• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Depolymerization Process of Polymeric Proanthocyanidins from the Barks of Pinuskesiya var. langbianensis

    2017-03-27 02:58:51LiNaJiangYongxinLiMeijuanLuoXuluLiuYunKanHuanZhangJiayanZhaoPing
    林業(yè)科學(xué) 2017年2期
    關(guān)鍵詞:思茅松林業(yè)大學(xué)樹皮

    Li Na Jiang Yongxin Li Meijuan Luo Xulu Liu Yun Kan Huan Zhang Jiayan Zhao Ping

    (1.Southwest Forestry University Yunnan Key Laboratory of Wood Adhesives and Glue Products Kunming 650224; 2.Southwest Forestry University Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China,Ministry of Education Kunming 650224; 3.College of Materials Engineering,Southwest Forestry University Kunming 650224)

    ?

    Optimization of Depolymerization Process of Polymeric Proanthocyanidins from the Barks ofPinuskesiyavar.langbianensis

    Li Na1,2Jiang Yongxin1,2Li Meijuan1,3Luo Xulu1,2Liu Yun2Kan Huan2Zhang Jiayan3Zhao Ping1,2

    (1.SouthwestForestryUniversityYunnanKeyLaboratoryofWoodAdhesivesandGlueProductsKunming650224; 2.SouthwestForestryUniversityKeyLaboratoryforForestResourcesConservationandUseintheSouthwestMountainsofChina,MinistryofEducationKunming650224; 3.CollegeofMaterialsEngineering,SouthwestForestryUniversityKunming650224)

    【Objective】 (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate (1) was found to be the main depolymerized product of polymeric proanthocyanidins (PPC) from the pine barks with tea polyphenols (TP), and showed higher DPPH and ABTS+radical scavenging activities than both PPC and TP. In order to provide the basis for further development and utilization of depolymerized product of PPC, the objective of this study was to optimize the depolymerization process of PPC from the barks ofPinuskesiyavar.langbianensiswith TP, by using the content of 1 as an evaluation indicator. 【Method】The content of compound 1 in reacted solution was analyzed by HPLC, and the effects of reaction temperature (50-90 ℃), reaction time (30-180 min), HCl concentration (0.1%-5%) and TP/PPC ratio (1∶3-3∶1,w/w) on the content of 1 were investigated by single factor experiments. The depolymerization process was optimized using response surface methodology, at a five-level, four-variable experiment central composite rotatable design. Using the content of 1 as response, and above four factors as variables, the twenty-eight experiments were conducted to analyze the response pattern and to establish model for reaction process. The responses obtained from the experimental design set were subjected to multiple nonlinear regression using Design-Expert V8.0.6 software to obtain the coefficients of the second-polynomial model, and its statistical significance was evaluated by variance analysis. 【Result】 The reaction temperature, HCl concentration and TP/PPC ratio strongly affects the content of 1 in the depolymerization reaction. The regression model was very significant (P<0.000 1) with a good coefficient (R2=0.952 6), suggesting that the proposed experimental design was suitable to analysis and to predict the simulation of 1. The optimum depolymerization conditions were as follows: reaction temperature 70 ℃, reaction time 60 min, HCl concentration 1%, and TP/PPC ratio 3∶2. Under the above-mentioned conditions, the experimental content of 1 was 718.57 nmol·mL-1, which was well matched with the predicted content (721.39 nmol·mL-1). 【Conclusion】 It was feasible to use response surface method to optimize the depolymerization process of PPC from the barks of P.kesiyavar.langbianensiswith TP for the production of 1.Key words:Pinuskesiyavar.langbianensisbark; (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate; polymeric proanthocyanidins; depolymerization; response surface methodology

    Proanthocyanidins consisting of elementary flavan-3-ol units could be divided into oligomeric proanthocyanidins (OPC) and polymeric proanthocyanidins (PPC). Its physicochemical and biological features depend largely on their structures, particularly on the degree of polymerization (Ursinietal., 2001; Kolodziejetal., 2005). Naturally occurring proanthocyanidins are complicated mixtures of PPC with large molecular sizes, regarded as not being readily absorbed through the intestines. On the other hand, flavan-3-ol monomers, dimers and trimers can be readily transported through a layer of colonic carcinoma cells (Deprezetal., 2001; Holtetal., 2002). Moreover, lower molecular weight OPC showed much stronger bioactivities than both flavan-3-ol monomers and PPC (Maoetal., 2002; Erlejmanetal., 2004). Therefore, it would be beneficial to develop an available source of OPC from PPC by depolymerization process.

    In the past few years, the depolymerization of PPC with the user-friendly nucleophiles, such as phloroglucinol, and L-cysteine have been developed in an attempt to obtain new flavan-3-ol conjugates with more potent antioxidant activity (Kennedyetal., 2001; Mitjansetal., 2004; Liuetal., 2013).However, it is questionable as to whether the products resulting from the depolymerization process that used aqueous methanol as reaction solution are suitable to be utilized as food supplement. Tanakaetal. (2007) reported (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate (1) from the depolymerized products ofArecaPPC with (-)-epigallocatechin 3-O-gallate, without using special chemical reagent. Our group also used the tea polyphenols (TP) to react with several PPCs from different plant origins, only in an acidic water solution. As the result, the depolymerized products showed higherinvivoanti-ROS activities than their corresponding PPC (Lietal., 2014). Compound 1 was found to be the main depolymerized product of PPC from pine barks (Jiangetal., 2013), and showed higher DPPH and ABTS+radical scavenging activities than both PPC and TP (Lietal., 2015).However, there is still a lack of information regarding to optimal conditions for the production of 1. This study is to assess the optimal conditions in terms of reaction temperature and time, HCl concentration, and appropriate TP/PPC ratio for the production of 1 in depolymerization process of the PPC from the barks ofP.kesiyavar.langbianensisby using response surface methodology (RSM) (Bashietal., 2012; Albertietal., 2014).

    1 Materials and methods

    1.1 Materials

    PPC with a purity of 98% for proanthocyanidins was prepared from the barks ofP.kesiyavar.langbianensisin our laboratory previously (Lietal., 2015), and TP was purchased from Tangren Biological Technology Development Co. LTD (Honghe, Yunnan, China). All materials were stored in 4 ℃ until use.1.2 Chemicals and solvents

    Compound 1 with a purity of 99% was isolated from the depolymerized products of PPC from the barks ofP.kesiyavar.langbianensiswith TP, and its structure was identified on the basis of spectroscopic analysis, including MS,1H and13C NMR, and comparison with literature data (Lietal., 2015). Water was purified in a Milli-Q (Millipore, America), and acetonitrile (CH3CN) with HPLC grade was purchased from Merck (Darmstadt, FR, Germany). The other chemicals and solvents used were of analytical grade.

    1.3 HPLC analysis of 1

    Analytical HPLC was operated on a Agilent 1200 series separation module combined with the accessory of the Agilent G1315D diode array detector (Agilent, America), using an Agilent Analytical Eclipse XDB-C18column (4.6 mm × 150 mm, i.d., 5 m). The mobile phase was composed of solvent A (H2O, 0.34% H3PO4) and solvent B (CH3CN, 0.34% H3PO4). All solutions were degassed in an ultrasonic bath and filtered through a hydrophilic polypropylene membrane before use. The following gradient was applied: 4%-25% B (0-15 min), 25%-90% B (15-18 min), 90%-95% B (18-20 min), followed by an isocratic run at 95% B (4 min) and reconditioning of the column (4% of B, 5 min). The flow rate of the mobile phase was 1.0 mL·min-1, the detection wavelength was set to 280 nm, and analysis was carried out at 30 ℃.

    Standard stock solution of 1 (4.5 mg·mL-1) in methanol were prepared immediately, and standard working solutions used for the calibration were prepared by diluting the standard stock solution with methanol to the desired concentrations. Good linearity of the calibration curve for the 1 was achieved with correlation coefficient of 0.999 8, and the results were expressed as nmol·mL-1of 1. An aliquot (1 mL) of the reaction solution was filtered through a 0.45 μm syringe filter, and 10 μL of the sample were injected to HPLC analysis.

    1.4 Effect of reaction temperature on the content of 1

    Five centrifuge tubes (1.5 mL), each containing 100 μL of PPC (10 mg·mL-1), 100 μL of TP (10 mg·mL-1) and 800 μL of 1% HCl were kept in water bath for 30 min at 50, 60, 70, 80 and 90 ℃, respectively. Then, the reaction mixture was applied to HPLC analysis. The resulted reaction temperature with the highest content of 1 was fixed for the next experimental step.

    1.5 Effect of reaction time on the content of 1

    The same mixture of PPC (10 mg·mL-1), TP (10 mg·mL-1) and 1% HCl as mentioned above, in five centrifuge tubes (1.5 mL) were kept in water bath at 60 ℃ for 30, 60, 90, 120 and 180 min, respectively. After the HPLC analysis, the reaction time with the highest content of 1 was fixed for the next step.

    1.6 Effect of HCl concentration on the content of 1

    To five centrifuge tubes (1.5 mL), each containing 100 μL of PPC (10 mg·mL-1) and 100 μL of TP (10 mg·mL-1), 800 μL of HCl with different concentration of 0.1%, 0.2%, 0.5%, 1%, 2% and 5% were added, respectively. The reaction mixtures were kept in water bath at 60 ℃ for 90 min. After the HPLC analysis, the HCl concentration with the highest content of 1 was fixed for the next experiment.

    1.7 Effect of TP/PPC ratio on the content of 1

    Five different TP (10 mg · mL-1) and PPC (10 mg · mL-1) ratios of 1∶3, 1∶2, 1∶1, 2∶1 and 3∶1 (each 200 μL) were added respectively to five centrifuge tubes (1.5 mL), containing 800 μL of 2% HCl. Then, the reaction mixtures were kept in water bath at 60 ℃ for 90 min. After the HPLC analysis, the TP/PPC ratio with the highest content of 1 was fixed for the next experiment.

    1.8 Experimental design

    A five-level, four-variable central composite rotatable design (CCRD) was employed for optimization with respect to four important variables, the reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D). The variables and their levels investigated in this study are represented in
    Tab. 1.

    Tab. 1 Variables and their levels employed in a CCRD

    The independent variables and their ranges were chosen, based on preliminary experiment results. A second-order quadratic equation was then fitted to the data by multiple regression procedure. For a four-factor system, the model equation is:

    (1)

    WhereYis the content of 1 response (nmol·mL-1), predicted response;β0,is the intercept;β1,β2,β3,β4, are linear coefficients;β12,β13,β14,β23,β24,β34,interactions coefficients;β11,β22,β33,β44,are squared coefficients.
    Tab.2 lists the actual experimental parameters corresponding to the designed levels. The twenty-eight experiments were conducted to analyze the response pattern and to establish model for reaction process. All experiments were carried out randomly. Six replicates (treatments 23-28) of the design were used to allow for estimation of a pure error sum of squares. Regression analysis was performed on the data of the content of 1.

    The responses obtained from the experimental design set (
    Tab.2) were subjected to multiple nonlinear regression using Design-Expert V8.0.6 software, to obtain the coefficients of the second- polynomial model. The quality of the fit of the polynomial model equation was expressed by the coefficient of determinationR2, and its statistical significance was checked by anF-test. The significance of the regression coefficient was tested by at-test.

    1.9 Statistical analysis

    All determinations were carried out in triplicate, and the experimental results obtained were expressed as means ± SD. Statistical analysis was performed by using Design-Expert V8.0.6 software. Data were analyzed by analysis of variance, and the mean values were considered significantly different whenP<0.05. The optimal extraction conditions were estimated through three-dimensional response surface analyses of the four independent variables and each dependent variable.

    2 Results and discussion

    2.1 Effects of reaction temperature, reaction time, HCl concentration and TP/PPC ratio on the content of 1

    The effect of reaction temperature on content of 1 is presented in
    Fig.1a. When temperature increased from 50 to 60 ℃, the content of 1 increased from 300.98 to 552.37 nmol·mL-1. However, when reaction temperature exceeded 60 ℃, the content of 1 decreased sharply, to only 130.99 nmol·mL-1at 90 ℃. The content of 1 was investigated with fixed reaction temperature (60 ℃) at different reaction time (
    Fig.1b). A significant increase of 1 content was observed before 90 min, and the maximum content of 1 (582.40 nmol·mL-1) was observed at 60 ℃ in 90 min.

    The effects of different HCl concentrations on content of 1 with fixed reaction temperature (60 ℃) and time (90 min) are shown in
    Fig.1c. Concentration of HCl that resulted in improved content of 1 included 0.1%, 0.2%, 0.5% and 1%. No further content enhancement was gained at 5% of HCl concentration. The highest yield of 1 is obtained at 2% HCl, with a content of 727.73 nmol·mL-1at 60 ℃ in 90 min.
    Fig.1d shows the effect of TP/PPC ratio on the content of 1. A significant increase of 1 was observed over the TP/PPC ratio range of 1∶3-1∶1, and the content of 1 reached a maximum of 545.00 nmol·mL-1at 1∶1.

    Fig.1 Effects of reaction temperature (a), reaction time (b), HCl concentration (c), and TP/PPC ratio (d) on the content of 1The line graph represents the standard deviation (n=3). Values marked by the same letters are not significantly different (P<0.05).

    2.2 Optimization of reaction conditions

    Based on the investigation of the effects of reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D) on content of 1, these variables were considered in the experimental design. To optimize the depolymerization process of PPC with TP, a reaction temperature of 60 ℃, reaction time of 90 min, HCl concentration of 2%, and TP/PPC ratio of 1∶1 were chosen as the central condition of the CCRD.


    Tab.2 shows the experimental conditions and the results of reactions, according to the factorial design. The second-order regression model relating to the content of 1, with the independent variables of A, B, C and D, is as follows:

    (2)

    The content of 1 obtained was considered as the dependent variables or responseY. For testing the fit of the model, the regression equation and coefficient (R2) were evaluated. The model presented a high determination coefficient (R2=0.952 6), explaining 95.26% of the variables, and the reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D) were supported by the response. The closer the value ofR2to unity, the better was the empirical model fits for the actual data. A value greater than 0.75 indicates aptness of the model, suggesting that the proposed experimental design was suitable for the simulation of 1. The ANOVA of quadratic regression model demonstrated that the model was highly significant. Values of “Prob>F” less than 0.050 0 indicate that model terms are significant. In this case, A, C, D, AB, AC, BC and A2are significant terms.

    Tab. 2 Experimental design of five-level, four-variable CCRD①

    ①Data are expressed as the mean (n=3) ± SD.

    The studentt-distribution and the correspondingP-values, along with the second-order polynomial coefficient, were evaluated. The significance of each coefficient was determined byt-values andP-values. The pattern of interactions between the variables was indicated by these coefficients, whereas the others can be neglected and eliminated from the model. Larger magnitude oft-value and smallerP-value indicate the high significance of the corresponding coefficient. Thet-test andP-values for the linear, quadratic, and interactive terms are shown in
    Tab.3.

    Tab. 3 Variance analysis for the second-order content of 1①

    ①A: Reaction temperature (℃); B: Reaction time (min); C: HCl concentration (%); D: TP/PPC ratio. df: Degree of freedom.

    To determine optimal levels of the variables for the depolymerization process, three-dimensional surface plots were constructed, according to Eq. (2).
    Fig.2 shows the effect of reaction temperature and reaction time on the content of 1. The content of 1 increased rapidly with the increase of temperature at a fixed reaction time, and nearly reached a peak at the highest temperature tested. Similarly, the increase in reaction time at a fixed reaction temperature led to a gradual increase in content of 1, and reached to a maximum at the longest reaction time tested. The effect of reaction temperature and HCl concentration shown in
    Fig.3 demonstrated that 1 increased slowly with the increase of temperature at a fixed HCl concentration, while an increase in HCl concentration at a fixed temperature also led to a marked increase in content of 1.
    Fig.4 reflects the effect of reaction time and HCl concentration on the depolymerization process. The content of 1 increased slowly with the increase of reaction time at a fixed HCl concentration, and an obvious increase of 1 with the increase of HCl concentration at a fixed time was observed.

    Fig.2 3D response surface plot showing the effect of reaction temperature (℃) and reaction time (min) on the content of 1

    Fig.4 3D response surface plot showing the effect of reaction time (min) and HCl concentration (%) on the content of 1

    The optimal conditions obtained using the model were as the follows: 70 ℃ of reaction temperature, 60 min of reaction time, 1% of HCl concentration, and 3∶2 of TP/PPC ratio. Under optimal conditions, the model predicted a maximum response of 721.39 nmol·mL-1of 1. To compare the predicted result with the practical value, experimental rechecking was performed using this deduced optimal condition. A mean value of 718.57 nmol·mL-1of 1 obtained from real experiments validated the RSM model. The good correlation between these results confirmed that the response model was adequate to reflect the expected optimization.

    3 Conclusion

    This present study indicates that depolymerization process can be a good method of depolymerizing PPC from the barks ofP.kesiyavar.langbianensisinto 1. The reaction temperature, HCl concentration and TP/PPC ratio strongly affects the content of 1, a principal product in the depolymerization reaction. The optimal conditions obtained by RSM under depolymerization process include the following parameters: reaction temperature, 70 ℃; reaction time, 60 min; HCl concentration, 1%; and TP/PPC ratio, 3∶2.

    Reference

    Alberti A, Zielinski A A F, Zardo D M,etal. 2014. Optimatisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem, 149: 151-158.

    Bashi D S, Mortazavi S A, Rezaei K,etal. 2012. Optimization of ultrasound-assisted extraction of phenolic compounds from Yarrow (Achilleabeibrestinii) by response surface methodology. Food Sci Biotechnol, 21(4): 1005-1011.

    Deprez S, Mila I, Huneau J F,etal. 2001. Transport of proanthocyanidin dimmer, trimer, and polymer across monolayer of human intestinal epitherial Caco-2 cells. Antioxid Redox Signal, 3(6): 957-967.

    Erlejman A G, Verstraeten S V, Fraga C G,etal. 2004. The interaction of flavonoids with menbranes: potential determinant of flavonoid antioxidant effects. Free Radic Res, 38(12): 1311-1320.

    Holt R R, Lazarus S A, Sullards M C,etal. 2002. Procyanidin dimer B2[epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of flavanol-rich cocoa. Am J Clin Nutr, 76(4): 798-804.

    Jiang Y X, Zhu H T, Wang J M,etal. 2013. LC-ESI-MS Analysis of fragmentive products of pine bark proanthocyanidins. Chem Indus Forest Prod, 33(4): 117-120. [in Chinese]

    Kennedy J A, Jones G P. 2001. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem, 49(4): 1740-1746.

    Kolodziej H, Kiderlen A F. 2005. Antileishmanial activity and immune modulatory effects of tannins and related compounds onLeishmaniaparasitized. Phytochemistry, 66(17): 2056-2071.

    Li M J, Lao Q C, Jiang Y X,etal. 2014.Invivoanti-ROS activities of the fragmentive products of several proanthocyanidins. J West China Forestry Sci, 43(1): 99-103. [in Chinese]

    Li N, Dan H L, Jiang Y X,etal. 2015. Identification and activities of the fragmented product of polymeric proanthocyanidins from pine barks. J West China Forestry Sci, 44(5): 76-80. [in Chinese]

    Liu H W, Zou T, Gao J M, et al. 2013. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers. Food Chem, 141(1): 488-494.

    Mao T K, Van De Water J, Keen C L,etal. 2002. Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food, 5(1): 17-22.

    Mitjans M, Del Campo J, Abajo C,etal. 2004. Immunomodulatory activity of a new family of antioxidants obtained from grape polyphenols. J Agric Food Chem, 52(24): 7297-7299.

    Tanaka T, Yoshitake N, Zhao P,etal. 2007. Production of oligomeric proanthocyanidins by fragmentation of polymers. Jpn J Food Chem, 14(3): 134-139.

    Ursini F, Rapuzzi I, Toniolo R,etal. 2001. Characterization of antioxidant effect of procyanidins. Method Enzymol, 335: 338-350.

    (責(zé)任編輯 石紅青)

    思茅松樹皮多聚原花青素降解優(yōu)化*

    李 娜1,2姜永新1,2李美娟1,3羅旭璐1,2劉 云2闞 歡2張加研3趙 平1,2

    (1.西南林業(yè)大學(xué) 云南省木材膠黏劑及膠合制品重點(diǎn)實(shí)驗(yàn)室 昆明 650224; 2. 西南林業(yè)大學(xué) 西南山地森林資源保育與利用省部共建教育部重點(diǎn)實(shí)驗(yàn)室 昆明 650224; 3. 西南林業(yè)大學(xué)材料工程學(xué)院 昆明 650224)

    【目的】 以基于茶多酚的思茅松樹皮多聚原花青素降解反應(yīng)中(-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素 3-O-沒食子酸酯(化合物1)的含量作為評(píng)價(jià)指標(biāo),確定思茅松樹皮多聚原花青素的最佳降解條件,為思茅松樹皮多聚原花青素降解產(chǎn)物的進(jìn)一步開發(fā)利用提供基礎(chǔ)?!痉椒ā?采用HPLC定量分析方法測定各反應(yīng)溶液中化合物1的含量,通過單因素試驗(yàn)考察反應(yīng)溫度(50~90 ℃)、反應(yīng)時(shí)間(30~180 min)、鹽酸濃度(0.1%~5%)和茶多酚/多聚原花青素比率(1∶3~3∶1,w/w)對(duì)化合物1生成的影響。采用4因素5水平中心組合旋轉(zhuǎn)設(shè)計(jì)的響應(yīng)面法優(yōu)化其降解條件,以化合物1的含量為響應(yīng)值,以上述4個(gè)因素為自變量,利用Design-Expert V8.0.6軟件對(duì)28個(gè)試驗(yàn)點(diǎn)測定所得數(shù)據(jù)進(jìn)行多元非線性分析,建立回歸模型,并通過方差分析對(duì)模型進(jìn)行顯著性檢測?!窘Y(jié)果】 反應(yīng)溫度、鹽酸濃度和茶多酚/多聚原花青素比率明顯影響降解反應(yīng)中化合物1的生成,建立的回歸模型極顯著(P<0.000 1),且線性系數(shù)良好(R2=0.952 6),說明建立的數(shù)學(xué)模型能較好地描述試驗(yàn)結(jié)果,可用于分析和預(yù)測化合物1的生成。思茅松樹皮多聚原花青素的最佳降解條件為反應(yīng)溫度70 ℃、反應(yīng)時(shí)間60 min、鹽酸濃度1%和茶多酚/多聚原花青素比率3∶2。經(jīng)驗(yàn)證此條件下反應(yīng)液中化合物1的濃度可達(dá)718.57 nmol·mL-1,與理論值(721.39 nmol·mL-1)較為接近?!窘Y(jié)論】 采用中心組合旋轉(zhuǎn)設(shè)計(jì)的響應(yīng)面法分析優(yōu)化思茅松樹皮多聚原花青素降解以獲取主產(chǎn)物(-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素 3-O-沒食子酸酯的方法可行。

    思茅松樹皮; (-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素3-O-沒食子酸酯; 多聚原花青素; 降解; 響應(yīng)面法

    TQ351.5

    A

    1001-7488(2017)02-0110-07

    10.11707/j.1001-7488.20170213

    Received date: 2015-11-11; Revised date: 2016-03-03.

    Funding Project: National Natural Science Foundation of China(31260163); Yunnan Provinical Department of Education Research Fund(ZD2010006).

    *Zhao Ping is corresponding author.

    猜你喜歡
    思茅松林業(yè)大學(xué)樹皮
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    窗下的樹皮小屋
    氣象因子和坡向?qū)λ济┧僧a(chǎn)脂量的影響1)
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    氣象因子和坡向?qū)λ济┧僧a(chǎn)脂量的影響1)
    咦,動(dòng)物們都說愛樹皮
    樹葉和樹皮
    不同基質(zhì)配比對(duì)思茅松多穴盤幼苗生長的影響
    亚洲三区欧美一区| 夫妻午夜视频| av不卡在线播放| 亚洲国产欧美日韩在线播放| 考比视频在线观看| 亚洲av日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区av网在线观看 | a 毛片基地| 国产深夜福利视频在线观看| 成人亚洲精品一区在线观看| 视频区图区小说| 法律面前人人平等表现在哪些方面 | 久久精品熟女亚洲av麻豆精品| 成在线人永久免费视频| 操美女的视频在线观看| 亚洲欧美一区二区三区久久| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| 首页视频小说图片口味搜索| 超碰成人久久| 男人添女人高潮全过程视频| 欧美xxⅹ黑人| 国产男女内射视频| 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| 欧美激情高清一区二区三区| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 好男人电影高清在线观看| 捣出白浆h1v1| 99久久国产精品久久久| 久久精品国产综合久久久| 午夜精品国产一区二区电影| 日韩三级视频一区二区三区| 国产极品粉嫩免费观看在线| 黄色怎么调成土黄色| 亚洲专区字幕在线| 国产精品免费视频内射| 欧美精品亚洲一区二区| 999久久久精品免费观看国产| 日韩 亚洲 欧美在线| 美女国产高潮福利片在线看| 国产视频一区二区在线看| 亚洲熟女毛片儿| 国产精品国产三级国产专区5o| 啦啦啦中文免费视频观看日本| 啦啦啦在线免费观看视频4| 国产高清视频在线播放一区 | 在线观看免费午夜福利视频| www.精华液| 手机成人av网站| 国产xxxxx性猛交| 黄频高清免费视频| 欧美另类一区| 久久久久国产精品人妻一区二区| 久久亚洲国产成人精品v| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av香蕉五月 | 国产男女超爽视频在线观看| 亚洲av男天堂| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 老司机福利观看| 一边摸一边抽搐一进一出视频| 精品亚洲乱码少妇综合久久| 黄频高清免费视频| 国产片内射在线| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区三区在线| 男人爽女人下面视频在线观看| 日韩有码中文字幕| 后天国语完整版免费观看| 国产国语露脸激情在线看| 亚洲欧洲日产国产| av在线播放精品| 老司机在亚洲福利影院| 岛国在线观看网站| 夜夜骑夜夜射夜夜干| 一区二区三区四区激情视频| 亚洲三区欧美一区| 日韩精品免费视频一区二区三区| 岛国毛片在线播放| 叶爱在线成人免费视频播放| 这个男人来自地球电影免费观看| tocl精华| 免费在线观看黄色视频的| 亚洲国产av影院在线观看| 国产成人一区二区三区免费视频网站| 国产成人欧美在线观看 | 亚洲色图综合在线观看| 最近最新免费中文字幕在线| 久久99热这里只频精品6学生| 国产97色在线日韩免费| 免费看十八禁软件| 日韩三级视频一区二区三区| 99久久人妻综合| 老熟妇乱子伦视频在线观看 | 2018国产大陆天天弄谢| 欧美日韩福利视频一区二区| 午夜福利在线免费观看网站| 在线永久观看黄色视频| 欧美+亚洲+日韩+国产| 亚洲三区欧美一区| 精品久久久精品久久久| 国产精品一区二区在线不卡| 真人做人爱边吃奶动态| 不卡一级毛片| 国产淫语在线视频| 成人亚洲精品一区在线观看| 香蕉国产在线看| 夜夜夜夜夜久久久久| 午夜福利视频精品| 国产精品影院久久| av超薄肉色丝袜交足视频| 中文字幕最新亚洲高清| 黄色 视频免费看| 国产精品.久久久| 日韩一卡2卡3卡4卡2021年| av电影中文网址| 亚洲第一av免费看| 永久免费av网站大全| 亚洲综合色网址| 一级a爱视频在线免费观看| 1024香蕉在线观看| 99久久国产精品久久久| 9热在线视频观看99| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 国产av国产精品国产| 日韩欧美国产一区二区入口| 日本a在线网址| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影| 国产三级黄色录像| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品一二三区在线看| 久久久久精品人妻al黑| 老司机午夜十八禁免费视频| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 精品国产乱码久久久久久小说| 精品国产国语对白av| 国产成人系列免费观看| 最近最新免费中文字幕在线| 午夜日韩欧美国产| 国产淫语在线视频| 国产国语露脸激情在线看| 欧美人与性动交α欧美软件| 99re6热这里在线精品视频| 日本一区二区免费在线视频| 岛国在线观看网站| 99精品欧美一区二区三区四区| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 精品一品国产午夜福利视频| bbb黄色大片| 一本综合久久免费| 男女之事视频高清在线观看| 亚洲国产精品一区三区| 丁香六月天网| 久久精品亚洲av国产电影网| 丰满少妇做爰视频| 国产不卡av网站在线观看| 美女主播在线视频| 亚洲精品一卡2卡三卡4卡5卡 | 夫妻午夜视频| 国产精品一二三区在线看| 午夜福利免费观看在线| 国产精品一区二区在线不卡| tube8黄色片| 亚洲一区二区三区欧美精品| 99国产精品99久久久久| 少妇被粗大的猛进出69影院| 热99re8久久精品国产| 在线 av 中文字幕| 十八禁网站免费在线| 亚洲av男天堂| 蜜桃国产av成人99| 免费女性裸体啪啪无遮挡网站| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| cao死你这个sao货| 精品卡一卡二卡四卡免费| 国产真人三级小视频在线观看| 又大又爽又粗| 无限看片的www在线观看| 久久久欧美国产精品| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| h视频一区二区三区| 亚洲一码二码三码区别大吗| 亚洲色图综合在线观看| 欧美午夜高清在线| 亚洲国产欧美在线一区| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 淫妇啪啪啪对白视频 | 色94色欧美一区二区| 两性夫妻黄色片| 国产高清videossex| 久久精品亚洲熟妇少妇任你| 韩国精品一区二区三区| 老司机影院毛片| 99香蕉大伊视频| 久久综合国产亚洲精品| 超碰97精品在线观看| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面 | 好男人电影高清在线观看| 国产一区二区三区综合在线观看| 日韩大码丰满熟妇| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区精品| 亚洲黑人精品在线| 欧美日韩视频精品一区| 亚洲欧洲精品一区二区精品久久久| 老熟妇乱子伦视频在线观看 | a级毛片在线看网站| 欧美中文综合在线视频| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 欧美日韩成人在线一区二区| 亚洲av电影在线观看一区二区三区| 亚洲欧美激情在线| 99re6热这里在线精品视频| 久久久国产成人免费| 国产av国产精品国产| 亚洲 国产 在线| 国产免费现黄频在线看| 桃花免费在线播放| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 国产成人影院久久av| 丝袜美腿诱惑在线| 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 中文字幕人妻丝袜制服| 18禁黄网站禁片午夜丰满| 制服人妻中文乱码| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看 | 99国产综合亚洲精品| av片东京热男人的天堂| 精品久久久精品久久久| 国产精品久久久av美女十八| 永久免费av网站大全| 国产精品 欧美亚洲| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 欧美乱码精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 老鸭窝网址在线观看| 欧美久久黑人一区二区| 成人av一区二区三区在线看 | 人妻人人澡人人爽人人| 国产老妇伦熟女老妇高清| 欧美人与性动交α欧美软件| avwww免费| 中文字幕人妻丝袜制服| 十分钟在线观看高清视频www| 在线观看舔阴道视频| 午夜免费观看性视频| 国产精品偷伦视频观看了| 亚洲精品乱久久久久久| 老司机深夜福利视频在线观看 | 纵有疾风起免费观看全集完整版| 亚洲第一欧美日韩一区二区三区 | 美女福利国产在线| 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清 | 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 老熟女久久久| 天堂中文最新版在线下载| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 国产精品九九99| 中文字幕最新亚洲高清| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 国产成+人综合+亚洲专区| av有码第一页| 国产免费视频播放在线视频| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 国产在线观看jvid| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 亚洲av男天堂| 丁香六月天网| 首页视频小说图片口味搜索| 韩国精品一区二区三区| 国产精品秋霞免费鲁丝片| 蜜桃国产av成人99| 波多野结衣一区麻豆| 日韩一区二区三区影片| 麻豆av在线久日| www日本在线高清视频| 国产精品.久久久| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区| 十分钟在线观看高清视频www| www.自偷自拍.com| 国产成人av教育| 另类精品久久| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 亚洲一码二码三码区别大吗| 男人爽女人下面视频在线观看| 日韩欧美免费精品| 午夜91福利影院| 美女高潮到喷水免费观看| 青青草视频在线视频观看| 蜜桃在线观看..| 丰满人妻熟妇乱又伦精品不卡| 日韩电影二区| www.精华液| 男女无遮挡免费网站观看| 精品久久蜜臀av无| 日韩 欧美 亚洲 中文字幕| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| 老司机午夜福利在线观看视频 | 欧美午夜高清在线| 丰满迷人的少妇在线观看| 考比视频在线观看| 91大片在线观看| 国产又色又爽无遮挡免| 亚洲国产精品一区三区| 日本精品一区二区三区蜜桃| xxxhd国产人妻xxx| 女性生殖器流出的白浆| netflix在线观看网站| 亚洲中文av在线| 亚洲 欧美一区二区三区| 精品人妻熟女毛片av久久网站| 国产一区二区 视频在线| 久久久欧美国产精品| 久久久久精品国产欧美久久久 | 免费不卡黄色视频| 自线自在国产av| 1024视频免费在线观看| 制服人妻中文乱码| 日韩大片免费观看网站| 亚洲va日本ⅴa欧美va伊人久久 | 成人亚洲精品一区在线观看| 欧美另类一区| 亚洲av成人不卡在线观看播放网 | 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 国产无遮挡羞羞视频在线观看| 肉色欧美久久久久久久蜜桃| 精品国产乱子伦一区二区三区 | 大码成人一级视频| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 国精品久久久久久国模美| 午夜福利乱码中文字幕| 亚洲国产av新网站| 秋霞在线观看毛片| 亚洲黑人精品在线| 一边摸一边做爽爽视频免费| 欧美精品一区二区免费开放| 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到| 欧美亚洲日本最大视频资源| 女警被强在线播放| 日本91视频免费播放| 少妇的丰满在线观看| 国产精品麻豆人妻色哟哟久久| 91麻豆av在线| 国产精品国产av在线观看| 91大片在线观看| 99精品欧美一区二区三区四区| 久久久久国产一级毛片高清牌| 99热全是精品| 侵犯人妻中文字幕一二三四区| 久久久国产精品麻豆| 青春草亚洲视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 美女高潮喷水抽搐中文字幕| 一区二区av电影网| 97精品久久久久久久久久精品| 十八禁网站免费在线| 黄色片一级片一级黄色片| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 日本av手机在线免费观看| avwww免费| 桃花免费在线播放| 欧美亚洲日本最大视频资源| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 在线观看免费午夜福利视频| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 久久99热这里只频精品6学生| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 青春草亚洲视频在线观看| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 亚洲自偷自拍图片 自拍| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 国产极品粉嫩免费观看在线| 亚洲中文字幕日韩| 永久免费av网站大全| 搡老熟女国产l中国老女人| 99re6热这里在线精品视频| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 国产成人免费观看mmmm| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 精品久久久精品久久久| 天堂中文最新版在线下载| 亚洲精品一卡2卡三卡4卡5卡 | 午夜免费鲁丝| 久久女婷五月综合色啪小说| 老司机影院成人| 亚洲一区二区三区欧美精品| 欧美 日韩 精品 国产| 国产一区二区在线观看av| 日本欧美视频一区| 丰满迷人的少妇在线观看| 美女高潮到喷水免费观看| 免费日韩欧美在线观看| 人成视频在线观看免费观看| 动漫黄色视频在线观看| 极品人妻少妇av视频| 久久狼人影院| 青青草视频在线视频观看| 国产免费现黄频在线看| 亚洲一区中文字幕在线| 亚洲五月婷婷丁香| 人人妻,人人澡人人爽秒播| 老司机福利观看| 久久亚洲国产成人精品v| 亚洲 欧美一区二区三区| 精品国产一区二区三区久久久樱花| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 亚洲专区中文字幕在线| 亚洲综合色网址| 亚洲,欧美精品.| 在线观看免费高清a一片| 香蕉丝袜av| 777久久人妻少妇嫩草av网站| 亚洲美女黄色视频免费看| 伊人久久大香线蕉亚洲五| 可以免费在线观看a视频的电影网站| 久久毛片免费看一区二区三区| 啦啦啦中文免费视频观看日本| 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 热99re8久久精品国产| 亚洲国产看品久久| 久久99热这里只频精品6学生| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 日韩有码中文字幕| 久久狼人影院| 亚洲 欧美一区二区三区| 日韩欧美免费精品| 日韩中文字幕欧美一区二区| 欧美日韩福利视频一区二区| 国产真人三级小视频在线观看| 9色porny在线观看| 国产有黄有色有爽视频| 亚洲欧美激情在线| 性少妇av在线| 欧美午夜高清在线| 黑人操中国人逼视频| 天天操日日干夜夜撸| 国产精品久久久久久精品古装| e午夜精品久久久久久久| 日韩欧美一区二区三区在线观看 | 国产精品秋霞免费鲁丝片| 国产淫语在线视频| 亚洲色图综合在线观看| 久久99一区二区三区| 不卡一级毛片| 老司机午夜福利在线观看视频 | 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 91麻豆精品激情在线观看国产 | av超薄肉色丝袜交足视频| 在线亚洲精品国产二区图片欧美| 欧美一级毛片孕妇| 一二三四社区在线视频社区8| 又黄又粗又硬又大视频| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 黄片播放在线免费| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 成人国语在线视频| 99精品欧美一区二区三区四区| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片| 丝袜喷水一区| 两个人看的免费小视频| 国产精品av久久久久免费| 亚洲三区欧美一区| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 无限看片的www在线观看| 久久性视频一级片| 国产精品久久久av美女十八| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 12—13女人毛片做爰片一| av网站在线播放免费| 精品人妻熟女毛片av久久网站| netflix在线观看网站| 十八禁网站免费在线| 日本猛色少妇xxxxx猛交久久| 国产亚洲午夜精品一区二区久久| 人人妻,人人澡人人爽秒播| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 国产精品av久久久久免费| 亚洲国产欧美网| 黑丝袜美女国产一区| 精品国内亚洲2022精品成人 | 成人手机av| 女人被躁到高潮嗷嗷叫费观| 一区二区av电影网| 91成人精品电影| 成人三级做爰电影| 另类亚洲欧美激情| 精品一区二区三区av网在线观看 | 久久精品aⅴ一区二区三区四区| 91大片在线观看| 在线天堂中文资源库| 亚洲av成人一区二区三| 国产免费福利视频在线观看| 国产高清视频在线播放一区 | 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 少妇人妻久久综合中文| 亚洲国产精品999| 老司机深夜福利视频在线观看 | 黄色 视频免费看| 老司机午夜十八禁免费视频| 精品一区二区三卡| 成人影院久久| 久久久欧美国产精品| 操美女的视频在线观看| 久久久精品免费免费高清| 精品少妇久久久久久888优播| 国产av精品麻豆| 亚洲国产精品成人久久小说| videosex国产| 老司机亚洲免费影院| 人成视频在线观看免费观看| 亚洲精品第二区| 青草久久国产| 午夜免费成人在线视频| 欧美黄色淫秽网站| 青春草视频在线免费观看| 18禁黄网站禁片午夜丰满| 国产深夜福利视频在线观看| 首页视频小说图片口味搜索| 国产欧美日韩一区二区三 | 国产精品国产三级国产专区5o| 久久精品久久久久久噜噜老黄| 国产野战对白在线观看| 国产亚洲午夜精品一区二区久久| 啦啦啦 在线观看视频| 久久久久久久精品精品| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| 十八禁人妻一区二区| 久久国产精品影院| 欧美亚洲 丝袜 人妻 在线| 成人国产一区最新在线观看| 老司机午夜福利在线观看视频 | 每晚都被弄得嗷嗷叫到高潮| 女人精品久久久久毛片| 久久久欧美国产精品| 久久影院123| 国产精品一区二区在线观看99| 一本大道久久a久久精品| 亚洲精华国产精华精| 天天躁夜夜躁狠狠躁躁|