• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome size of 14 species of fireflies (Insecta,Coleoptera, Lampyridae)

    2017-03-26 05:55:34GuiChunLiuZhiWeiDongJinWuHeRuoPingZhaoWenWangXueYanLi650223
    Zoological Research 2017年6期

    Gui-Chun Liu, Zhi-Wei Dong, Jin-Wu He,2, Ruo-Ping Zhao, Wen Wang, Xue-Yan Li,*, , , 650223,

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi’an Shaanxi 710072, China

    INTRODUCTION

    Fireflies, in the family Lampyridae (Coleoptera), are well-known as luminescent insects and include more than 2 000 species in approximately 100 genera of seven subfamilies worldwide(Branham, 2010; Lawrence & Newton, 1995). Different firefly species and their developmental stages exhibit different signaling systems, which play important roles in sexual communication and defense. As such, fireflies are a good model for studying the evolution of luminous signaling systems (Stanger-Hall &Lloyd, 2015; Stanger-Hall et al., 2007), sexual selection, and speciation (Lewis & Cratsley, 2008; Lloyd, 1971,1973; Ohba,1983).

    Eukaryotic genomes not only contain genetic information but also act as structural components that determine nuclear properties and influence various biological features such as cell size, developmental rate, and developmental complexity(Gregory & Hebert, 1999; Koshikawa et al., 2008). Genome size is described by either mass (pg) or number of base pairs(bp) (Gregory, 2005a). Eukaryotic genome size is important as the basis for comparative research into genome evolution and as an estimator of the cost and difficulty of genome sequencing programs for non-model organisms (Gregory, 2005b; Gregory et al., 2007).1

    So far, the genome sizes of 5 635 animal species (3 793 vertebrates and 2 429 invertebrates) have been recorded in the Animal Genome Size Database (Accessed 27 March 2017)(Gregory, 2017). Compared to those of mammals (14.14%, 778 of 5 500 species) and birds (8.96%, 896 of 10 000 species), the genome sizes of invertebrates remain poorly studied regarding abundance and diversity. Of the nearly 1 000 000 described insect species, the genome sizes of only 930 (0.093%) have been estimated. Among them, more than two-thirds are from the Holometabolous orders Diptera (254 species), Coleoptera(181 species), Hymenoptera (153 species), and Lepidoptera(65 species) (Gregory, 2017). Coleoptera (beetles) (ca. 360 000 species) is the largest order in the animal kingdom(Bouchard et al., 2011, 2009), and its 181 species with reported genome size estimates are mainly distributed in nine families (Tenebrionidae: 69; Chrysomelidae: 65; Coccinellidae:39; Dermestidae: 6; Scarabeidae: 3; Dytiscidae: 2; Carabidae:1; Geotrupidae: 1; Silvanidae: 1). For the luminous beetle family (Lampyridae), the genome sizes of 23 species from North America have been described recently (Lower et al.,2017). Here, we report on genome size estimations of 14 firefly species from China.

    To explore firefly genome size evolution and estimation of the cost and difficulty of future genome sequencing programs, we performedC-value measurements for 14 firefly species (two genera in Lampyrinae, three genera in Luciolinae, and one genera in subfamilyincertae sedis) using flow cytometry.Although many methods for the estimation of genome size have been described, most genome size estimates in both animal and plant species estimations have been conducted using flow cytometry (Galbraith et al., 1983; Gregory et al., 2013; Hare &Johnston, 2011). We also constructed a phylogenetic tree of the 14 species using a mitochondrial cytochrome oxidase subunit 1(COI) gene fragment and discussed firefly genome size evolution in the phylogenetic context. The relationships of genome size to morphological traits such as body length, body width, antennal length, and eye width were also described.

    MATERIALS AND METHODS

    Sampling and observation of morphological characteristics Specimens of 14 firefly species from Yunnan, Hainan, and Hubei provinces of China were used for genome size estimation and body size measurement (Table 1). Some live specimens were used for estimation of genome size, with the remaining samples kept in 75% alcohol for morphological observation and body size measurement. All morphological observations and measurements were carried out under a dissecting microscope(SMZ 800, Nikon, Japan) according to Jeng et al.(2007). All measurements were based on male adults as females were difficult to collect. The abbreviations BL, BW, EL, ELW, PL, AL,and EYW represent body length, body width, elytral length,elytral width, pronotal length, antennal length, and eye width,respectively. BL is the sum of PL and EL (BL=PL+EL), BW is the greatest distance across the elytra, and EYW denotes thesmallest interocular width (measured horizontally). Male genitalia were also dissected and examined under a dissecting microscope to help with specimen identification. According to previous morphological descriptions (Ballantyne et al., 2013; Jeng et al.,2000), all species were at least assigned to genus. For the four species with both male and female samples, live specimens collected at the same locality and time were observed to mate.Combined with their morphology, we confirmed they were of the same species.

    Table 1 Sample information in this study

    For the males of each species, the brains of 3–6 live specimens were dissected for estimating genome size, with the thoraxes and abdomens were directly kept in –80 °C for genomic DNA extraction of single individuals when necessary. At least four males for each species were kept in 75% ethanol as voucher specimens. For females of the four species (Lamprigera yunnana,Abscondita terminalis,Pygoluciola qingyu, andPygoluciola sp1), brains of 4–6 live specimens were dissected to use for estimating genome size.

    Flow cytometry

    Genome size was estimated using flow cytometry (Bennett et al., 2003; Li et al., 2015). As with genome size estimation of other insects, such as the ladybird beetle (Gregory et al., 2003)and butterfly (Jiggins et al., 2005; Li et al., 2015), the model insectDrosophila melanogaster(genome size 176 Mb) (Bosco et al., 2007; Gregory & Johnston, 2008) was selected as the standard. Brain tissue from single firefly adults or larvae and the heads of 10Drosophila melanogaster(Dm) adults were dissected under a dissecting microscope (SMZ 800, Nikon,Japan) and added to 60 μL of cold Galbraith buffer (Galbraith et al., 1983) in 1.5 mL Eppendorf tubes in Pestles (Sigma, USA)issue grinder, stroked 40 times with a pestle, and then added to cold Galbraith buffer to get a final volume of 400 μL for Lampyridae and 1 000 μL forDm. Except forPyrocoelia pygidialis, we prepared cell suspensions from 3–6 males and 4–6 females of Lampyridae as biological replicates. ForP.pygidialis, only two larva individuals were used as biological replicates because no live adults were collected during the experimental period. Finally, theDmand firefly cell suspensions were filtered through a 20 μm nylon filter. After this, 50 μL of theDmcell suspension was added to 1.5 mL Eppendorf tubes containing 350 μL of the Lampyridae cell suspension. Propidium iodide was added to a final concentration of 50 parts per million,and the mixture was co-stained in the dark at 4 °C for 30–40 min. The fluorescence of co-stained nuclei for each sample was quantified using an LSR Fortessa (BD, USA) with the laser tuned at 561 nanometers. The DNA content (pg) was determined by comparing the ratio of the 2C mean of the tested samples with the 2C mean forDm(1C=0.18 pg) (Bennett et al.,2003; Galbraith et al., 1983). Genome size (bp) was calculated from DNA content (pg) following the formula (Dolezel et al.,2003): genome size (bp)=(0.978×109)×DNA content (pg).According to this formula, eachC-value was calculated based on the main peak of the 2C cells.

    DNA extraction, PCR amplification, and sequencing

    The genomic DNA of fireflies was obtained from the thorax and abdomen of a single male individual. DNA extractions were performed using a Gentra Puregene Blood Kit (Qiagen,Germany) following the manufacturer’s protocols. The primers C1-J-2183 (5'-CAACATTTATTTTGATTTTTTGG-3') and TL2-J-3014 (5'-TCCAATGCACTAATCTGCCATATTA-3') (Lower et al.,2017; Simon et al., 1994) were used for amplification of the a part (about 800 bp) of the mitochondrialCOIgene. The 20 μL reaction mixture consisted of 10 μL of 2×Trans Direct PCR SuperMix (Trans Direct Animal Tissue PCR Kit), 1 μL of forward primer (C1-J-2183) (10 μmol/L), 1 μL of reverse primer (TL2-J-3014) (10 μmol/L), 1 μL of DNA template, and 7 μL of ddH2O.The amplification protocol was as follows: initial denaturation and enzyme activation for 5 min at 94 °C, followed by 35 cycles for 30 s at 95 °C, 30 s at 55 °C, 60 s at 72 °C, with a final extension of 7 min at 72 °C, and 10 °C hold. The PCR products were electrophoresed using 1% agarose gel and sequenced by BioSune BiotechnologyCo., Ltd (ShangHai, China).. TheCOIsequences of seven species were from our firefly mitogenome project (MG200080–MG200086); and those of the other seven species were from the current study and were deposited in GenBank under accession numbers (MF375910–MF375916).

    Phylogenetic analysis

    All sequences were aligned using ClustalW and analyzed using MEGA 7.0 software (Kumar et al., 2016) and MrBayes version 3.1.2 (Huelsenbeck & Ronquist, 2001). Interspecific and intraspecific sequence divergences were calculated using the General Time Reversible (GTR+G+I) model with the pairwise deletion option in MEGA 7.0. Based on the GTR+G+I model,maximum likelihood (ML) tree was constructed using MEGA 7.0.Node supports for ML were inferred with bootstrap analysis(500 replicates). The Bayesian tree was established with MrBayes Version 3.1.2. The GTR+I+G model was selected via Modeltest version 3.7 and MCMC was run for 300 000 generations. The average standard deviation of split frequencies reached a value less than 0.01, with the Bayesian posterior probabilities calculated from the sample points after the MCMC algorithm started to converge (Zhan & Fu, 2011).Rhagophthalmus lufengensisandRhagophthalmus ohbai(GenBank accession No. DQ888607.1 and AB267275.1,respectively) were used as outgroups (Li et al., 2007). We used molecular phylogeny to correct for nonindependence of related species (Felsenstein, 1985; Lower et al., 2017).

    Analysis of relationship between body size and genome size

    Body size measurements, including BL, BW, AL, and EYW were determined based on 4–5 male individuals (Table 2). The relationships between genome size and body size were plotted using ggplot2 (Wickham, 2016). Phylogenetic generalized least squares (PGLS) in the R package nlme (Pinheiro et al., 2017)was used to analyze correlations between genome size and explanatory variables.

    RESULTS

    Firefly morphology

    Considering that identification of fireflies at the species level is still unclear, especially for those species distributed in China,we assigned some specimens as speciesincertae sedis(sp) at a defined genus, and described their morphology (Figure 1,Table 2).Lamprigerawas placed in the subfamilyincertae sedis(Martin et al., 2017). Three species ofLamprigerahad similar outer shapes (Figure 1A–C), but could be separated by their genital morphology. Three species ofDiaphaneswere easily separated by their antennae (Figure 1D–F). Four species ofPyrocoeliawere separated by their wing and luminous organs(Figure 1G–J). Four species of Luciolinae were separated into three genera, includingAbscondita,Pygoluciola, andLuciolaby their wing, abdomen, luminous organs, and genitalia (Figure 1K–N).

    Table 2 Summary of the genome size (GS, in pg and Mb) of males of 14 firefly species and body size information, including body length(BL), body width (BW), antennal length (AL), and eye width (EYW)

    Firefly genome size and evolution

    Flow cytometry showed distinct peak(s) for the different species(Figure 2). Nuclei from the heads of the 10Dmspecimens and the brain of a singleLamprigera sp3male produced a single,broad 2C peak (Figure 2A–B), whereas mixtures of the heads ofD. melanogasterand brain of theLamprigerasp1male produced two broad 2C peaks (Figure 2C).

    The haploid genome sizes of Lampyridae males ranged from 0.42 (Pyrocoelia sp3) to 1.31 pg (Lamprigera sp1) (411 Mb to 1 281 Mb) (Table 2), demonstrating 3.1-fold variation (Table 3).For four species:Lamprigera yunnana, Abscondita terminalis,Pygoluciola qingyu, Pygoluciola sp1, we also estimated the genome sizes of female individuals, which were found to be similar to those of the males (Table 4).

    To explore the evolution of genome size within Lampyridae,we constructed a molecular phylogenetic tree for the tested species using the mitochondrialCOIsequences, which supported morphological taxonomy at the subfamily and genera levels (Table1, Figure 3).

    Relationship between genome size and body size in fireflies

    We explored the relationships between genome size and body size measurements, including BL, BW, AL, and EYW (Table 2).Our data showed no significant associations between firefly genome size and BL (r2=0.011,P=0.726,λ=1), BW (r2=0.016,P=0.669,λ=1), EYW (r2=0.11,P=0.241,λ=1), and AL (r2=0.045,P=0.469,λ=0.996) (Figure 4). We further performed PGLS analysis between BL, AL, EYW and phylogeny. The parameters of AL, EYW (λ=1), and BW (λ=0.996) indicated complete dependence on genome size between phylogeny and morphological traits. Pagel’s parameter estimates for genome size supported a Brownian motion model of evolution and complete phylogenetic dependence (λ=1.00, 95%) supported a neutral model (Lower et al., 2017).

    DISCUSSION

    Based on 39 species in 27 genera, the family Coccinellidae shows a large 26-fold genome variation (0.19–5.02 pg) (Table 3), with a considerable 21.7-fold variation also detected in

    Figure 1 Habitus of 14 firefly species (All figures show dorsal view on the left and ventral on the right)

    Figure 2 Number of nuclei measured by propidium iodide fl uorescence PI(PMT4)-stained flow cytometry

    Table 3 Comparison of genome size for fireflies (Lampyridae) and other beetle families with described genome size

    Table 4 Summary of genome sizes (GS, in pg and Mb) of males and females from four firefly species

    Chrysomelidae (0.17–3.69 pg) according to 65 species in 27 genera (Gregory, 2017). A small 1.2-fold variation of genome size is reported in the family Dytiscidae (1.01–1.22 pg), though this is based on estimates of only two species. Our data from 14 species of six genera showed that the male haploid genome size in Lampyridae exhibited 3.1-fold variation (Table 3), which is relatively small compared to those of other currently estimated beetle families (Gregory, 2017) (Table 3).Nevertheless, compared to 2 000 species in more than 100 genera of seven subfamilies, the tested species in this study accounted for only a small proportion. Thus, more species,subfamilies, and genera, as well as different geographical distributions, are needed to better explore the evolution of firefly genomes. As Gregory (2002) states, theC-value enigma is a‘complex and multifaceted puzzle, immune to one dimensional explanations’.

    Figure 3 Phylogenetic trees of fireflies included in this study

    Figure 4 Relationships between diploid genome size and body size (mm) in fireflies

    Based on the phylogenetic relationship of the 14 species, our data suggest that genome sizes are very varied in Lampyridae.TheLamprigeraspecies in subfamilyincertae sedisexhibited a relatively large genome size of more than 1 pg (Table 2; Figure 3), which is less than 2-fold that of somePyrocoeliaspecies.The genome sizes of both Lampyrinae and Luciolinae ranged more than 2-fold. In Lampyrinae,Pyrocoeliaspecies had relatively small genomes, spanning 0.42–0.75 pg (411–737 Mb),including the smallest known genome (0.42 pg, 411 Mb) in Lampyridae (Table 2);Diaphanesspecies showed relatively large genome size variation, spanning from 0.53–1.2 pg (513–1 174 Mb), in whichDiaphanes sp2andDiaphanes nubilus,despite being closely related (Figure 3), showed 1.17-fold genome variation (Table 2). In Luciolinae, the genome sizes ofPygoluciola sp1 and Pygoluciola qingyuwere 0.74 pg (728 Mb)and 1.21 pg (1 096 Mb), respectively;Absconditaterminalishad a relatively small genome (0.5 pg, 491 Mb), but relatedLuciola(L. sp6) species had a large genome (1.29 pg, 1 259 Mb) (Table 2;Figure 3).

    Except forLamprigera yunnana, three species in Luciolinae exhibited slightly larger genomes in females than in males.According to karyotypic analysis of species in the subfamilies Lampyrinae, Luciolinae, and Photurinae, Lampyridae frequently showed X0/XX karyotype sex determination, with males of X0 and females of XX (Dias et al., 2007), possibly explaining the slightly larger genome size in females than in males. Combined with the facts that the neoXY type was also reported from one species in Photurinae (Bicellonycha lividipennis) and the supernumerary chromosome found in some species of Lampyrinae (Dias et al., 2007) and thatLamprigerastill has a disputable position at the subfamily level (Jeng et al., 2000; Li et al., 2006), it is too early to explain the slight differences in genome size detected between males and females of this genera. Further karyotypic analyses of these genera should help to settle this question.

    Our data showed no significant association between the firefly genome size and morphological traits such as BL, BW,and EYW (Figure 4). Previous data also support no correlation between genome size and body size in the beetle family Coccinellidae (Gregory et al., 2003) and in North American species (Lower et al., 2017). However, for thePimeliaandPhylangenera in the beetle family Tenebrionidae, negative correlations between genome size and body size have been reported (Palmer & Petitpierre, 1996; Palmer et al., 2003). For other insects such as aphids (Finston et al., 1995; Gokhman et al., 2017) and mosquitos (Ferrari & Rai, 1989) and other invertebrates such as turbellarian flatworms (Finston et al., 1995)and copepods (Gregory et al., 2000), a positive relationship between body size and genome size has been described.

    Although the study of animal genome size has been ongoing for more than half a century, there is still a need to estimate the genome sizes of more animal groups by flow cytometry and further explore the evolution of genome size. Fast though costly next-generation sequencing technology will provide a complementary role for genome surveys, including genome size and complexity (Li et al., 2015). In summary, our study provides an estimation of the cost and difficulty of genome sequencing programs for non-model organisms, and will help promote studies on firefly genome evolution.

    ACKNOWLEDGEMENTS

    We would like to thank the anonymous colleagues and villagers for help in collecting the firefly specimens used in this study. We also thank Lei Chen and Wei Liu for their comments on this manuscript

    Ballantyne L, Fu X, Lambkin C, Jeng ML, Faust L, Wijekoon WMCD, Li D,Zhu T. 2013. Studies on South-east Asian fireflies:Abscondita, a new genus with details of life history, flashing patterns and behaviour ofAbs.chinensis(L.) andAbs.terminalis(Olivier) (Coleoptera: Lampyridae:Luciolinae.Zootaxa,3721: 1–48.

    Bennett MD, Leitch IJ, Price HJ, Johnston JS. 2003. Comparisons withCaenorhabditis(~100 Mb) andDrosophila(~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis genome initiative estimate of ~125 Mb.Annals of Botany,91(5): 547–557.

    Bosco G, Campbell P, Leiva-Neto JT, Markow TA. 2007. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species.Genetics,177(3): 1277–1290.

    Bouchard P, Grebennikov VV, Smith ABT, Douglas H. 2009. Biodiversity of coleoptera.In: Foottit RG, Adler PH. Insect Biodiversity: Science and Society. Blackwell: Blackwell Publishing, 265–301.

    Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF,Lyal CH, Newton AF, Reid CA, Schmitt M, Slipiński SA, Smith AB. 2011.Family-group names in Coleoptera (Insecta).ZooKeys,(88): 1–972.

    Branham MA. 2010. Lampyridae latreille, 1817.In: Leschen RAB, Beutel RG, Lawrence JF. Handbook of Zoology, vol IV, Arthropoda: Insecta,Teilband 39, Coleoptera, Beetles, vol 2, Morphology and Systematics.Berlin: Walter de Gruyter, 141–149.

    Dias CM, Schneider MC, Rosa SP, Costa C, Cella DM. 2007. The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna.Acta Zoologica,88(4): 309–316.

    Dolezel J, Bartos J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human.Cytometry A,51(2): 127–128.

    Felsenstein J. 1985. Phylogenies and the comparative method.American Naturalist,125(1): 1–15.

    Ferrari JA, Rai KS. 1989. Phenotypic correlates of genome size variation inAedesalbopictus.Evolution: International Journal of Organic Evolution,43(4): 895–899.

    Finston TL, Hebert PDN, Foottit RB. 1995. Genome size variation in aphids.Insect Biochemistry and Molecular Biology,25(2): 189–196.

    Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues.Science,220(4601): 1049–1051.

    Gokhman VE, Kuhn KL, Woolley JB, Hopper KR. 2017. Variation in genome size and karyotype among closely related aphid parasitoids (Hymenoptera,Aphelinidae).Comparative Cytogenetics,11(1): 97–117.

    Gregory TR, Hebert PDN. 1999. The modulation of DNA content: proximate causes and ultimate consequences.Genome Research,9(4): 317–324.

    Gregory TR, Hebert PDN, Kolasa J. 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods.Heredity (Edinburgh),84(Pt 2): 201–208.

    Gregory TR. 2002. Genome size and developmental complexity.Genetica,115(1): 131–146.

    Gregory TR, Nedvěd O, Adamowicz SJ. 2003. C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae).Hereditas,139(2):121–127.

    Gregory TR. 2005a. The C-value enigma in plants and animals: a review of parallels and an appeal for partnership.Annals of Botany,95(1): 133–146.Gregory TR. 2005b. The Evolution of the Genome. San Diego, CA: Elsevier.Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD. 2007. Eukaryotic genome size databases.Nucleic Acids Research,35(S): D332–D338.

    Gregory TR, Johnston JS. 2008. Genome size diversity in the family Drosophilidae.Heredity (Edinb),101(3): 228–238.

    Gregory TR, Nathwani P, Bonnett TR, Huber DPW. 2013. Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation.Genome,56(9): 505–510.

    Gregory TR. 2017. Animal genome size database. http://www.genomesize.com. (Accessed March 27, 2017).

    Hare EE, Johnston JS. 2011. Genome size determination using flow cytometry of propidium iodide-stained nuclei.Methods in Molecular Biology,772: 3–12.

    Huelsenbeck JP, Ronquist F. 2001. MRBAYES: bayesian inference of phylogenetic trees.Bioinformatics,17(8): 754–755.

    Jeng ML, Lai J, Yang PS, Sat? M. 2000. Notes on the taxonomy ofLamprigerayunnana(Fairmaire) and the genusLamprigeraMotschulsky(Coleoptera: Lampyridae).Japanese Journal of Systematic Entomology,6(2): 313–319.

    Jeng ML, Yang PS, Engel MS. 2007. The firefly genusVestain Taiwan(Coleoptera: lampyridae).Journal of the Kansas Entomological Society,80(4): 265–280.

    Jiggins CD, Mavarez J, Beltrán M, McMillan WO, Johnston JS, Bermingham E. 2005. A genetic linkage map of the mimetic butterflyHeliconiusmelpomene.Genetics,171(2): 557–570.

    Koshikawa S, Miyazaki S, Cornette R, Matsumoto T, Miura T. 2008.Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches(Insecta, Dictyoptera, Cryptocercidae).Naturwissenschaften,95(9): 859–867.

    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular Biology and Evolution,33(7): 1870–1874.

    Lawrence JF, Newton AF. 1995. Families and subfamilies of Coleoptera(with selected genera, notes, references and data on family-group names).InPakaluk J, Slopinski SA. Biology, Phylogeny, and classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson.Wilcza: Muzeum I Instytut zoologii Polska Akademia Nauk ul, 849–863.

    Lewis SM, Cratsley CK. 2008. Flash signal evolution, mate choice, and predation in fireflies.Annual Review of Entomology,53: 293–321.

    Li X, Yang S, Liang XC. 2006. Phylogeny of fireflies (Coleoptera: Lampyridae)inferred from mitochondrial 16S ribosomal DNA, with references to morphological and ethological traits. Progress in Natural sciences. 16 (8):817–826

    Li XY, Ogoh K, Ohba N, Liang XC, Ohmiya Y. 2007. Mitochondrial genomes of two luminous beetles,RhagophthalmuslufengensisandR.ohbai(Arthropoda, Insecta, Coleoptera).Gene,392(1–2): 196–205.

    Li XY, Fan DD, Zhang W, Liu GC, Zhang L, Zhao L, Fang XD, Chen L,Dong Y, Chen Y, Ding Y, Zhao RP, Feng MJ, Zhu YB, Feng Y, Jiang XT, Zhu DY, Xiang H, Feng XK, Li SC, Wang J, Zhang GJ, Kronforst MR, Wang W.2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies.Nature Communications,6: 8212.

    Lloyd JE. 1971. Bioluminescent Communication in Insects.Annual Review of Entomology,16: 97–122.

    Lloyd JE. 1973. Model for the mating protocol of synchronously flashing fireflies.Nature,245(5423): 268–270.

    Lower SS, Johnston JS, Stanger-Hall KF, Hjelmen CE, Hanrahan SJ,Korunes K, Hall D. 2017. Genome size in North American fireflies:substantial variation likely driven by neutral processes.Genome Biology and Evolution,9(6): 1499–1512.

    Martin GJ, Branham MA, Whiting MF, Bybee SM. 2017. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies

    (Coleoptera: Lampyridae).Molecular Phylogenetics and Evolution,107:564–575.

    Ohba N. 1983. Studies on the communication system of Japanese fireflies.Science Report of Yokosuka City Museum,30: 1–62.

    Palmer M, Petitpierre E. 1996. Relationship of genome size to body size inPhylan semicostatus(Coleoptera: Tenebrionidae).Annals of the Entomological Society of America,89(2): 221–225.

    Palmer M, Petitpierre E, Pons J. 2003. Test of the correlation between body size and DNA content inPimelia(Coleoptera: Tenebrionidae) from the Canary Islands.European Journal of Entomology,100(1): 123–129.

    Pinheiro J, Bates D, DebRoy S, Sarkar D, Eispack., Heisterkamp S, van Willigen B, R-core. 2017. nlme: linear and nonlinear mixed effects models.R package version: 3.1–131.

    Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution,weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Annals of the Entomological Society of America,87(6): 651–701.

    Stanger-Hall KF, Lloyd JE, Hillis DM. 2007. Phylogeny of North American fireflies (Coleoptera: Lampyridae): implications for the evolution of light signals.Molecular Phylogenetics and Evolution,45(1): 33–49.

    Stanger-Hall KF, Lloyd JE. 2015. Flash signal evolution inPhotinusfireflies:character displacement and signal exploitation in a visual communication system.Evolution: International Journal of Organic Evolution,69(3): 666–682.

    Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nded.New York: Springer.

    Zhan AB, Fu JZ. 2011. Past and present: phylogeography of theBufo gargarizansspecies complex inferred from multi-loci allele sequence and frequency data.Molecular Phylogenetics and Evolution,61(1): 136–148.

    国产老妇伦熟女老妇高清| 人妻人人澡人人爽人人| 欧美日韩亚洲高清精品| 秋霞伦理黄片| 寂寞人妻少妇视频99o| 亚洲欧洲国产日韩| 激情五月婷婷亚洲| 人妻系列 视频| 一级爰片在线观看| 国产有黄有色有爽视频| 中国三级夫妇交换| 精品卡一卡二卡四卡免费| 免费在线观看成人毛片| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 大码成人一级视频| 日韩亚洲欧美综合| 成人美女网站在线观看视频| 日本黄大片高清| 最近最新中文字幕免费大全7| 午夜福利视频精品| a级毛色黄片| 国产日韩欧美亚洲二区| h日本视频在线播放| 哪个播放器可以免费观看大片| 亚洲精品国产色婷婷电影| 国产片特级美女逼逼视频| 在线观看人妻少妇| 寂寞人妻少妇视频99o| 女人精品久久久久毛片| 日韩免费高清中文字幕av| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡 | 人人妻人人看人人澡| 久久99一区二区三区| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 欧美日韩精品成人综合77777| 综合色丁香网| 国产精品一二三区在线看| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 欧美3d第一页| 国产黄片美女视频| 黑人高潮一二区| 一级毛片我不卡| 中文字幕人妻熟人妻熟丝袜美| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 能在线免费看毛片的网站| 又爽又黄a免费视频| av天堂中文字幕网| xxx大片免费视频| 99久国产av精品国产电影| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av | 成年女人在线观看亚洲视频| 国产成人精品无人区| 在线观看三级黄色| 99热6这里只有精品| 欧美变态另类bdsm刘玥| 少妇人妻一区二区三区视频| 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 亚洲av二区三区四区| 五月伊人婷婷丁香| 午夜老司机福利剧场| 丁香六月天网| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 麻豆精品久久久久久蜜桃| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 免费观看无遮挡的男女| 欧美成人午夜免费资源| 大陆偷拍与自拍| 少妇人妻久久综合中文| 五月天丁香电影| 亚洲三级黄色毛片| 男女边摸边吃奶| 成人影院久久| 嘟嘟电影网在线观看| 日本黄色日本黄色录像| 99久久中文字幕三级久久日本| 国语对白做爰xxxⅹ性视频网站| 91成人精品电影| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 另类亚洲欧美激情| av福利片在线| 一本一本综合久久| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 国产视频内射| 色婷婷av一区二区三区视频| 成人特级av手机在线观看| 一级二级三级毛片免费看| 成人无遮挡网站| 少妇精品久久久久久久| 婷婷色麻豆天堂久久| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 亚洲成色77777| 久久久久久伊人网av| 色婷婷久久久亚洲欧美| 国产伦精品一区二区三区四那| 最新的欧美精品一区二区| 国产综合精华液| 极品教师在线视频| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图 | 国产乱来视频区| 国产伦在线观看视频一区| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 久久久国产欧美日韩av| 亚洲av中文av极速乱| 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频 | 国产视频内射| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看| 曰老女人黄片| 国产一区二区三区综合在线观看 | 亚洲熟女精品中文字幕| 免费观看的影片在线观看| 精品视频人人做人人爽| 日本av免费视频播放| 国产成人a∨麻豆精品| 在线观看人妻少妇| 中文欧美无线码| 中文字幕av电影在线播放| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 赤兔流量卡办理| 美女主播在线视频| 中文字幕精品免费在线观看视频 | 一级爰片在线观看| 久久国产乱子免费精品| 精品一区二区三区视频在线| 十八禁网站网址无遮挡 | 秋霞伦理黄片| 国产伦精品一区二区三区视频9| 婷婷色综合www| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 精品少妇内射三级| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 女性被躁到高潮视频| kizo精华| 亚洲综合色惰| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| 久久久久视频综合| 亚洲精品第二区| 亚洲国产日韩一区二区| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 边亲边吃奶的免费视频| 91精品伊人久久大香线蕉| 久久狼人影院| 亚洲av成人精品一二三区| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 国产成人91sexporn| 日韩 亚洲 欧美在线| 久久久久国产网址| 国产精品三级大全| 乱人伦中国视频| av网站免费在线观看视频| 久久久久久久精品精品| 午夜免费观看性视频| 看非洲黑人一级黄片| 热99国产精品久久久久久7| 人妻一区二区av| 九九久久精品国产亚洲av麻豆| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 日韩强制内射视频| 中文字幕人妻熟人妻熟丝袜美| 男人舔奶头视频| 卡戴珊不雅视频在线播放| 在线观看一区二区三区激情| 男人舔奶头视频| 亚洲成人手机| 国产精品99久久久久久久久| 国产男女内射视频| 精品亚洲成a人片在线观看| 国产精品国产三级专区第一集| 毛片一级片免费看久久久久| 欧美人与善性xxx| www.色视频.com| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜制服| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 久久久久久久大尺度免费视频| 亚洲欧美精品自产自拍| 精品少妇内射三级| 99re6热这里在线精品视频| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 久久久亚洲精品成人影院| 黄色毛片三级朝国网站 | av在线播放精品| 精品久久久噜噜| 一区在线观看完整版| 国产淫片久久久久久久久| 日本黄色日本黄色录像| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 国产成人精品无人区| 国产免费视频播放在线视频| 国产精品不卡视频一区二区| 亚洲内射少妇av| 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 中文天堂在线官网| 99久久精品国产国产毛片| 内射极品少妇av片p| 中文精品一卡2卡3卡4更新| 久久狼人影院| 中国三级夫妇交换| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 成人亚洲欧美一区二区av| 久久午夜综合久久蜜桃| 成人午夜精彩视频在线观看| 国产一区二区在线观看av| 三级国产精品片| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 97在线视频观看| 高清在线视频一区二区三区| 日韩精品有码人妻一区| 亚洲成人一二三区av| 国内少妇人妻偷人精品xxx网站| 精品国产国语对白av| 久久久精品免费免费高清| 精品国产一区二区久久| 美女视频免费永久观看网站| 在线观看av片永久免费下载| 国产精品久久久久成人av| 十八禁网站网址无遮挡 | 精品酒店卫生间| 国产亚洲最大av| 久久久国产欧美日韩av| 亚洲综合色惰| 久久久久久久国产电影| 如日韩欧美国产精品一区二区三区 | 精品国产乱码久久久久久小说| 亚洲欧美日韩另类电影网站| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 高清视频免费观看一区二区| 精品一区在线观看国产| 精品视频人人做人人爽| 午夜激情久久久久久久| 精品久久久噜噜| www.色视频.com| 如何舔出高潮| 亚洲精品亚洲一区二区| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 亚洲av免费高清在线观看| 亚洲成色77777| 亚洲精品久久午夜乱码| 久久av网站| 黑人猛操日本美女一级片| 午夜影院在线不卡| 免费不卡的大黄色大毛片视频在线观看| 中文字幕制服av| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 久久99一区二区三区| 午夜老司机福利剧场| 国产成人精品福利久久| 精品久久久久久久久av| 久久精品夜色国产| 久久这里有精品视频免费| 亚洲国产欧美日韩在线播放 | 日韩中字成人| 嫩草影院入口| 亚洲第一av免费看| 国产有黄有色有爽视频| 久久久久视频综合| 狂野欧美激情性bbbbbb| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 久久6这里有精品| 97在线人人人人妻| 99精国产麻豆久久婷婷| 国产欧美另类精品又又久久亚洲欧美| 女性被躁到高潮视频| 午夜免费男女啪啪视频观看| 精品久久久久久久久亚洲| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 精品少妇内射三级| 欧美最新免费一区二区三区| 国产成人免费无遮挡视频| 国产精品不卡视频一区二区| 亚洲av电影在线观看一区二区三区| 日韩电影二区| 啦啦啦在线观看免费高清www| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 国产精品福利在线免费观看| 亚洲av综合色区一区| 久久久午夜欧美精品| av女优亚洲男人天堂| 国产免费福利视频在线观看| 精品一区二区三区视频在线| 亚洲av欧美aⅴ国产| 日本欧美国产在线视频| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 亚洲成色77777| 美女福利国产在线| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 日本黄色日本黄色录像| 久久6这里有精品| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 卡戴珊不雅视频在线播放| 久久久久国产网址| 精品少妇内射三级| 插逼视频在线观看| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线| 99久国产av精品国产电影| 精品熟女少妇av免费看| 日韩亚洲欧美综合| a级毛片在线看网站| 国产精品99久久99久久久不卡 | 日韩强制内射视频| 久久av网站| 国产精品女同一区二区软件| 日韩,欧美,国产一区二区三区| 青青草视频在线视频观看| 伦精品一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精华国产精华液的使用体验| 青春草亚洲视频在线观看| 人人妻人人看人人澡| 亚洲欧洲精品一区二区精品久久久 | 99久久人妻综合| 日韩制服骚丝袜av| 一级爰片在线观看| 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 亚洲国产av新网站| 色视频www国产| 人人妻人人看人人澡| 国产精品久久久久久久电影| av天堂久久9| 久久久久久人妻| 街头女战士在线观看网站| av一本久久久久| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 十八禁网站网址无遮挡 | 亚洲国产成人一精品久久久| 久久免费观看电影| 美女福利国产在线| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 久久精品国产a三级三级三级| 国产亚洲5aaaaa淫片| 欧美日韩av久久| 熟女电影av网| 十分钟在线观看高清视频www | 日韩欧美一区视频在线观看 | 青春草国产在线视频| 在线天堂最新版资源| 成人影院久久| 久久鲁丝午夜福利片| 日日爽夜夜爽网站| 全区人妻精品视频| av女优亚洲男人天堂| 亚洲av中文av极速乱| 久久精品久久久久久久性| 欧美日韩精品成人综合77777| 久久久久久人妻| 亚洲av.av天堂| 国产色爽女视频免费观看| 午夜激情久久久久久久| 亚洲精品一二三| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频 | 美女脱内裤让男人舔精品视频| 国产亚洲精品久久久com| 欧美精品一区二区大全| 日韩一区二区三区影片| 国产极品粉嫩免费观看在线 | 蜜桃在线观看..| 久久综合国产亚洲精品| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 国产欧美日韩一区二区三区在线 | 大香蕉97超碰在线| 亚洲精品日韩在线中文字幕| 国产精品伦人一区二区| 69精品国产乱码久久久| 赤兔流量卡办理| 在线精品无人区一区二区三| 91精品伊人久久大香线蕉| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久99久久久不卡 | 久久97久久精品| 大陆偷拍与自拍| 中文乱码字字幕精品一区二区三区| 亚洲精品自拍成人| 如何舔出高潮| 97超视频在线观看视频| 人人妻人人看人人澡| 只有这里有精品99| 丝袜在线中文字幕| 日本vs欧美在线观看视频 | 天美传媒精品一区二区| 欧美区成人在线视频| 久久久久网色| 自拍偷自拍亚洲精品老妇| 精品99又大又爽又粗少妇毛片| 丰满人妻一区二区三区视频av| 日韩精品免费视频一区二区三区 | 久久99蜜桃精品久久| 国产欧美日韩一区二区三区在线 | 老司机亚洲免费影院| 一级,二级,三级黄色视频| 男人狂女人下面高潮的视频| 七月丁香在线播放| 久久毛片免费看一区二区三区| 亚洲精品久久午夜乱码| av.在线天堂| 国产精品99久久99久久久不卡 | 国产免费视频播放在线视频| 亚洲国产精品一区二区三区在线| 在线观看www视频免费| 亚洲欧洲国产日韩| 久久国产精品男人的天堂亚洲 | 国产精品欧美亚洲77777| 内射极品少妇av片p| 欧美日韩国产mv在线观看视频| 伊人亚洲综合成人网| 国产一级毛片在线| 爱豆传媒免费全集在线观看| 熟女av电影| 亚洲成人手机| 精品人妻偷拍中文字幕| 三上悠亚av全集在线观看 | 欧美老熟妇乱子伦牲交| 美女内射精品一级片tv| 天天躁夜夜躁狠狠久久av| 欧美 日韩 精品 国产| 成人国产av品久久久| 国产精品一区二区三区四区免费观看| 99久国产av精品国产电影| 亚洲真实伦在线观看| av线在线观看网站| 国产亚洲午夜精品一区二区久久| 国产一区二区三区综合在线观看 | 美女内射精品一级片tv| 久久久亚洲精品成人影院| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 久久av网站| 丰满少妇做爰视频| 2022亚洲国产成人精品| 丝瓜视频免费看黄片| 国产精品免费大片| av有码第一页| 亚洲国产色片| 五月伊人婷婷丁香| 久久狼人影院| 中文字幕av电影在线播放| 三级国产精品欧美在线观看| 国产精品久久久久久久久免| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品一二三| av国产久精品久网站免费入址| a级毛片在线看网站| 久久久久久久国产电影| 精品久久国产蜜桃| 国产白丝娇喘喷水9色精品| 成年人午夜在线观看视频| 亚洲美女黄色视频免费看| 老女人水多毛片| 一级二级三级毛片免费看| 九九在线视频观看精品| 韩国av在线不卡| 色婷婷av一区二区三区视频| 日韩在线高清观看一区二区三区| 性色avwww在线观看| 久久99精品国语久久久| av在线app专区| 激情五月婷婷亚洲| 成人亚洲欧美一区二区av| 亚洲精品成人av观看孕妇| www.色视频.com| 日韩在线高清观看一区二区三区| 能在线免费看毛片的网站| 汤姆久久久久久久影院中文字幕| 中文字幕人妻熟人妻熟丝袜美| 我要看日韩黄色一级片| 成人亚洲欧美一区二区av| 韩国av在线不卡| 我的女老师完整版在线观看| 国产伦理片在线播放av一区| 国产精品久久久久成人av| 少妇人妻一区二区三区视频| 中文字幕久久专区| 少妇猛男粗大的猛烈进出视频| 欧美精品人与动牲交sv欧美| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 欧美最新免费一区二区三区| 国产精品国产三级国产专区5o| 色吧在线观看| 国产探花极品一区二区| 一本一本综合久久| 五月伊人婷婷丁香| 国产伦精品一区二区三区四那| 嫩草影院入口| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 久久综合国产亚洲精品| 在线看a的网站| 三上悠亚av全集在线观看 | 国产精品.久久久| 97精品久久久久久久久久精品| 极品人妻少妇av视频| 欧美高清成人免费视频www| 插阴视频在线观看视频| 亚洲熟女精品中文字幕| 免费人成在线观看视频色| 亚洲成人手机| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 啦啦啦中文免费视频观看日本| 国产免费一级a男人的天堂| 亚洲av不卡在线观看| 国产精品免费大片| 色网站视频免费| 妹子高潮喷水视频| 九色成人免费人妻av| av福利片在线观看| 国产精品无大码| 大又大粗又爽又黄少妇毛片口| 国产成人免费无遮挡视频| 婷婷色麻豆天堂久久| 久久久久久久亚洲中文字幕| 免费观看无遮挡的男女| 男女边摸边吃奶| tube8黄色片| 最近中文字幕高清免费大全6| 欧美精品一区二区大全| 又爽又黄a免费视频| 黄色怎么调成土黄色| 成人毛片a级毛片在线播放| 久久久久久久久久久丰满| 免费久久久久久久精品成人欧美视频 | 精品国产国语对白av| 国产精品福利在线免费观看| 日韩电影二区| 能在线免费看毛片的网站| 亚洲天堂av无毛| 赤兔流量卡办理| 99久久精品国产国产毛片| 久久精品久久久久久噜噜老黄| 亚洲精品一二三| 国产老妇伦熟女老妇高清| 精品一区二区免费观看| 麻豆成人av视频| 日韩 亚洲 欧美在线| 各种免费的搞黄视频| 成人免费观看视频高清| 51国产日韩欧美| 一本—道久久a久久精品蜜桃钙片| 日韩,欧美,国产一区二区三区| 亚洲精品成人av观看孕妇|