• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    2009-05-14 03:04:44ZHANGXi張曦MASile馬思樂YANWeiwu閻威武ZHAOXu趙旭andSHAOHuihe邵惠鶴
    關(guān)鍵詞:威武

    ZHANG Xi (張曦), MA Sile (馬思樂), YAN Weiwu (閻威武), ZHAO Xu (趙旭) and SHAO Huihe (邵惠鶴)

    ?

    A Novel Systematic Method of Quality Monitoring and Prediction Based on FDA and Kernel Regression*

    ZHANG Xi (張曦)1,2, MA Sile (馬思樂)3,**, YAN Weiwu (閻威武)2, ZHAO Xu (趙旭)2and SHAO Huihe (邵惠鶴)2

    1Guangdong Electric Power Research Institute, Guangzhou 510600, China2Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China3School of Control Science and Engineering, Shandong University, Jinan 250061, China

    A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    quality monitoring, quality prediction, Fisher discriminant analysis, kernel regression, fluid catalytic cracking unit

    1 Introduction

    It is difficult to measure online some important variables in chemical or biological process due to the limitation of the techniques. These variables are normally determined by offline analyses and calculation or online quality analyzer. Mostly, analysis and online analyzer suffer from long measurement delays or high investment and maintenance. Online estimation (soft sensing) techniques, which are developed recently, are now widely used. It predicts the product quality using the online measurable variables, which are correlated to the primary variable.

    Early work on online estimation assumed that a process model was available. Joseph and Brosilow [1]reported an inferential model developed using a Kalmanfilter [2]. In case the process mechanisms were not well understood, empirical models, such as neural network [3, 4], and multivariate statistical methods, such as principal component analysis (PCA) and partial least squares (PLS), were used to derive a regression model [2, 5-7]. In particular, PLS and its variations have been used to solve many practical regression problems in chemical engineering [6, 8]. Other methods include regression based on model [9] and hybrid methods also have been developed [10, 11]. Clustering has also been used for estimating a variable for which there is no online measurement in a distillation column [12].

    However, online process measurements are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, gross error detection is important in quality estimation. Several statistical methods have been presented, such as Global Test (GT) [13], the Nodal Test (NT) [13, 14], the Measurement Test (MT) [15], and the Generalized Likelihood Ratio (GLR) test to detect gross errors. The above-mentioned methods for errors detection must know the mathematical model of process and make necessary statistical assumption. For complex industrial processes, it is difficult to achieve an accurate mathematical model. These limit application of methods based on statistical test. Fisher discriminant analysis (FDA)-related methods are dimensional reduction techniques that have been widely used in the field of pattern classification [16]. They also have been introduced for fault detection and process monitoring in chemical industry [17-22]. Gross error is equal to faultsin systems. So, FDA is introduced for gross error detection in quality estimation and has a good performance.

    In this article, a systematic method of quality monitoring and prediction based on FDA and kernel regression has been proposed. FDA is first used for fault detection. If the process runs under normal condition, kernel regression method is then performed for quality prediction. Otherwise, the contribution plot of weights in fault feature direction is further used for fault diagnosis. Application results of the industrial fluid catalytic cracking unit (FCCU) show that the integrated method can effectively detect the happening faults and perform quality prediction and estimation.

    2 Preliminary principles of FDA and kernel regression

    2.1 Fisher discriminant analysis

    Fisher discriminant analysis (FDA) is a linear dimensional reduction technique widely used in the field of pattern classification [16]. Chiang. [20] used it first to diagnose faults in chemical process. The aim of FDA is to find the optimal Fisher discriminant vector such that the Fisher criterion function is maximized. The data in high-dimensional feature space then can be projected onto the obtained optimal discriminant vectors for constructing a lower-dimensional feature space [21]. The different class data can be separated mostly in the lower-dimensional Fisher space.

    The between-class-scatter matrix is defined as

    wherenis the number of observations in class. It can be concluded that the total-scatter matrix is equal to the sum of the between-class-scatter matrix and within-class-scatter matrix,

    The optimal discriminant vector can be found by maximizing the Fisher criterion function as follows:

    wherebandware the between-class scatter matrix and within-class scatter matrix. It is equipollent to solve the generalized feature equation as follows:

    2.2 Kernel principle component analysis

    Kernel principle component analysis (KPCA) is a nonlinear extension of PCA in kernel feature subspace. Consider a nonlinear mapping [23]:

    then the PC vectors can be denoted as follows.

    where

    2.3 Kernel principle component regression

    Consider the standard regression model in the feature space,

    then,

    Whereis an diagonal matrix of {1,2,···,λ},is an orthogonal matrix. So the linear regression model can be expressed further as,

    where

    is the new regressor in terms of kernel principal component and it satisfies that

    So the least square estimator of coefficientcan be expressed as

    From the above estimator expression, we can see that it is difficult to finddirectly. Below we show how to findusing the kernel function.

    Denotethe-th component ofandthe-th component of; from the linear regression model, we obtain

    So,

    where

    From above, we know that

    where

    From the definition of matrix,

    We can see that

    So

    3 Quality monitoring and prediction based on FDA and kernel regression

    3.1 The relationship among FDA, KPCA, and KPCR in quality monitoring and estimation

    Kernel principle component regression (KPCR) is the extension of KPCA. KPCA is used for feature selection. Then the extracted features can be used as preprocessing step for least square regression in the feature space. The framework of quality monitoring and estimation is shown in Fig. 1.

    It can be seen from the figure that data are first normalized using the mean and standard deviation of each variable. Then FDA is performed for gross error and fault detection. If the system runs under normal condition, KPCR is further used for quality estimation and prediction. Otherwise, contribution plot of weights in fault feature direction is used for fault diagnosis.

    FDA-related methods have been used for pattern matching and process monitoring. But it is introduced for the first time for gross error detection in quality estimation.

    3.2 The construction of detecting index and control limit

    Figure 1 Flow chart of quality monitoring and estimation

    For online quality monitoring, the distance of projection vectors in low-dimensional Fisher space,newcompares with the control limit*to determine whether a fault has occurred. The distance between feature vectors is defined as:

    A Quality monitoring based on FDA

    (3) Determine the control limit*from the normal data. The control limit is set to allow 99% of the total distances under the threshold.

    (6) Compare the distancenewwith the control limit*. Ifnewis less than the predefined threshold*, the current process feature is considered to represent the normal operating condition. Then use procedures B and C to perform quality prediction and estimation; if the fault has occurred, use step (7) for fault diagnosis.

    B Develop normal quality prediction and estimation model

    (1) Acquire the training data and normalize it using mean and standard deviation of each variable.

    where

    (4) Calculate the transformed regressor matrixas follows:

    (6) Calculate the predictions of training data as follows:

    C Online estimation and prediction procedure

    (1) Obtain new data and scale it with the mean and variance of each variable.

    (3) Mean centering of the test kernel matrix is as follows

    (4) Calculate the transformed regressor matrixas follows:

    4 Application studies and discussion

    4.1 Application results of the FCCU process

    Fluid catalytic cracking unit (FCCU) is the core unit of the oil secondary operation. Its operation conditions strongly affect the yield of light oil in petroleum refining. In general, FCCU consists of reactor- regenerator subsystem, fractionator subsystem, absorber-stabilizer subsystem and gas sweetening subsystem. The main aim of fractionator subsystem is to split reaction-cracked oil-gas according to a fractional distillation process. Prime products of fractionator subsystem include crude gasoline, light diesel oil, and slurry [7]. To control the product quality, the yield rate of gasoline is calculated offline every 8 hours. Significant delay (often several hours) will incur such that the measured values cannot be used as feedback signals for quality control systems. So it is necessary to estimate it online. However, when using online estimation, the results are often contaminated with data points that deviate significantly from the true values due to instrument failure or changes in operating conditions. So, it is essential to perform quality monitoring and avoiding wrong operations.

    The proposed method is applied to the quality monitoring and prediction of the yield rate of gasoline. The training and testing samples are collected from data of the distributed control system (DCS) and the corresponding daily laboratory analysis of Shijiazhuang Oil Refinery Factory, China. The input variables for quality monitoring and prediction are selected according to the principle that the variables which affected response variable most are selected first. Based on analysis to the process, it is found that the main variables which contribute to the yield rate of gasoline are flow rate of fresh oil, flow rate of reflux oil, temperature of catalytic reaction, overhead temperature of the main fractionating tower, the extraction temperature of light diesel oil, and bottom temperature of stabilizer column. Hence, these six variables are used as inputs for quality monitoring and prediction. Yield rate is used as the output of estimation model.

    We first collect two data sets and each includes 100 normal samples. They are used as training and testing data. The monitoring result using FDA is given in Fig. 2. We can see that no samples exceed the control limit when the system is normal. The monitoring results using PCA is shown in Fig. 3, it can be seen from the figure that there are a few samples exceed the 99% limit although the process is normal. The monitoring performance of FDA is better than PCA.

    Figure 2 Quality monitoring plot of normal data using FDA

    Figure 3 Quality monitoring plot of normal data using PCA

    Figure 4 Estimation results by KPCR (Normal data)

    Figure 6 Quality monitoring plot of fault data using FDA

    When the process is under normal condition, quality estimation can be further performed and appropriate kernel must be first chosen. The radial basis function (RBF) kernel is used as the selected kernel function andis 5.0 in this case.

    The prediction results using kernel regression are shown in Figs. 4 and 5. The upper part of Fig. 4 shows the actual and predicted values of training and testing data and the lower part shows the absolute error between actual and predicted values. Fig. 5 shows the predicted results by another method. In such plots, the data will fall on the diagonal (predicted values equal to actual values) if the model fits the data perfectly. It also shows the residual values of training and testing data. We can see from Fig. 4 that the KPCR model predicts the actual value with a relatively good accuracy. The absolute error is small. The same results can be seen in Fig. 5, in which the predicted values are plotted against observed data and the data shifts to a compact diagonal distribution on the plot. The prediction residuals are close to zero and have no significant outliers.

    The estimation performance can also be evaluated in terms of the root-mean-square-error (RMSE) criterion. The RMSE values for training and testing data of KPCR method in this case are 0.5112 and 0.5843, respectively. It also shows relatively good estimation results.

    Remark The RMSE index is defined as [28]:

    Figure 7 Contribution plot of weights in the feature direction

    Figure 8 Quality monitoring plot of fault data using PCA

    Figure 9 Estimation results by KPCR (Fault data)

    We then select a test data set of 100 samples including a fault of 10% decrease in the flow rate of fresh oil. The fault is introduced in sample 50 and persists to the end of the process. The PCA monitoring chart for the fault is shown in Fig. 8. It indicates that the square predicted error (SPE) statistic has a response to the fault happening; only a few samples delay. But it is not very clear. The corresponding FDA monitoring chart is shown in Fig. 6. In contrast to Fig. 8, we can see that the statistic distance increases drastically when the fault occurs at sample 50 and exceeds the 99% control limit. It also has better performance than PCA.

    After a fault has occurred, fault diagnosis is performed to identify the root cause. Fig. 7 is the contribution plot in the fault feature direction. It displays that variable 1 is primarily responsible for the fault deviation. Variable 1 corresponds to the flow rate of fresh oil. So the diagnosis result is right. The early detection and determination of the fault’s root cause will guide the operator to take correct action promptly, which could maintain the final product well.

    The prediction results of yield rate based on kernel regression are shown in Figs. 9 and 10. From Fig. 9, we can see that before the fault occurs, KPCR has good prediction results. But after that, the prediction results become worse. The absolute error is large and the prediction values far derivate from the actual values. The same results can be seen in Fig. 10. Before the fault is introduced, the data distribution is compactly towards the diagonal and the residual is low. But the test data distribution is scattered and the residuals are large after the fault happens. The total RMSE for the test data is 1.9824. If the faulty values are used as feedback signals in the control system, it will lead to wrong operations. So, quality monitoring is very important and necessary to guarantee the prediction results well.

    4.2 Further discussion

    The performance of the estimation method based on KPCR is influenced by many factors. We will use thesamples used in Section 4.1 to discuss them extensively.

    I Performance comparison of different methods

    To demonstrate the predominance of the proposed method, PCR and PLS are further applied, followed by a comparison with the KPCR prediction method. The estimation results using PCR and PLS are shown in Figs. 11-14.

    Figure 11 Estimation results by PCR

    Figure 13 Estimation results by PLS

    Figure 15 Estimation results with linear kernel

    From the figures, we can see that, compared with PCR and PLS, KPCR (shown in Figs. 4 and 5) has better estimation performance.

    Because KPCR is nonlinear modeling method, it has better prediction results. So it has a better ability to deal with nonlinear data. In this study, there are complex nonlinear relationships among input and response variables. So, projecting nonlinear input data onto a linear subspace by PCR or PLS cannot model the nonlinear relationships properly. In contrast, KPCR tries to model such nonlinear relationships preferably by a nonlinear kernel mapping into a feature space.

    II Performance influence of different kernels in KPCR

    When we estimate quality variables by KPCR, the choice of kernel is important. Different kernels have different influence on the performance of prediction. We use the linear kernel, polynomial kernel, and radial basis kernel for comparison, which are listed below.

    The KPCR model estimation results using linear and polynomial kernel (the parameteris chosen as 5.0)are shown in Figs. 15-18. It can be seen from the figures that using linear and polynomial kernels cannot obtain good estimation results compared to using radial basis kernel (shown in Figs. 4 and 5).

    The reason for this is that the input variables of the data set used are nonlinear correlated with each other and with the response variable. When linear and polynomial kernels are used, they cannot model the nonlinear correlation structure properly due to the risk of including noise in the model while trying to account nonlinearity. From our experience, radial basis kernel is more suitable for modeling such nonlinear relationships compared to other kernel functions by selecting appropriate parameter.

    III Performance influence of parameterin the RBF kernel

    Figures 19 and 20 present the estimation results of response variables for training and testing data with parameterequals to 0.01, 0.05, 0.5, 5, and 20. It can be seen from the figures that for training and testing data, whenis larger or smaller over a specific threshold, the estimation performance becomes worse. Therefore, to get good prediction results, the appropriate choice of parameteris important. In this case, whenis equal to 5.0, good estimation performance can be achieved. The same results can be obtained from the RMSE values of different c (shown in Table 1). Whenis equal to 5.0, the RMSE values are 0.5112 and 0.5843. They are the smallest among all the training and testing data.

    Figure 16 Estimation parity plot with linear kernel

    Figure 17 Estimation results with polynomial kernel

    Table 1 RMSE of different parameter c in kernel principal component regression (RBF kernel)

    5 Conclusions

    In this article, a systemic quality monitoring and prediction method based on FDA and kernel regression is proposed. The FDA monitoring method is first performed to detect process condition. If the process is normal, kernel regression is further used to do quality prediction and estimation. If fault has occurred, contribution plot of the weights in the feature direction is used for fault diagnosis. The improvement in prediction performance observed, from PCR, PLS to KPCR, suggests that nonlinear correlation structures should not be modeled using linear approaches due to the risk of including noise in the model while trying to account the nonlinearity. The application results of the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.

    However, when the proposed method is used, how to choose kernel function and identify the kernel parameter is still an open problem. At present, we only solve this with our experience. How to settle this using a systematic approach is still a challenging issue. We believe that for the problem to be further solved, the proposed method will give more promising results.

    AcknowledgEments

    ..

    1 Joseph, B., Brosilow, C.B., “Inferential control of processes (1) Steady state analysis and design”,., 124, 485-508 (1978).

    2 Lin, B., Recke, B., Knudsen, J.K.H., J?rgensen, S.B, “A systematic approach for soft sensor development”,..., 31, 419-425 (2007).

    3 Qin, S.J., McAvoy, T.J., “Nonlinear PLS modeling using neural networks”,..., 16, 379-391 (1992).

    4 Radhakrishnan, V.R., Mohamed, A.R., “Neural networks for the identification and control of blast furnace hot metal quality”,., 10, 509-524 (2000).

    5 Kresta, J.V., Marlin, T.E., MacGregor, J.F., “Development of inferential process models using PLS”,..., 18, 597-611 (1994).

    6 Park, S., Han, C., “A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns”,..., 24, 871-877 (2000).

    7 Yan, W., Shao, H., Wang, X., “Soft sensing modeling based on support vector machine and Bayesian model selection”,..., 28, 1489-1498 (2004).

    8 Skagerberg, B., MacGrgor, J.F., Kiprissides, C., “Multivariate data analysis applied to low-density polyethylene reactors”,...., 14, 341-356 (1992).

    9 Chen, S., Billings, S.A., Cowan, C.T.F., Grant, P.M., “Practical identification of NARMAX models using radial basis functions”,.., 52, 1327-1350 (1990).

    10 Ljung, L., System Identification: Theory for the User (Information and System Science Series), Prentice-Hall, New Jersey (1987).

    11 Wang, X., Luo, R., Shao, H., “Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network”, In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan (1996).

    12 Espinoza, P. A., Gonzalez, G. D., Casali, A., Ardiles, C., “Design of soft sensors using cluster techniques”, In: Proceedings of International Mineral Processing Congress, San Francisco, USA (1995).

    13 Reilly, P., Carpani, R., “Application of statistical theory of adjustments to material Balances”, In: 13th Canadian Chemical Engineering Conference, Montreal, Canada (1963).

    14 Mah, R.S.H., Stanley, G., Downing, D., “Reconciliation and rectification of process flow and inventory data”,....., 15, 175-183 (1976).

    15 Mah, R.S.H., Tamhane, A.C., “Detection of gross errors in process data”,., 28, 828-830 (1982).

    16 Duda, R.O., Hart, P.E., Stork, D.G., “Pattern classification”, 2nd ed., Wiley, New York (2001).

    17 Cho, H.W., “Identification of contributing variables using kernel-based discriminant modeling and reconstruction”,.., 33, 274-285 (2007).

    18 Jemwa, G.T., Aldrich, C., “Kernel-based fault diagnosis on mineral processing plants”,.., 19, 1149-1162 (2006).

    19 Zhang, X., Zhao, X., Yan, W.W., Shao, H.H., “Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis”,., 42, 1200-1210 (2007).

    20 Chiang, L.H., Russell, E.L., Braatz, R.D., “Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis”,...., 50, 243-252 (2000).

    21 He, Q.P., Qin, S.J., “A new fault diagnosis method using fault directions in fisher discriminant analysis”,., 51, 555-571 (2005).

    22 Zhao, X., Yan, W., Shao, H., “Monitoring and fault diagnosis for batch process based on feature extract in Fisher subspace”,...., 14, 759-764 (2006).

    23 Sch?lkopf, B., Smola, A., Müller, K.R., “Nonlinear component analysis as a kernel eigenvalue problem”,., 10, 1299-1319 (1998).

    24 Lee, J.M., Yoo, C., Choi, S.W., Vanrolleghem, P.A., Lee, I.B., “Nonlinear process monitoring using kernel principal component analysis”,..., 59, 223-234 (2004).

    25 Rosipal, R., Girolami, M., Trejo, L. J., Cichocki, A., “Kernel PCA for feature extraction and de-noising in nonlinear regression”,.., 10, 231-243 (2001).

    26 Dachapak, C., Kanae, S., Yang, Z.J., Wada, K., “Kernel principal component regression in reproducing Hilbert space”,(.....), 34, 213-218 (2002).

    27 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, Hong Kong (2001).

    28 Lee, D.S., Lee, M.W., Woo, S.H., Kim, Y.J., Park, J.M., “Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms”,...., 45, 4335-4344 (2006).

    29 Kim, K., Lee, J. M., Lee, I. B., “A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction”,...., 79, 22-30 (2005).

    30 Wold, S., “Cross-validatory estimation of components in factor and principal components models”,, 20, 397-405 (1978).

    2008-01-27,

    2008-11-05.

    the National Natural Science Foundation of China (60504033) and the Open Project of State Key Laboratory of Industrial Control Technology in Zhejiang University (0708004).

    ** To whom correspondence should be addressed. E-mail: masile@sdu.edu.cn

    猜你喜歡
    威武
    高傲的大公雞
    威武遼寧艦(一)
    山東艦,威武入列
    威武老槍56半
    威武的獅子
    幼兒畫刊(2018年4期)2018-04-11 03:58:56
    萌寵樂園
    威武大角羊
    威武蝦將軍
    小蝦威武
    威武的甲蟲
    国产亚洲最大av| 成年女人看的毛片在线观看| 亚洲人成网站在线播| 国产高清三级在线| 欧美变态另类bdsm刘玥| 国产精品1区2区在线观看.| av在线蜜桃| 永久免费av网站大全| 午夜福利网站1000一区二区三区| 婷婷六月久久综合丁香| 国产黄色小视频在线观看| 亚洲欧美清纯卡通| 中文字幕免费在线视频6| 久久久a久久爽久久v久久| 国产激情偷乱视频一区二区| 欧美一区二区精品小视频在线| 男人舔女人下体高潮全视频| 男女国产视频网站| 亚洲精品国产av成人精品| 午夜老司机福利剧场| 久久久色成人| 久久久久久久国产电影| 中文资源天堂在线| 成人毛片a级毛片在线播放| 久久精品国产自在天天线| 少妇的逼好多水| 少妇猛男粗大的猛烈进出视频 | 小蜜桃在线观看免费完整版高清| 日韩欧美国产在线观看| 国产精品国产高清国产av| 日本-黄色视频高清免费观看| 国产精品一区二区性色av| 国产一区二区在线观看日韩| 变态另类丝袜制服| 丰满少妇做爰视频| 成人亚洲精品av一区二区| 成人一区二区视频在线观看| 国产熟女欧美一区二区| 婷婷六月久久综合丁香| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 亚洲色图av天堂| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 狂野欧美激情性xxxx在线观看| 简卡轻食公司| 高清在线视频一区二区三区 | av在线蜜桃| 亚洲自偷自拍三级| 最后的刺客免费高清国语| 国产69精品久久久久777片| 久久精品国产亚洲网站| 内地一区二区视频在线| 中文字幕亚洲精品专区| 国产老妇女一区| 午夜福利在线在线| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久久末码| 亚洲av电影不卡..在线观看| 天天一区二区日本电影三级| 婷婷色麻豆天堂久久 | 久久精品国产鲁丝片午夜精品| 国产在线男女| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 久久6这里有精品| 免费看日本二区| 欧美变态另类bdsm刘玥| 久久国产乱子免费精品| 听说在线观看完整版免费高清| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久人妻蜜臀av| 人体艺术视频欧美日本| 亚洲伊人久久精品综合 | 国产片特级美女逼逼视频| 成人鲁丝片一二三区免费| 国产精品久久电影中文字幕| 看片在线看免费视频| 国产探花在线观看一区二区| 99久久九九国产精品国产免费| 久久久久精品久久久久真实原创| 欧美性感艳星| 国产视频内射| 在线播放无遮挡| 国产精品一区二区性色av| 久久久成人免费电影| 亚洲精品国产成人久久av| 男人和女人高潮做爰伦理| 一卡2卡三卡四卡精品乱码亚洲| 国产精品不卡视频一区二区| 日韩一本色道免费dvd| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 韩国高清视频一区二区三区| 精品国内亚洲2022精品成人| 日本-黄色视频高清免费观看| 精品久久久久久久久亚洲| 长腿黑丝高跟| 国产黄a三级三级三级人| 亚洲激情五月婷婷啪啪| 色视频www国产| 欧美成人a在线观看| 色综合站精品国产| 久久久久久伊人网av| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 一级毛片aaaaaa免费看小| 精品久久久久久成人av| 韩国av在线不卡| 男人的好看免费观看在线视频| 一级毛片久久久久久久久女| 亚洲精品久久久久久婷婷小说 | 深夜a级毛片| 亚洲精华国产精华液的使用体验| 免费观看的影片在线观看| 成人漫画全彩无遮挡| 亚洲国产色片| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久久免费av| 国产免费一级a男人的天堂| 两个人的视频大全免费| 91午夜精品亚洲一区二区三区| 亚洲精品日韩av片在线观看| 国产精品日韩av在线免费观看| 一级黄片播放器| 色5月婷婷丁香| 国产av一区在线观看免费| 性色avwww在线观看| 久久99蜜桃精品久久| 精品免费久久久久久久清纯| 亚洲精品aⅴ在线观看| 少妇的逼水好多| 国产淫片久久久久久久久| 国产精品精品国产色婷婷| 我要看日韩黄色一级片| 亚洲综合色惰| 高清日韩中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产三级在线视频| 国产极品精品免费视频能看的| 嘟嘟电影网在线观看| 男人狂女人下面高潮的视频| 直男gayav资源| 麻豆一二三区av精品| 亚洲欧美精品自产自拍| 中国国产av一级| 丰满少妇做爰视频| 亚洲国产成人一精品久久久| 不卡视频在线观看欧美| 久久精品国产自在天天线| 天堂√8在线中文| 国产精品女同一区二区软件| 女人被狂操c到高潮| 尾随美女入室| 国产精品国产三级专区第一集| 国产成人福利小说| 久久久久性生活片| 国产成人一区二区在线| 成人三级黄色视频| 久久6这里有精品| 国产精品蜜桃在线观看| .国产精品久久| 国产一区二区三区av在线| 青春草亚洲视频在线观看| 精品欧美国产一区二区三| 午夜久久久久精精品| 人妻系列 视频| 国产色婷婷99| 精品国产一区二区三区久久久樱花 | 国产又黄又爽又无遮挡在线| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 在线免费十八禁| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 久久精品人妻少妇| 最近视频中文字幕2019在线8| 久久精品夜色国产| av在线亚洲专区| 亚洲精品日韩av片在线观看| 日日摸夜夜添夜夜爱| 欧美成人午夜免费资源| 最近中文字幕2019免费版| av免费在线看不卡| 国产美女午夜福利| 久久久久久久久中文| 午夜福利在线在线| 久久99热这里只频精品6学生 | 亚洲,欧美,日韩| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 中文在线观看免费www的网站| 欧美区成人在线视频| 日本午夜av视频| 一级毛片久久久久久久久女| 乱码一卡2卡4卡精品| av.在线天堂| 一边亲一边摸免费视频| 三级国产精品片| 熟妇人妻久久中文字幕3abv| 国产不卡一卡二| 一区二区三区四区激情视频| 尤物成人国产欧美一区二区三区| 日本黄色视频三级网站网址| 国产成人精品婷婷| 亚洲国产色片| 日韩在线高清观看一区二区三区| 亚洲精品日韩在线中文字幕| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 久久久久久久久久成人| 婷婷六月久久综合丁香| 嘟嘟电影网在线观看| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 人妻制服诱惑在线中文字幕| 激情 狠狠 欧美| 一级av片app| 白带黄色成豆腐渣| 亚洲自偷自拍三级| 午夜激情福利司机影院| 日日摸夜夜添夜夜添av毛片| 26uuu在线亚洲综合色| 欧美成人a在线观看| 高清在线视频一区二区三区 | 色网站视频免费| 亚洲av成人精品一二三区| videossex国产| 久久久久性生活片| 黄色日韩在线| 有码 亚洲区| 少妇人妻精品综合一区二区| 麻豆成人av视频| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久| av在线老鸭窝| 午夜福利高清视频| 国产精品女同一区二区软件| 免费黄网站久久成人精品| av福利片在线观看| 亚洲国产欧美人成| 熟女人妻精品中文字幕| 啦啦啦啦在线视频资源| 亚洲成色77777| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 亚洲欧美一区二区三区国产| 久久久久久久久久久丰满| 免费黄网站久久成人精品| 国产淫语在线视频| 亚洲最大成人中文| 国产极品天堂在线| 久久久国产成人精品二区| 秋霞在线观看毛片| 在线免费十八禁| 精品免费久久久久久久清纯| 国产免费视频播放在线视频 | 久久久成人免费电影| 狂野欧美激情性xxxx在线观看| 春色校园在线视频观看| 国产视频内射| 又爽又黄无遮挡网站| 亚洲久久久久久中文字幕| 国产日韩欧美在线精品| 亚洲精品一区蜜桃| 天堂av国产一区二区熟女人妻| 日韩,欧美,国产一区二区三区 | 在线观看av片永久免费下载| 午夜福利在线在线| 国产成年人精品一区二区| 一本久久精品| 亚洲三级黄色毛片| 日本与韩国留学比较| 亚洲一级一片aⅴ在线观看| 日韩亚洲欧美综合| 亚洲人成网站在线观看播放| 91av网一区二区| 欧美zozozo另类| 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生 | 日韩欧美在线乱码| 我的女老师完整版在线观看| 最近手机中文字幕大全| 99久久九九国产精品国产免费| 99在线人妻在线中文字幕| 婷婷色av中文字幕| 一级黄色大片毛片| 久久6这里有精品| 黄色欧美视频在线观看| 日韩精品有码人妻一区| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 国产不卡一卡二| 亚洲欧美日韩高清专用| 国产成人午夜福利电影在线观看| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 国产精品国产高清国产av| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 成年女人永久免费观看视频| 成人欧美大片| 精品久久久久久久久av| 久久精品熟女亚洲av麻豆精品 | 长腿黑丝高跟| 亚洲三级黄色毛片| 少妇的逼好多水| 男女那种视频在线观看| 国产精品人妻久久久影院| 久久久久久久久久久丰满| 26uuu在线亚洲综合色| 成人二区视频| 精品人妻视频免费看| 热99re8久久精品国产| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 国产伦一二天堂av在线观看| 七月丁香在线播放| 国产亚洲一区二区精品| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 日本一本二区三区精品| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩无卡精品| 国产精品国产三级国产专区5o | 亚洲av免费高清在线观看| 中文资源天堂在线| 亚洲国产欧美在线一区| 亚洲欧美精品综合久久99| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 九九爱精品视频在线观看| 在线观看av片永久免费下载| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 日韩强制内射视频| 日本三级黄在线观看| 在线观看av片永久免费下载| 天天躁日日操中文字幕| 97超碰精品成人国产| 日韩欧美 国产精品| 日本黄色片子视频| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 亚洲性久久影院| 免费播放大片免费观看视频在线观看 | 久久亚洲精品不卡| 午夜亚洲福利在线播放| 99热这里只有是精品在线观看| 久久久久免费精品人妻一区二区| 村上凉子中文字幕在线| 视频中文字幕在线观看| 男人狂女人下面高潮的视频| 在线播放无遮挡| 亚洲真实伦在线观看| 亚洲精品色激情综合| 亚洲五月天丁香| 国产精品久久久久久久久免| kizo精华| 黄色一级大片看看| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 午夜精品在线福利| 精品久久久久久久久久久久久| 国产色婷婷99| 亚洲第一区二区三区不卡| 97超视频在线观看视频| 久久韩国三级中文字幕| 亚洲图色成人| 日本免费在线观看一区| 国产成人免费观看mmmm| 一二三四中文在线观看免费高清| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 精品一区二区三区人妻视频| 精品久久久久久久久av| 久久人人爽人人片av| 免费av观看视频| 成人毛片60女人毛片免费| 亚洲自偷自拍三级| 一级二级三级毛片免费看| 男女视频在线观看网站免费| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 国产免费男女视频| 少妇熟女aⅴ在线视频| av国产免费在线观看| 免费观看性生交大片5| 亚洲国产成人一精品久久久| www.av在线官网国产| 久久这里只有精品中国| 色播亚洲综合网| 欧美高清性xxxxhd video| 国产在线男女| 中文亚洲av片在线观看爽| 草草在线视频免费看| av卡一久久| 别揉我奶头 嗯啊视频| 免费av不卡在线播放| 国内少妇人妻偷人精品xxx网站| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 中文在线观看免费www的网站| av天堂中文字幕网| 亚洲av二区三区四区| 成人国产麻豆网| 偷拍熟女少妇极品色| 国产精品国产三级国产专区5o | 国产午夜精品一二区理论片| 边亲边吃奶的免费视频| 国产精品三级大全| 三级国产精品片| 看免费成人av毛片| 免费av毛片视频| 18禁在线无遮挡免费观看视频| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 国国产精品蜜臀av免费| 国产视频内射| 国产成人freesex在线| 黄片wwwwww| 免费观看性生交大片5| 中文字幕精品亚洲无线码一区| 如何舔出高潮| 亚洲国产日韩欧美精品在线观看| 中文字幕av成人在线电影| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品成人久久小说| 99视频精品全部免费 在线| 白带黄色成豆腐渣| 免费大片18禁| 可以在线观看毛片的网站| 在线免费观看的www视频| 国产v大片淫在线免费观看| 国产不卡一卡二| 乱码一卡2卡4卡精品| 高清av免费在线| 亚洲国产日韩欧美精品在线观看| 免费搜索国产男女视频| 身体一侧抽搐| 色视频www国产| 国产av在哪里看| 午夜精品国产一区二区电影 | 免费观看精品视频网站| 美女xxoo啪啪120秒动态图| 免费看光身美女| 国产精品一区二区三区四区免费观看| 插逼视频在线观看| 欧美激情在线99| 国产免费男女视频| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 国产成人91sexporn| 午夜精品国产一区二区电影 | 国模一区二区三区四区视频| 亚洲国产精品合色在线| 欧美性感艳星| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 亚洲欧美一区二区三区国产| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 最近最新中文字幕大全电影3| av在线观看视频网站免费| 午夜精品在线福利| 国产黄片美女视频| 我要搜黄色片| 国产在线男女| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看日韩| 99热全是精品| 22中文网久久字幕| 亚洲欧美日韩高清专用| 久久久久国产网址| 床上黄色一级片| 久久久久久久亚洲中文字幕| 国产精品av视频在线免费观看| 色视频www国产| 久久99精品国语久久久| 精品无人区乱码1区二区| 中文字幕av成人在线电影| 午夜爱爱视频在线播放| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| 特级一级黄色大片| 深爱激情五月婷婷| 尾随美女入室| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 久久久精品欧美日韩精品| 日韩在线高清观看一区二区三区| 欧美一区二区国产精品久久精品| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 午夜久久久久精精品| 久久久久久久久大av| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av天美| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 禁无遮挡网站| 国产白丝娇喘喷水9色精品| 免费观看性生交大片5| 国产精品99久久久久久久久| 18禁在线播放成人免费| 中国美白少妇内射xxxbb| 一级毛片久久久久久久久女| 精品少妇黑人巨大在线播放 | 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频 | 中文欧美无线码| 建设人人有责人人尽责人人享有的 | 国产69精品久久久久777片| 免费观看a级毛片全部| 精品久久久噜噜| 日本免费a在线| 亚洲电影在线观看av| 色视频www国产| 在线免费观看的www视频| 国产伦在线观看视频一区| 男人的好看免费观看在线视频| 亚洲精品,欧美精品| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 久久精品91蜜桃| 久久精品久久久久久久性| 97超视频在线观看视频| 国产探花极品一区二区| 99久国产av精品国产电影| 久久国产乱子免费精品| 大又大粗又爽又黄少妇毛片口| 一区二区三区四区激情视频| ponron亚洲| 国产91av在线免费观看| 久久久久久久午夜电影| 色网站视频免费| 韩国高清视频一区二区三区| 国产成年人精品一区二区| 久久久欧美国产精品| 国产精品精品国产色婷婷| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 丰满人妻一区二区三区视频av| 国产在线一区二区三区精 | 成人午夜高清在线视频| www.av在线官网国产| 性插视频无遮挡在线免费观看| 国产老妇女一区| 在现免费观看毛片| 精品人妻偷拍中文字幕| 国产精品国产三级国产专区5o | 日韩一区二区三区影片| 婷婷色综合大香蕉| videos熟女内射| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩精品一区二区| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 免费观看性生交大片5| 人体艺术视频欧美日本| 久99久视频精品免费| 黄片无遮挡物在线观看| 久久久久久久国产电影| 我的女老师完整版在线观看| 国产精品电影一区二区三区| 男女国产视频网站| 国产伦一二天堂av在线观看| av视频在线观看入口| 亚洲成人av在线免费| 毛片女人毛片| 国产乱人视频| 国产精品伦人一区二区| 色噜噜av男人的天堂激情| 久久久a久久爽久久v久久| 亚洲欧洲日产国产| 91狼人影院| 欧美zozozo另类| 在线观看66精品国产| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 亚洲国产成人一精品久久久| 亚洲综合色惰| 国产在线男女| 国产免费视频播放在线视频 | 22中文网久久字幕| 欧美成人精品欧美一级黄| 我的女老师完整版在线观看| 天堂av国产一区二区熟女人妻| 深爱激情五月婷婷| 一个人看的www免费观看视频| 禁无遮挡网站| 国产极品天堂在线| 亚洲国产精品久久男人天堂| 长腿黑丝高跟| 欧美人与善性xxx| av在线播放精品| 日本免费在线观看一区|