shown in figure 5 and figure 6, respectively.It can be seen that, with a (sub)optimal power ratiothe performance gaps between the two decoding algorithms can be negligible in the low SNR region; while the correlated sources decoding algorithm performs slightly better (about 0.1dB performance gains around BLER=10-4) than turbo-like algorithm, especially for the high SNR. Figure 7 indicates the convergence rates. The total iteration is counted when wtis successfully decoded (no matter decoded by Decoder 1 or Decoder 2), which is calculated by the sum of the local iteration performed by Decoder 1 and Decoder 2, respectively.

    It is shown that, compared to the turbo-like decoding algorithm, the presented iterative correlated sources decoding algorithm can achieve much faster decoding convergence speed. For example, at, it takes only about 32 iterations for the presented algorithm, while the turbo-like algorithm requires about 63 iterations.

    Example 2:Consider the (961,721) quasi-cyclic (QC) LDPC code [17] designed with finite fields. The BER performance and the convergence rate are shown in figure 8 and figure 9, respectively. As expected, we have a similar observation: the two decoding algorithms have equivalent performances. Compared to the turbo-like decoding algorithm, the presented iterative correlated sources decoding algorithm can achieve about two times faster decoding convergence speed.

    V. CONCLUSION

    Two iterative detection/decoding algorithms,the traditional turbo-like algorithm and the presented algorithm of correlated sources are investigated and compared in this paper. The first algorithm is designed as the iterative turbo-like detection/decoding algorithm, whereby the information from the previous block is taken as side information. Then we re-formulate the relay system as correlated sources and present the second decoding algorithm. For the presented algorithm, the previous block is treated as a highly correlated codeword instead of side information to the current block and the extrinsic information is computed by the LLR associated with the XOR vector derived from two correlated hard decision results. It has been shown by simulations that the presented algorithm has slightly better performance than the traditional turbo-like algorithm. Besides, the presented algorithm requires fewer computing operations per iteration and has faster decoding convergence rate.Therefore, the presented algorithm provides a candidate for decoding the LDPC-based relay systems, which may find applications in the extremely energy-constrained system.

    Fig. 8 The BER performances of the (961,721) QC-LDPC code under different power ratios

    Fig. 9 Convergence rates of the (961,721) QC-LDPC code under different power ratios

    ACKNOWLEDGEMENTS

    This work was supported by NSF of China (No. 61362010, 61661005) and NSF of Guangxi (No. 2015GXNSFAA139290,2014GXNSFBA118276, 2012GXNSFAA053217). Part of this work was done when H. Chen was working on his doctoral degree. The authors would like to thank Prof.X. Ma from Sun Yat-sen University for his helpful comments.

    [1] E. C. van de Meulen, “Three-terminal communication channels”, Advanced Applied Probability,vol. 3, pp. 120-154, 1971.

    [2] T. M. Cover and A. A. El Gamal, “Capacity theorems for the relay channel”, IEEE Transactions on Information Theory, vol. IT-25, pp. 572-582, Sep.1979.

    [3] F. M. Willems, “Information theoretical results for the discrete memoryless multiple access channel”, Ph.D. dissertation, Katholieke Univ.Leuven, Leuven, Belgium, Oct. 1982.

    [4] C. M. Zeng, F. Kuhlmann, and A. Buzo, “Achievability proof of some multiuser channel coding theorems using backward decoding”, IEEE Transactions on Information Theory, vol. 35, no.6, pp. 1160–1165, Nov. 1989.

    [5] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks”, IEEE Transactions on Information Theory, vol. 51, no. 9, pp. 3037-3063, Sep. 2005.

    [6] Z. Zhang and T. M. Duman, “Capacity-approaching turbo coding and iterative decoding for relay channels”, IEEE Transactions on Communications, vol. 53,no. 11, pp. 1895-1905, Nov.2005.

    [7] M. A. Khojastepour, N. Ahmed, and B. Aazhang,“Code design for the relay channel and factor graph decoding”, in Proceedings of the 38th Asilomar Conference on. Signals, Systems &Computers, pp. 2000-2004, Nov. 2004.

    [8] J. Hu and T. M. Duman, “Low density parity check codes over wireless relay channels”, IEEE Transactions on Wireless Communications, vol.6, no. 9, pp. 3384-3394, Sep. 2007.

    [9] C. Li, G. Yue, M. A. Khojastepour, X. Wang, and M. Madihian, “LDPC coded cooperative relay systems: performance analysis and code design”, IEEE Transactions on Communications, vol.56, no. 3, pp. 485-496, Mar. 2008.

    [10] H. Chen, D. Yu, and X. Ma, “Cooperative signal constellation for LDPC-coded relay system”,IEEE Communications Letters, vol. 15, no. 7, Jul.2011.

    [11] X. Huang, H. Chen and X. Ma, “Achievable rates and forward-backward decoding algorithms for the Gaussian relay channels under the onecode constraint”, in Proceedings of the 2014 IEEE International Conference on Communications(ICC), Sydney, Australia, pp. 2135-2140, Jun.2014.

    [12] F. Daneshgaran, M. Laddomada, and M. Mondin, “LDPC-based channel coding of correlated sources with iterative joint decoding”, IEEE Transactions on Communications, vol. 54, no. 4,pp. 577-582, Apr. 2006.

    [13] T. S. Rappaport, “Wireless communications,principles and practice, seconded”, Upper Saddle River, NJ: Prentice Hall PTR, 1996.

    [14] A. de Baynast and D. Declercq, “Gallager codes for multiple user applications”, in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland, pp.335, Jun. 2002.

    [15] X. Ma and P. Li, “Coded modulation using superimposed binary codes”, IEEE Transactions on Information Theory, vol.50, no. 12, pp. 3331-3343, Dec. 2004.

    [16] Y. Kou, S. Lin and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries:A discovery and new results”, IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 2711-2736, Nov. 2001.

    [17] L. Lan, L. Zeng, Y. Tai, L. Chen, et al., “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach”,IEEE Transactions on Information Theory, vol. 53,no. 7, pp. 2429-2458, Jul. 2007.

    猜你喜歡
    泥塊幫部離層
    不同鹽度固結黏性泥沙的沖刷試驗研究
    強礦壓顯現(xiàn)巷道錨桿支護方案特征研究
    馬蘭礦回采巷道強幫護頂支護技術應用
    WBY-10型頂板離層儀的優(yōu)化設計
    煤(2022年3期)2022-03-17 01:40:04
    煤巷掘進工作面幫部前探梁臨時支護結構的設計探析
    山西化工(2022年1期)2022-03-08 08:27:28
    花泥塊扦插三角梅
    花卉(2021年7期)2021-12-07 00:36:11
    對《建設用砂》中泥塊含量的意見
    商品混凝土(2020年5期)2020-11-30 05:45:46
    動力災害礦井巷道頂板離層特征研究*
    車集煤礦2611工作面煤巷片幫機理分析與控制技術研究
    濟寧三號煤礦采場頂板離層水對生產的影響
    色婷婷久久久亚洲欧美| 少妇的逼水好多| 国产欧美日韩一区二区三区在线 | 一本色道久久久久久精品综合| 天堂中文最新版在线下载 | 国产午夜精品久久久久久一区二区三区| 国产 一区 欧美 日韩| 天美传媒精品一区二区| 亚洲欧洲日产国产| 国产免费福利视频在线观看| 看免费成人av毛片| 国产又色又爽无遮挡免| 精品久久久久久久人妻蜜臀av| 国产大屁股一区二区在线视频| 男女无遮挡免费网站观看| 亚洲天堂国产精品一区在线| 免费黄网站久久成人精品| 蜜桃亚洲精品一区二区三区| 69人妻影院| 免费av毛片视频| 国产精品久久久久久精品电影| 亚洲精品日韩av片在线观看| 只有这里有精品99| 国产爱豆传媒在线观看| av播播在线观看一区| 亚洲精品成人久久久久久| 3wmmmm亚洲av在线观看| 少妇丰满av| 国产乱人视频| 国产精品不卡视频一区二区| 欧美+日韩+精品| 亚洲国产精品成人久久小说| 国产午夜福利久久久久久| av在线亚洲专区| 日本黄色片子视频| 成年免费大片在线观看| 香蕉精品网在线| 一级av片app| 在线免费十八禁| 免费播放大片免费观看视频在线观看| 黄片无遮挡物在线观看| 国内揄拍国产精品人妻在线| 婷婷色综合大香蕉| 日产精品乱码卡一卡2卡三| 插逼视频在线观看| 亚洲国产精品999| 青春草视频在线免费观看| 国产在线一区二区三区精| 啦啦啦啦在线视频资源| 久久久色成人| 性插视频无遮挡在线免费观看| 国产亚洲午夜精品一区二区久久 | 亚洲久久久久久中文字幕| 亚洲成人久久爱视频| 久久精品久久精品一区二区三区| 大片电影免费在线观看免费| 国产精品偷伦视频观看了| 精品国产一区二区三区久久久樱花 | 欧美日韩一区二区视频在线观看视频在线 | 中文乱码字字幕精品一区二区三区| 在线观看国产h片| 日日撸夜夜添| 久久99热这里只有精品18| 国产一区二区在线观看日韩| 久久精品国产自在天天线| av在线蜜桃| 免费av不卡在线播放| 国产成人精品一,二区| 国产色婷婷99| 欧美激情国产日韩精品一区| 九九在线视频观看精品| 国产又色又爽无遮挡免| 亚洲av中文字字幕乱码综合| 午夜免费观看性视频| www.av在线官网国产| av在线蜜桃| eeuss影院久久| 免费看a级黄色片| 日日啪夜夜撸| 国产欧美亚洲国产| 免费看光身美女| 亚洲最大成人中文| 欧美三级亚洲精品| 日韩人妻高清精品专区| 欧美bdsm另类| 狂野欧美激情性xxxx在线观看| 男女国产视频网站| 男女那种视频在线观看| 高清毛片免费看| 黄色欧美视频在线观看| 国产69精品久久久久777片| 久久久久久久大尺度免费视频| 亚洲人成网站高清观看| 熟女av电影| 全区人妻精品视频| 欧美最新免费一区二区三区| 99热这里只有是精品在线观看| 高清av免费在线| 久久热精品热| 久久热精品热| 在线观看一区二区三区| 丰满人妻一区二区三区视频av| 大片电影免费在线观看免费| 欧美另类一区| 亚洲国产欧美在线一区| 亚洲成人精品中文字幕电影| 在线天堂最新版资源| 国内少妇人妻偷人精品xxx网站| 婷婷色综合大香蕉| 精品久久久久久久久av| 五月玫瑰六月丁香| 精品久久久久久电影网| 99热国产这里只有精品6| 亚洲欧美日韩无卡精品| 亚洲自拍偷在线| 国产精品成人在线| 免费高清在线观看视频在线观看| 亚洲精品自拍成人| 中文字幕av成人在线电影| 深夜a级毛片| 国产一区二区在线观看日韩| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 3wmmmm亚洲av在线观看| 精品人妻偷拍中文字幕| h日本视频在线播放| 不卡视频在线观看欧美| 亚洲国产日韩一区二区| 天天一区二区日本电影三级| 亚洲精品一二三| 成年版毛片免费区| 成人高潮视频无遮挡免费网站| 91精品一卡2卡3卡4卡| 青春草视频在线免费观看| 99久久精品一区二区三区| 成年女人在线观看亚洲视频 | 亚洲欧美日韩无卡精品| 亚洲自偷自拍三级| 欧美激情在线99| 免费观看性生交大片5| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 少妇人妻精品综合一区二区| 亚洲精品国产av蜜桃| 老女人水多毛片| 一级爰片在线观看| 国产欧美日韩一区二区三区在线 | 久久人人爽人人片av| 成人亚洲精品av一区二区| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 人体艺术视频欧美日本| 日日摸夜夜添夜夜添av毛片| 久久久欧美国产精品| 欧美日本视频| 国产欧美亚洲国产| 高清午夜精品一区二区三区| 22中文网久久字幕| 亚洲欧洲国产日韩| 国产欧美另类精品又又久久亚洲欧美| 观看美女的网站| videossex国产| 久久久久国产精品人妻一区二区| 干丝袜人妻中文字幕| 女人被狂操c到高潮| 久久精品国产亚洲av天美| 另类亚洲欧美激情| 欧美日韩综合久久久久久| 国产一区二区三区av在线| 免费播放大片免费观看视频在线观看| 七月丁香在线播放| 少妇人妻一区二区三区视频| 3wmmmm亚洲av在线观看| 亚洲欧洲国产日韩| 亚洲欧美成人综合另类久久久| 只有这里有精品99| 神马国产精品三级电影在线观看| av播播在线观看一区| 看非洲黑人一级黄片| 99热国产这里只有精品6| 最近最新中文字幕免费大全7| 国产亚洲91精品色在线| 男女国产视频网站| 日日摸夜夜添夜夜爱| 久久久久精品性色| 国产日韩欧美在线精品| 不卡视频在线观看欧美| 不卡视频在线观看欧美| 岛国毛片在线播放| 黄色日韩在线| 天天一区二区日本电影三级| 99久久九九国产精品国产免费| 久久久久久久久久久免费av| 国产老妇女一区| 天堂中文最新版在线下载 | 久久精品夜色国产| 久久久久国产精品人妻一区二区| 免费在线观看成人毛片| 国产 精品1| 免费看av在线观看网站| 特大巨黑吊av在线直播| 亚洲av在线观看美女高潮| 国产亚洲av片在线观看秒播厂| 欧美高清成人免费视频www| 亚洲性久久影院| 国产黄片美女视频| 久久热精品热| 国产精品一及| 亚洲精品久久午夜乱码| 能在线免费看毛片的网站| 国产淫片久久久久久久久| 国产v大片淫在线免费观看| 丝袜喷水一区| 国产精品人妻久久久久久| 欧美精品一区二区大全| 大码成人一级视频| 亚洲综合精品二区| 欧美性猛交╳xxx乱大交人| 性插视频无遮挡在线免费观看| 成人二区视频| 久久这里有精品视频免费| 制服丝袜香蕉在线| 一本色道久久久久久精品综合| 欧美一区二区亚洲| 一区二区三区四区激情视频| 日韩强制内射视频| 在线观看美女被高潮喷水网站| 精品久久久久久久久av| 综合色丁香网| 欧美xxxx黑人xx丫x性爽| 如何舔出高潮| 中文资源天堂在线| 国产精品偷伦视频观看了| 日韩三级伦理在线观看| 中文天堂在线官网| 97人妻精品一区二区三区麻豆| 亚洲伊人久久精品综合| 久久综合国产亚洲精品| 大香蕉97超碰在线| 晚上一个人看的免费电影| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影| 亚洲精品国产色婷婷电影| 亚洲精品影视一区二区三区av| 蜜桃亚洲精品一区二区三区| 天堂网av新在线| 国产探花极品一区二区| 久久久久久九九精品二区国产| 国产成人91sexporn| 亚洲色图综合在线观看| 人妻系列 视频| av线在线观看网站| 成年av动漫网址| 中国美白少妇内射xxxbb| 久久久久久久久久人人人人人人| 日韩av在线免费看完整版不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆乱淫一区二区| 丝袜喷水一区| 日韩,欧美,国产一区二区三区| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 一级片'在线观看视频| 久久6这里有精品| 日韩一区二区三区影片| 国产欧美日韩精品一区二区| 高清午夜精品一区二区三区| 亚州av有码| 欧美成人a在线观看| 少妇人妻精品综合一区二区| 日本三级黄在线观看| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 国产乱人视频| 国产精品久久久久久精品电影| 国产高清国产精品国产三级 | 日本av手机在线免费观看| 午夜老司机福利剧场| 久久99热6这里只有精品| 国产高清三级在线| 日本熟妇午夜| 男的添女的下面高潮视频| 国产一区二区在线观看日韩| 成人黄色视频免费在线看| 亚洲精品国产成人久久av| 国产成人aa在线观看| 波多野结衣巨乳人妻| 国产极品天堂在线| 久久久国产一区二区| av国产精品久久久久影院| 狂野欧美白嫩少妇大欣赏| 久久久a久久爽久久v久久| 亚洲精品一二三| 国产一区二区三区av在线| 啦啦啦中文免费视频观看日本| 成人二区视频| 人妻制服诱惑在线中文字幕| 99久久中文字幕三级久久日本| 18禁裸乳无遮挡免费网站照片| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 久久影院123| 国产精品久久久久久精品古装| 国产精品人妻久久久久久| 一区二区三区精品91| av在线观看视频网站免费| 亚洲一区二区三区欧美精品 | 最近2019中文字幕mv第一页| 麻豆乱淫一区二区| 亚洲国产精品999| freevideosex欧美| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| 国产欧美亚洲国产| 2021天堂中文幕一二区在线观| 大码成人一级视频| 日本一二三区视频观看| 成人亚洲精品av一区二区| 午夜免费男女啪啪视频观看| 精品人妻偷拍中文字幕| 中国国产av一级| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 有码 亚洲区| 最近的中文字幕免费完整| 亚洲国产精品999| 国产黄频视频在线观看| 亚洲国产欧美人成| 欧美xxxx性猛交bbbb| 中文资源天堂在线| 亚洲精品日韩av片在线观看| 欧美成人一区二区免费高清观看| 新久久久久国产一级毛片| 亚洲经典国产精华液单| 日韩中字成人| 久久影院123| 婷婷色av中文字幕| 伦理电影大哥的女人| 日韩中字成人| 欧美少妇被猛烈插入视频| 国产乱来视频区| 三级男女做爰猛烈吃奶摸视频| 18禁裸乳无遮挡动漫免费视频 | 黄色欧美视频在线观看| 亚洲怡红院男人天堂| 少妇熟女欧美另类| 永久网站在线| 69人妻影院| 男女无遮挡免费网站观看| 日本与韩国留学比较| 欧美日韩国产mv在线观看视频 | 国产精品一区二区在线观看99| 日韩不卡一区二区三区视频在线| 久久精品人妻少妇| 国产av国产精品国产| 久热这里只有精品99| 97人妻精品一区二区三区麻豆| 六月丁香七月| 日日啪夜夜爽| 亚洲精品aⅴ在线观看| 我的女老师完整版在线观看| 97热精品久久久久久| 老女人水多毛片| 国产成人精品久久久久久| 国产男人的电影天堂91| 又爽又黄无遮挡网站| 免费大片黄手机在线观看| 精品久久国产蜜桃| 99热这里只有精品一区| 亚洲精品自拍成人| 日本欧美国产在线视频| 欧美人与善性xxx| 免费电影在线观看免费观看| 成人二区视频| 男女边摸边吃奶| 嫩草影院入口| 日韩成人伦理影院| 日本黄大片高清| 身体一侧抽搐| 亚洲最大成人av| 蜜桃亚洲精品一区二区三区| 免费观看在线日韩| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 在线观看一区二区三区| 久久国内精品自在自线图片| 国产午夜精品一二区理论片| 免费看a级黄色片| av在线播放精品| 国产爽快片一区二区三区| 成人亚洲精品一区在线观看 | av线在线观看网站| 99精国产麻豆久久婷婷| 国产一区亚洲一区在线观看| 精品一区二区三区视频在线| 日韩电影二区| 亚洲精品自拍成人| 久久影院123| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩东京热| 亚洲av免费在线观看| 麻豆成人午夜福利视频| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 色视频在线一区二区三区| 亚洲精品国产av蜜桃| 在线天堂最新版资源| 亚洲国产欧美人成| 日本三级黄在线观看| 中文天堂在线官网| 91久久精品国产一区二区成人| 夜夜爽夜夜爽视频| 少妇人妻一区二区三区视频| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| 亚洲婷婷狠狠爱综合网| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 国产伦精品一区二区三区四那| 美女主播在线视频| 国产成人aa在线观看| 国产男女超爽视频在线观看| 激情 狠狠 欧美| 中文字幕人妻熟人妻熟丝袜美| 国产乱人视频| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| 极品教师在线视频| 午夜福利高清视频| 国国产精品蜜臀av免费| 亚洲图色成人| 国产极品天堂在线| 插阴视频在线观看视频| 联通29元200g的流量卡| 五月伊人婷婷丁香| 亚洲最大成人手机在线| 欧美3d第一页| 成人国产麻豆网| 丝袜脚勾引网站| 亚洲色图av天堂| 欧美少妇被猛烈插入视频| 国产综合懂色| 亚洲精品成人久久久久久| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验| 免费电影在线观看免费观看| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 人妻制服诱惑在线中文字幕| 在线天堂最新版资源| 亚洲成人av在线免费| 深爱激情五月婷婷| 欧美97在线视频| 亚洲天堂av无毛| 亚洲精品日本国产第一区| 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 国产视频内射| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| 午夜免费观看性视频| 国产成人免费观看mmmm| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| 亚洲av二区三区四区| 久久久精品欧美日韩精品| 成人美女网站在线观看视频| 在线观看一区二区三区| 亚洲精品第二区| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 国产 一区 欧美 日韩| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 黄色配什么色好看| 欧美少妇被猛烈插入视频| 久久久久久久久久久丰满| 欧美亚洲 丝袜 人妻 在线| 一级毛片我不卡| 人妻一区二区av| 国产男女内射视频| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 99久久精品热视频| 五月天丁香电影| 99久久九九国产精品国产免费| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 日韩av在线免费看完整版不卡| 欧美xxxx黑人xx丫x性爽| 久久亚洲国产成人精品v| 免费电影在线观看免费观看| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 国产欧美另类精品又又久久亚洲欧美| 国产精品蜜桃在线观看| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区| av.在线天堂| 毛片一级片免费看久久久久| 日韩国内少妇激情av| 我要看日韩黄色一级片| 免费人成在线观看视频色| 亚洲欧美成人综合另类久久久| 亚洲精品成人av观看孕妇| 午夜福利在线观看免费完整高清在| 国产黄片视频在线免费观看| 欧美高清成人免费视频www| 九色成人免费人妻av| 精品一区二区三卡| 免费不卡的大黄色大毛片视频在线观看| 99热这里只有精品一区| 日本色播在线视频| 欧美3d第一页| 亚洲av中文av极速乱| 简卡轻食公司| 免费观看av网站的网址| 男插女下体视频免费在线播放| 老司机影院毛片| av卡一久久| 久久久久久久久久久免费av| videossex国产| av福利片在线观看| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 免费观看无遮挡的男女| 亚洲国产精品999| 亚洲内射少妇av| 观看免费一级毛片| 成人国产麻豆网| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 两个人的视频大全免费| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 51国产日韩欧美| 亚洲精品自拍成人| 水蜜桃什么品种好| 边亲边吃奶的免费视频| 毛片女人毛片| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区三区影片| 白带黄色成豆腐渣| 97在线视频观看| 国产探花在线观看一区二区| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 夫妻午夜视频| 日韩在线高清观看一区二区三区| 久久ye,这里只有精品| 日日摸夜夜添夜夜添av毛片| 69人妻影院| 五月开心婷婷网| 色播亚洲综合网| 99久久九九国产精品国产免费| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| av国产精品久久久久影院| 看十八女毛片水多多多| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 日本一二三区视频观看| 免费观看在线日韩| 99久国产av精品国产电影| 天堂中文最新版在线下载 | av在线app专区| www.色视频.com| 新久久久久国产一级毛片| 久久久久久伊人网av| 中文字幕人妻熟人妻熟丝袜美| 高清日韩中文字幕在线| 日本黄色片子视频| 欧美日韩视频精品一区| 女人被狂操c到高潮| 最新中文字幕久久久久| 老女人水多毛片| 啦啦啦在线观看免费高清www| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 尾随美女入室| 一级毛片久久久久久久久女| 伊人久久精品亚洲午夜| av在线播放精品| 大香蕉久久网| av卡一久久| 全区人妻精品视频| 好男人在线观看高清免费视频| 中文天堂在线官网| 秋霞在线观看毛片| 欧美日韩在线观看h| 久久久久久久国产电影| 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女搞黄在线观看| 久久久久久伊人网av|