• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    茂基稀土鄰氨基苯甲酰胺基雙負(fù)離子配合物的合成及其環(huán)胺羰化反應(yīng)和脒基化反應(yīng)

    2017-11-13 12:22:10劉瑞婷翁林紅周錫庚
    關(guān)鍵詞:甲酰胺負(fù)離子甲苯

    孫 燕 劉瑞婷 翁林紅 周錫庚*,,2

    茂基稀土鄰氨基苯甲酰胺基雙負(fù)離子配合物的合成及其環(huán)胺羰化反應(yīng)和脒基化反應(yīng)

    孫 燕1劉瑞婷1翁林紅1周錫庚*,1,2

    (1復(fù)旦大學(xué)化學(xué)系,上海市分子催化與功能材料重點(diǎn)實(shí)驗(yàn)室,上海 200433)
    (2金屬有機(jī)化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200032)

    Cp3Ln與鄰氨基苯甲酰胺在甲苯中反應(yīng),之后在HMPA和甲苯中結(jié)晶,以中等到高收率得到四核稀土有機(jī)配合物[CpLn(μη2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)}2(Ln=Yb,1a;Er,1b;Y,1c)。 化合物 1 與 4 倍物質(zhì)的量的 PhNCO 在甲苯中反應(yīng)形成 1,3-喹唑啉二氧基(Quo)雙負(fù)離子稀土配合物[Cp2Ln(μ3-η2∶η2∶η1-Quo)]3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c),表明化合物1中的Ln-NHAr鍵和ArCONH-Ln鍵能與異氰酸酯分子發(fā)生連續(xù)加成/胺消除反應(yīng),形成1,3-喹唑啉二氧基骨架。但化合物1a~1c 與iPrN=C=NiPr反應(yīng),僅得到 ArNH 基單加成產(chǎn)物{Cp2Ln[μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)。 而 Cp3Ln 與鄰氨基苯甲酰胺和iPrN=C=NiPr在甲苯中進(jìn)行“一鍋”反應(yīng),則形成雙核配合物{CpLn[μ-η1∶η2∶η2-NHCOC6H4NC(NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c)。 值得注意的是,HMPA 能夠誘導(dǎo)配合物 4 發(fā)生配體重排反應(yīng),轉(zhuǎn)化成化合物 3。

    稀土配合物;環(huán)胺羰化反應(yīng);異氰酸酯;鄰氨基苯甲酰胺;加成反應(yīng)

    0 Introduction

    There is currently a fundamental interest in the reactivity of organolanthanide complexes toward unsaturated small molecules,because this is the source for design of new catalytic reactions and catalysts[1-6].The selective insertion of an organic functional group into a lanthanide-ligand bond has proved to be a successful and pervasive method for the formation of carbon-carbon and carbon-heteroatom bonds in synthesis of organolanthanide derivatives and organic compounds[6-13].For example,by applying this type of insertions as the key step,many organolanthanidecatalyzed reactions such as hydrosilylation[7],hydroamination[2b,8], hydroalkoxylation[9], hydrothiolation[10],hydrophosphination[11],hydroboration[12],and C-H bond addition[2c,13]of diverse C-C unsaturated substrates have been developed.In contrast,the development of metathesisreactionsoftrivalentorganolanthanide complexes with unsaturated substrates leading to the complete cleavage of the unsaturated chemical bond,lags far behind,despite their fundamental scientific interest and the potential utility in organic synthesis.The major reason might be attributed to the absence of conventional oxidative-addition/reductive-elimination processes and the difficulties encountered in the formation of rare earth metal-carbon and rare earth metal-heteroatom multiply-bonded intermediates,which often involvein transition metal-catalyzed metathesis reactions of unsaturated substrates[14].Recent pioneering works show that reaction of tetranuclear rare earth metal polyhydrido complexes with CO yielded ethylene and the corresponding tetraoxo cubane complexes[15a].Chen and coworkers reported that yttrium dihydride reacted with Ph3P=Se to give an yttrium selenide complex in the company of the liberation of Ph3P and H2[15b].Furthermore,methylidene complexes of rare earth metals have proven their ability to cleave the C=O,N=N and C=N double bonds[16].Despite these achievements,the use of trivalent organolanthanide complexes as reagents for the transformation of an unsaturated functional group into another unsaturated one in the context of metathesis reactionsremainsunderutilized.The question of whether or not rare earth metal amido complexes can promote formation and transformation of unsaturated carbon-heteroatom bonds as readily as rare earth metal polyhydrido and methylidene complexes mediate C=O bond metathesis reaction is still an open issue.

    The chemical nature of isocyanates,with an electrophilic center at carbon and nucleophilic centers at oxygen and nitrogen,allows a diverse variety of reactions to occur,thus leading to a great potential for constructing higher organic structures[17].The selectivity ofisocyanatetransformationshasbeen profitably controlled by metal species,since their participation allows the fine-tuning of bond forming processes and reactivity of isocyanates[18].In attempts to establish more selective catalystsystemsand tohave abetter understanding of the mechanistic aspects as well as to develop new reactions,extensivestudieson the reaction of organometallic complexes with isocyanates have been carried out.Noticeably,in contrast to transition metals,selective C=N or C=O bond cleavage of isocyanates mediated by rare earth metals remains a significant challenge,mainly due to the instability of the resulting nitrene and carbonyl complexes and to the facile C=O addition pathways available[18].The stoichiometric reaction of trivalent organolanthanide compounds with isocyanates gives generally the addition products (Scheme 1)[19].

    Scheme 1

    On the other hand,using isocyanates as CO precursors in organic synthesis remains little explored[20].Hou and coworkers reported in 2004 that yttrocene tetrahydrido complex [(C5Me4SiMe3)Y(μ-H)]4(L)(L=Me3SiCCHCHCSiMe3)could abstract the oxygen from aryl isocyanate to form the corresponding μ3-oxo complex [(C5Me4SiMe3)Y]4(μ3-O)(μ-H)2(L)or [(C5Me4SiMe3)Y]4(μ3-O)2(L),depending on the substrate ratio[21].In the course of our ongoing studies involving the reaction of organolanthanide complexes with isocyanates,we found that the further interaction of the neighboring NH2group with an isocyanate unit inserted into the lanthanide-sulfur bond could lead to unique reactivity and selectivity trends,allowing a mild and efficient construction of the coordinated benzothiazole 2-oxide ligand[20a](Scheme 2).So far,no general method for rare earth metal-based carbonylation has been reported.Given that the above reaction provides an alternative route to carbonylation of organic substrates,we were interested in broadening the reaction.Herein,we report the synthesis and structure of lanthanocene complexes containing oaminobenzamido dianion ligand,and a new reactivity pattern ofamido complexes toward isocyanates:carbonylative coupling/cyclization,which provides a new method for the construction of a coordinated quinazolyldiolate ring skeleton.

    Scheme 2

    1 Experimental

    1.1 General remarks

    Alloperations involving air-and moisturesensitive compounds were carried out under an inert atmosphere of purified nitrogen using standard Schlenk techniques.All organic solvents such as THF,toluene,and n-hexanewererefluxed and distilled over sodium benzophenone ketyl under N2prior to use.o-Aminobenzamide,HMPA (hexamethylphosphorictriamide),N,N′-diisopropyl carbodiimide(DIC)and phenyl isocyanate (PhNCO)were purchased from commercial sources and were used without further purification.Elemental analyses for C,H,and N were carried out by using a Rapid CHN-O analyzer.Metal analyses were accomplished using the literature method[22].Infrared spectra for air-and moisturesensitive compounds were obtained on a Nicolet FTIR 360 spectrometer with samples prepared as Nujol mulls.1H NMR data were obtained on a Bruker DMX-400 NMR spectrometer.

    1.2 Preparation

    1.2.1 Synthesis of[CpYb(μ-η2∶η2-NHC6H4CONH)(μ3-

    η1∶η1∶η2-NHC6H4CONH)YbCp(HMPA)]2(1a)To a toluene solution (20 mL)of Cp3Yb (0.331 g,0.898 mmol)was added o-aminobenzamide (0.122 g,0.898 mmol)atroom temperature.Thereaction mixture was stirred at room temperature overnight.Then,HMPA (0.161 g,0.898 mmol)was added to the resulting yellow turbid solution.After stirring for 2 h,the reaction mixture was changed to a clear solution.The solution was then cooled at-10℃overnight to give 1a as orange crystals.Yield:0.388 g (94% ).Anal.Calcd.for C60H80N14O6P2Yb4(%):C,39.01;H,4.36;N,10.61;Yb,37.47.Found(%):C,39.12;H,4.41;N,10.53;Yb,37.33.IR (Nujol,cm-1):3 365 m,3 309 w,1 601 m,1 526 m,1 457 vs,1 378 m,1 327 m,1 145 s,990 s,873 w,758 s.

    1.2.2 Synthesis of[CpEr(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)ErCp(HMPA)]2(1b)

    Following the described method for synthesis of 1a,using Cp3Er (0.496 g,1.37 mmol),o-aminobenzamide (0.187 g,1.37 mmol)and HMPA (0.246 g,1.37 mmol)afforded 1b as light pink crystals.Yield:0.534 g (86%).Anal.Calcd.for C60H80N14O6P2Er4(%):C,39.50;H,4.42;N,10.75;Er,36.67.Found(%):C,39.55;H,4.43;N,10.69;Er,36.58.IR (Nujol,cm-1):3 365 m,3 310 w,1 600 m,1 525 m,1 457 vs,1 379 m,1 327 m,1 144 s,989 s,872 w,757 s.

    1.2.3 Synthesis of[CpY(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)YCp(HMPA)]2(1c)

    Following the described method for synthesis of 1a,using Cp3Y (0.86 g,1.01 mmol),o-aminobenzamide (0.137 g,1.01 mmol)and HMPA (0.181 g,1.01 mmol)afforded 1c as a light yellow crystalline powder.Yield:0.281 g (74%).Anal.Calcd.for C60H80N14O6P2Y4(%):C,47.69;H,5.34;N,12.98;Y,23.54.Found(%):C,47.74;H,5.37;N,12.90;Y,23.52.IR (Nujol,cm-1):3 364 m,3 309 w,1 600 m,1 524 m,1 458 vs,1 378 m,1 327 m,1 143 s,988 s,758 s.1H NMR (C6D6,400 MHz,25 ℃):δ 7.92 (s,NH,2H),7.90 (s,NH,2H),7.08~6.43 (m,C6H4,16H),6.29 (s,C5H5,20H),3.71 (s,NH,2H),3.56 (s,NH,2H),2.28 (d,J=8.0Hz,N(CH3)2,36H).

    1.2.4 Synthesis of[Cp2Yb(μ3-η2∶η2∶η1-Quo)]3Yb(HMPA)2(2a)

    To a toluene solution (20 mL)of 1a (0.412 g,0.225 mmol)was added PhNCO (0.107 g,0.901 mmol)at 0 ℃.The reaction mixture was stirred at room temperature overnight. The solution was concentrated and cooled at-15℃for several days to give 2a as a yellow powder.Crystals of 2a suitable for X-ray analysis were obtained by recrystallization in a mixed solvent of toluene and THF.Yield:0.230 g(53%).Anal.Calcd.for C66H78N12O8P2Yb4(% ):C,41.25;H,4.09;N,8.75;Yb,36.02.Found (%):C,41.29;H,4.14;N,8.69;Yb,35.96.IR(Nujol,cm-1):3 411 w, 3 339 s,2 192 m,1 598 m,1 537 s,1 465 s,1 373 s,1 300 m,1 149 m,991 s,751 s.

    1.2.5 Synthesis of[Cp2Er(μ3-η2∶η2∶η1-Quo)]3Er(HMPA)2(2b)

    Following the method described for synthesis of 2a,using 1b (0.552 g,0.30 mmol)and PhNCO (0.144 g,1.21 mmol)afforded 2b as a pink powder.Yield:0.268 g (46%).Anal.Calcd.For C66H78N12O8P2Er4(%):C,41.76;H,4.14;N,8.85;Er,35.24.Found(%):C,41.47;H,4.04;N,8.69;Er,35.16.IR (Nujol,cm-1):3 410 w,3 339 s,2 191 m,1 597 m,1 537s,1 463 s,1 373 s,1 300 m,1 149 m,991 s,753 s.

    1.2.6 Synthesis of[Cp2Y(μ3-η2∶η2∶η1-Quo)]3Y(HMPA)2(2c)

    Following the method described for synthesis of 2a,using 1c (0.408 g,0.27 mmol)and PhNCO (0.128 g,1.08 mmol)afforded 2c as a light yellow powder.Yield:0.214 g (50%).Anal.Calcd.for C66H78N12O8P2Y4(%):C,50.01;H,4.96;N,10.60;Y,22.44.Found:C,49.96;H,4.91;N,10.49;Y,22.39.IR (Nujol,cm-1):3 407 w,3 337 s,2 192 m,1 597 m,1 536s,1 463 s,1 373 s,1 301 m,1 240 w,1 147 m,990 s,756 s.1H NMR (C6D6,400 MHz,25 ℃): δ 7.34~7.08 (m,C6H4,12H),6.15 (s,C5H5,30H),2.12 (s,NMe2,36H).

    1.2.7 Synthesis of{Cp2Yb[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Yb(HMPA)3(3a)

    To a toluene solution (20 mL)of 1a (0.412 g,0.225 mmol)was added DIC (0.141 g,1.12 mmol)at 0℃.The reaction mixture was stirred at room tempera-ture overnight.The solution was concentrated and cooled at-15℃for several days to give 3a as a yellow powder.The yellow crystals of 3a·THF suitable for X-ray analysis were obtained by recrystallization in a mixed solvent of toluene and THF.Yield:0.389 g(70%).Anal.Calcd.for C90H144N21O6P3Yb4(%):C,45.01;H,6.04;N,12.25;Yb,28.82.Found(%):C,45.14;H,6.07;N,12.17;Yb,28.75.IR (Nujol,cm-1):3 410 m,3 381 w,3 280 w,1 600 w,1 522 w,1 460 vs,1 377 s,1 127 m,837 w,727 s.

    1.2.8 Synthesis of{Cp2Er[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Er(HMPA)3(3b)

    Following the described method for synthesis of 3a,using 1b (0.552 g,0.30 mmol)and DIC (0.152 g,1.20 mmol)afforded 3b·THF as light pink crystals.Yield:0.375 g (50%).Anal.Calcd.for C90H144N21O6P3Er4(%):C,45.45;H,6.10;N,12.37;Er,28.13.Found(%):C,45.44;H,6.13;N,12.31;Er,28.05.IR(Nujol,cm-1):3 409 m,3 381 w,3 279 w,1 599 w,1 556 w,1 459 vs,1 379 s,1 158 w,1 126 m,988 w,729 s.

    1.2.9 Synthesis of{Cp2Y[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Y(HMPA)3(3c)

    Following the described method for synthesis of 3a,using 1c (0.468 g,0.31 mmol)and DIC (0.154 g,1.22 mmol)afforded 3c as light yellow crystalline solid.Yield:0.285 g (43%).Anal.Calcd.for C90H144N21O6P3Y4(%):C,52.35;H,7.03;N,14.25;Y,17.22.Found(%):C,52.39;H,7.09;N,14.23;Er,17.20.IR(Nujol,cm-1):3 406 m,3 380 w,3 280 w,1 598 w,1 554 w,1 460 vs,1 377 s,1 155 w,1 128 m,993 w,726 w.1H NMR(C6D6,400 MHz,25 ℃):δ 8.31 (s,NH,3H),7.23~6.99(m,C6H4,12H),6.09 (s,C5H5,30H),3.75 (m,CH(CH3)2,3H),3.55 (s,NH,3H),3.33 (m,CH(CH3)2,3H),2.49(d,J=8.0 Hz,N(CH3)2,54H),1.34 (d,J=6.4 Hz,CH(CH3)2,18H),0.93 (d,J=6.4 Hz,CH(CH3)2,18H).Crystals of 3c·THF suitable for X-ray analysis were obtained by layering n-hexane to its concentrated toluene/THF solution.

    1.2.10 Synthesis of{CpYb[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4-CONH]}2(4a)

    To a toluene solution (20 mL)of Cp3Yb (0.238 g,0.646 mmol)was added o-aminobenzamide (0.088 g,0.646 mmol)at room temperature.After stirred at room temperature overnight,DIC (0.082 g,0.646 mmol)was added to the resulting yellow turbid solution at 0℃.Then,the reaction mixture was heated at 110 ℃for 12 h.The hot clear solution was slowly cooled to room temperature,affording 4a as yellow crystals.Yield:0.300 g (93%).Anal.Calcd.for C38H50N8O2Yb2(%):C,45.78;H,5.06;N,11.24;Yb,34.71.Found(%):C,45.84;H,5.02;N,11.20;Yb,34.65.IR(Nujol,cm-1):3 396 m,3 381 w,1 598 w,1 463 vs,1 377 s,1 327 m,1 170 m,1 124 w,875 w,763 s.

    1.2.11 Synthesis of{CpEr[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4-CONH]}2(4b)

    Following the method described for synthesis of 4a,using Cp3Er (0.326 g,0.898 mmol),o-aminobenzamide (0.123 g,0.898 mmol)and DIC (0.113 g,0.898 mmol)afforded 4b as light pink crystals.Yield:0.400 g (91%).Anal.Calcd.for C38H50N8O2Er2(%):C,46.32;H,5.11;N,11.37;Er,33.95.Found(%)C,46.39;H,5.15;N,11.28;Er,33.82.IR (Nujol,cm-1):3 399 m,3 379 w,1 598 w,1 548 w,1 459 vs,1 377 s,1 172 m,1 124 m,874 w,764 s.

    1.2.12 Synthesis of{CpY[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4CO-NH]}2(4c)

    Following the method described for synthesis of 4a,using Cp3Y (0.317 g,1.11 mmol),o-aminobenzamide(0.152 g,1.11 mmol)and DIC (0.140 g,1.11 mmol)afforded 4c as light yellow crystals.Yield:0.321 g(70%).Anal.Calcd.for C38H50N8O2Y2(%):C,55.08;H,6.08;N,13.52;Y,21.46.Found(%):C,55.09;H,6.12;N,13.50;Y,21.45.IR (Nujol,cm-1):3 399 m,3 375 w,1 741 w,1 598 w,1 547 w,1 460 vs,1 377 s,1 171 m,1 124 m,763 s.1H NMR (C6D6,400 MHz,25 ℃):δ 7.28~7.11 (m,C6H4,8H),6.94 (s,NH,2H),6.45 (s,C5H5,10H),6.12 (s,NH,2H),3.35~3.22(m,CH(CH3)2,4H),1.28 (d,J=6.4 Hz,CH3,6H),0.86(d,J=6.4 Hz,CH3,6H).

    1.2.13 Transformation from 4a to 3a

    To a toluene solution (20 mL)of 4a (0.254 g,0.255 mmol)was added HMPA (0.091 g,0.510 mmol)at room temperature.After stirring for 12 h,the solution was concentrated and cooled at-15℃for several days to give 3a as yellow crystals.Yield:0.165 g (54%).

    1.3 X-ray data collection,structure determination and refinement

    Suitable single crystals were sealed under N2in thin-walled glass capillaries forX-ray structural analysis.X-ray diffraction data were collected on a SMART APEX CCD diffractometer(graphite-monochromated Mo Kα radiation,φ-ω scan technique,λ=0.071 073 nm).The intensity data were integrated by means of the SAINT program[23].SADABS[24]was used to perform area-detector scaling and absorption corrections.The structures were solved by direct methods and were refined against F2using all reflections with the aid of the SHELXTL package[25].All non-hydrogen atoms were found from the difference Fourier syntheses and refined anisotropically.The H atoms were included in calculated positions with isotropic thermal parameters related to those of the supporting carbon atoms but were not included in the refinement.All calculations were performed using the Bruker Smart program.Details of this SQUEEZE are given in the cif files.Crystal data,data collection,and processing parameters for the complexes are summarized in Table 1~2.

    CCDC:951003,1a;951104,1b;951102,2a;951004,3a;951106,3b;951005,3c;951103,4a;951107,4b;951105,4c.

    Table 1 Crystal and data collection parameters of complexes 1a,1b and 4a~4c

    Table 2 Crystal and data collection parameters of complexes 2a and 3·THF

    2 Results and discussion

    2.1 Syntheses and characterization of lanthanocene derivatives with the o-aminobenzamido dianion ligand

    Considering thatthe ureido resulting from addition of amine to isocyanate might potentially undergo the nucleophilic substitution or addition[26-27](Scheme 3),our interest in the rare earth metalmediated C=N bond cleavage of isocyanates prompted us to explore the possibility of reacting two coordinated NH anions with one isocyanate molecule.

    Scheme 3

    On the basis of this idea,we focused our attention on using the linked NH/CONH dianion lanthanide complexes as the template of the target reaction as the anionic NH and CONH groups offer a degree of selectivity,in which the two NH groups can react either with a reagent having two functionalities or with two separate reagents bearing the same or different functionality.Thus,it may be expected that the different reactivity between coordinated NH and CONH anions toward the same functionality would control reaction degree of advancement,for less reactive substrates only the NH addition takes place,whereas the more reactive ones lead to the occurrence of a tandem reaction involved the two kinds of amido groups.Three o-aminobenzamido dianion lanthanide complexes [CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)]2(Ln=Yb,1a;Er,1b;Y,1c)as the designed starting materials were synthesized in good yields by protonolysis of Cp3Ln with oaminobenzamide followed by crystallization in a HMPA and toluene mixture (Scheme 4).

    Complexes 1a~1c are air-and moisture-sensitive,and readily dissolved in toluene and THF.They are thermally stable at room temperature.Complexes 1a~1c were characterized by elemental analysis and spectroscopic methods.In the IR spectra,all of them show two sharp N-H stretching vibration peaks at about 3 310 and 3 365 cm-1attributable to the different chemical environments of NH groups.1H NMR spectra of complex 1c show four NH resonance peaks at 7.92,7.90 3.71,and 3.56,respectively.The solid-state structures of 1a and 1b were determined by X-ray analysis.

    As shown in Fig.1,X-ray analysis results show that 1a and 1b are isostructural,four o-aminobenzamido dianion ligands connect with two CpLn and two CpLn(HMPA)fragments via two different μ-η2∶η2-and μ3-η1∶η1∶η2-bonding modes,respectively.These bond parameters indicate that the amido moiety acts as both a bridging and side-on chelating group,in which the negative charge is delocalized over the OCN unit.Characteristically,both of bridging O and N atoms have two distinctive metal-oxygen (nitrogen)distances.One is between those expected for an Ln3+-O(N)single bond and an Ln3+←∶O(N)donor bond,while another falls in the range of the Ln3+←∶O(N)donating bond lengths for neutral oxygen or nitrogen donor ligands[28].This difference may be attributed to the chelating coordination effect caused by the amido ligand.

    Scheme 4

    Fig.1 Thermal ellipsoid (30%)plot of complexes{CpLn(μ-η2∶η2-NHC6H4CONH)[μ3-η1∶η1∶η2-NHC6H4CONH]LnCp-(HMPA)}2 (Ln=Yb,1a;Er,1b)

    2.2 Reaction of 1 with phenyl isocyanate

    With dianionic o-aminobenzamido organolanthanides 1 in hand,we next explored their reactivity toward phenyl isocyanate.As expected,treatment of 1 with PhNCO (nPhNCO/n1=4)in toluene led to the occurrence of an unusual tandem addition/cyclization/amine elimination/ligand redistribution reaction,giving the dianionic quinazolyldiolate lanthanide complexes{Cp2Ln[μ3-η2∶η2∶η1-Quo]}3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c)in moderate isolated yields (Scheme 5).The elimination product PhNH2was unambiguously identified by GC-MS,but attempts to isolate another metal-containing productwere unsuccessful.The metathesis reactions of isocyanates with organolanthanide complexes are rarely observed[20-21].This is the first example of the amido complex-mediated C=N bond cleavage ofisocyanates,and provides an effective method for the construction of quinazolyldiol skeleton[29].

    Scheme 5

    Fig.2 Thermal ellipsoid (30%)plot of complex{Cp2Yb[μ3-η2∶η2∶η1-Quo]}3Yb(HMPA)2 (2a)

    Complexes 2a~2c are readily dissolved in THF but slightly soluble in toluene.They were characterized by elemental analysis and IR spectroscopy.The1H NMR spectra of 2c was also determined and showed that there is no N-H resonance absorption peak.The structure of 2a was identified by X-ray single-crystal diffraction analysis.As shown in Fig.2,2a is a tetranuclearstructure possessing three bridging dianionic quinazolinyldione ligands.2a has a three-fold rotation axis on the O-O alignment,and the three ytterbium and two HMPA oxygen atoms occupy an equatorial plane and an apical position of the hexahedral skeletal structure,respectively (Fig.2).The four Yb atoms locate in two different coordinate environments.Atoms Yb(2),Yb(2A)and Yb(2B)are coordinated by one chelating η2-N,O unit,one nonbridging oxygen atom and two η5-Cp groups,respectively,to form a distorted triagonal-bipyramidal geometry,while the central Yb(1)is coordinated by three η2-N,O units from different quinazolyldiolate ligands and two HMPA oxygen atoms to form a hexagonal bipyramidal geometry.The bond parameters indicate that the π-electrons of C=O and C=N double bonds are delocalized over the pyrimidinyldionate skeleton.The Yb-O distances are in normal range[5c].The rather long distances between ytterbium and N atoms may be attributed to both the rigidity of the quinazolyldiolate ring and the steric crowding[30].

    2.3 Reactivity of 1 toward diisopropylcarbodiimide

    To obtain additional insight into the mechanism and scope of the reaction,we further examined the behavior of 1 toward carbodiimide.In markedly contrast to isocyanate,treatment of 1 withiPrN=C=NiPr (nligand/n1=4)provided{Cp2Ln[μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)as the main metal-containing products,even with a prolonged heating at 110 ℃ (Scheme 6).In addition,3a~3c are inactive to excessiPrN=C=NiPr.These results indicate thatiPrN=C=NiPr is preferentially added to NH rather than CONH group.The coordinated CONH group is inert,and undergoes neither addition toiPrN=C=NiPr nor nucleophilic attack to the newly formed guanidinate ligand under the conditions involved.This difference might be attributed to the strong chelating interaction between CONH and metal,leading to the lower nucleophilicity compared with the NH group.

    Crystallographic data for 3 show that there are two independent molecules (Fig.3),crystallizing in one asymmetrical unit.Itisnoteworthythatthe πelectrons of the C=N double bond of two guanidinate groups are delocalized over the N-C-N unit(N(2)-C(1)and N(4)-C(1),0.135(2)and 0.134(2)nm;C(49)-N(10)and C(49)-N(12),0.136(2)and 0.135(2)nm),whereas the bond parameters (N(6)-C(25)and N(8)-C(25)of a third guaninate group suggest a tendency toward CN double and single bonds(cf.mean values of 0.136 nm for C(sp2)-N and 0.129 nm for C(sp2)=N)[31].

    In order to exclude the effect of HMPA,the HMPA-free reaction was examined.As shown in Scheme 6,the treatment of Cp3Ln with o-aminobenzamide followed by reacting withiPrN=C=NiPr gave{CpLn [μ-η1∶η2∶η2-NHCOC6H4NC (NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c),indicating that the CONH group in 4 is also inert.Interestingly,4 can be transformed into 3 in the presence of HMPA,revealing an unusual HMPA-induced ligand redistribution of organolanthanides.

    Crystals suitable for a single-crystal X-ray study were grown by slow cooling a hot toluene solution of 4.As shown in Fig.4,compounds 4a,4b and 4c are isostructural,and each of the lanthanide atoms is coordinated by one η5-C5H5ligand,one chelating η2-CONH with side donating coordination,one chelating guanidinate group and one bridging oxygen atom,indicating that only NHAr groups have combined withiPrN=C=NiPr.There are no informal bond lengths and anglescompared to otherguanidinate lanthanide complexes[27].

    Scheme 6

    Fig.3 Thermal ellipsoid (30%)plot of complex{Cp2Ln[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)

    Scheme 7

    Based on these experimental results,a possible reaction pathway for the formation of 2 is proposed in Scheme 7.Coordination insertion of PhNCO into the Ln-NHAr bond followed by a ligand redistribution give the intermediateⅡ,which places the CONH group and the resulting ureido into close proximity,as observed in the formation of 3.A sequential addition of the activated N-H to the C=N double bond leads to the occurrence of the cyclization[13].Reductive elimination of PhNH2generates the quinazolyldiolate ring.Obviously,the formation of a more stable aromatic quinazolyldiolate skeleton might contribute to the occurrence of the cyclization/amine-elimination reaction of the putative amido intermediate(Ⅲ).But attempts to isolate the intermediatesⅠandⅡhave been unsuccessful due to their thermodynamic instability.A tandem addition/cyclization/elimination reaction is observed in the treatment of 1 with PhNCO,whereas for 3 no subsequent reactions are observed even with a longer reaction time and higher temperature.It is possible that both the larger steric hindrance and the weaker electrophilic reactivity of guanidinate compared to ureido prevent the subsequent cyclization.

    Fig.4 Thermal ellipsoid (30%)plot of complex{CpLn[μ-η1∶η2∶η2-OCNHC6H4NC(NHiPr)NiPr]}2 (Ln=Yb,4a;Er,4b;Y,4c)

    3 Conclusions

    In conclusion,three new tetranuclear lanthanocene derivatives incorporating the o-aminobenzamido dianion ligand,[CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp-(HMPA)}2(Ln=Yb,Er,Y),have been synthesized by reaction of Cp3Ln with oaminobenzamide followed by crystallization in a mixed HMPA and toluene solvent.The first example of tandem reaction of two coordinated NH moieties with an isocyanate molecule resulting in the formation of a dianionic quinazolyldiolate fragmentisdescribed.Furthermore,these o-aminobenzamido complexes can also undergo the single NH addition to carbodiimide selectively.In addition,an unusual HMPA-induced ligand redistribution of organolanthanides is observed in these processes.The present results demonstrate that o-aminobenzamido organolanthanide complexes can be expected to have synthetic potential because they provide a reaction system in which the two coordinated NH moieties show different reactivity toward the same functionality.In this case,after the first reaction one surviving NH group could undergo cyclization across the first reaction product.On the other hand,this work provides an alternative route to carbonylation of organic substrates,which is very difficult to achieve by rare earth metal system due to the mismatch in the orbital energy of the hard rare earth metal ion and the soft CO ligand.The catalytic synthesis of heterocycles,which is based on such reactions,is undergoing.

    [1] (a)Molander G A,Romero J A C.Chem.Rev.,2002,102(6):2161-2185(b)Muller T E,Hultzsch K C,Yus M.Chem.Rev.,2008,108(9):3795-3892(c)Bartoli G,Marcantoni E,Marcolini M,et al.Chem.Rev.,2010,110(10):6104-6143(d)Zeng X M.Chem.Rev.,2013,113(8):6864-6900

    [2] (a)Evans W J,Davis B L.Chem.Rev.,2002,102(6):2119-2136(b)Zhou X G,Zhu M.J.Organomet.Chem.,2002,647(1/2):28-49(c)Hong S,Marks T J.Acc.Chem.Res.,2004,37(9):673-686(d)Zhang J,Zhou X G.Dalton Trans.,2011,40(38):9637-9648(e)Liu R T,Zhou X G.Chem.Commun.,2013,49(31):3171-3187

    [3](a)Jeske G,Lauke H,Mauermann H,et al.J.Am.Chem.Soc.,1985,107(26):8091-8103(b)Cui D M,Nishiura M,Hou Z M.Angew.Chem.Int.Ed.,2005,44(6):959-962(c)Wang B L,Wang D,Cui D M,et al.Organometallics,2007,26(13):3167-3172(d)Kaneko H,Nagae H,Tsurugi H,et al.J.Am.Chem.Soc.,2011,133(49):19626-19629(e)Zhou S L,Wang H Y,Ping J,et al.Organometallics,2012,31(5):1696-1702(f)Hong L C,Lin W J,Zhou X G,et al.Chem.Commun.,2013,49(49):5589-5591

    [4] (a)Li W B,Xue M Q,Xu F,et al.Dalton Trans.,2012,41(27):8252-8260(b)Basalov I V,Lyubov D M,F(xiàn)ukin G K,et al.Angew.Chem.Int.Ed.,2012,51(14):3444-3447(c)Sun J L,Berg D J,Twamley B.Organometallics,2008,27(4):683-690(d)Yang Y,Cui D M,Chen X S.Dalton Trans.,2010,39(16):3959-3967(e)Li X Q,Hong J Q,Zhou X G,et al.Organometallics,2010,29(20):4606-4610(f)Pi C F,Li X Q,Zhang L L,et al.Inorg.Chem.,2010,49(17):7632-7634(g)Zhang Z X,Bu X L,Zhang J,et al.Organometallics,2010,29(9):2111-2117(h)Lu E L,Chen Y F,Leng X B.Organometallics,2011,30(20):5433-5441(i)Casely I J,Ziller J W,Evans W J.Organometallics,2011,30(18):4873-4881

    [5](a)Liu R T,Zhang C M,Zhu Z Y,et al.Chem.Eur.J.,2006,12(26):6940-6952(b)Li X Q,Liu R T,Zhang Z X,et al.Organometallics,2010,29(15):3298-3302(c)Chu J X,Lu E L,Liu Z X,et al.Angew.Chem.Int.Ed.,2011,50(33):7677-7680(d)Shao Y L,Zhang F J,Zhang J,et al.Angew.Chem.Int.Ed.,2016,55(38):11485-11489(e)Hong J Q,Li Z H,Chen Z N,et al.Dalton Trans.,2016,45(15):6641-6649(f)Huang S J,Shao Y L,Zhang L X,et al.Angew.Chem.Int.Ed.,2015,54(48):14452-14456(g)Luo Y,Teng H L,Nishiura M,et al.Angew.Chem.Int.Ed.,2017,56(31):9207-9210

    [6] (a)Yasuda H,Yamamoto H,Yokota K,et al.J.Am.Chem.Soc.,1992,114(12):4908-4910(b)Giardello M A,Yamamoto Y,Brard L,et al.J.Am.Chem.Soc.,1995,117(11):3276-3277(c)Zhang W X,Nishiura M,Hou Z M.Angew.Chem.Int.Ed.,2008,47(50):9700-9703(d)Yang J Y,Shen H,Xie Z W.J.Organomet.Chem.,2015,798:204-208(e)Xu L,Zhai M K,Wang F,et al.Dalton Trans.,2016,45(43):17108-17112(f)Song G Y,Wang B L,Nishiura M,et al.Chem.Eur.J.,2015,21(23):8394-8398(g)Xu P F,Yao Y M,Xu X.Chem.Eur.J.,2017,23(6):1263-1267

    [7] (a)Molander G A,Romero J A C.Chem.Rev.,2002,102(6):2161-2185(b)Konkol M,Kondracka M,Voth P,et al.Organometallics,2008,27(15):3774-3784(c)Ohashi M,Konkol M,Rosal D,et al.J.Am.Chem.Soc.,2008,130(22):6920-6921(d)Barros N,Eisenstein O,Maron L.Dalton Trans.,2010,39(44):10757-10767(e)Abinet E,Spaniol T P,Okuda J.Chem.Asian J.,2011,6(2):389-391

    [8](a)Lauterwasser F,Hayes P G,Piers W E,et al.Adv.Synth.Catal.,2011,353(8):1384-1390(b)Zhang Y Y,Yao W,Li H,et al.Organometallics,2012,31(13):4670-4679(c)Trambitas A G,Melcher D,Hartenstein L,et al.Inorg.Chem.,2012,51(12):6753-6761(d)Reznichenko A L,Hultzsch K C.Organometallics,2013,32(5):1394-1408(e)Huang S J,Shao Y L,Zhang L X,et al.Angew.Chem.Int.Ed.,2015,54(48):14452-14456(f)Hong S,Marks T J.Acc.Chem.Res.,2004,37(9):673-686

    [9] (a)Yu X H,Seo S Y,Marks T J.J.Am.Chem.Soc.,2007,129(23):7244-7245(b)Seo S Y,Yu X H,Marks T J.J.Am.Chem.Soc.,2009,131(1):263-276

    [10](a)Weiss C J,Marks T J.Dalton Trans.,2010,39:6576-6588(b)Weiss C J,Wobser S D,Marks T J.Organometallics,2010,29(23):6308-6320

    [11](a)Douglass M R,Stern C L,Marks T J.J.Am.Chem.Soc.,2001,123(42):10221-10238(b)Takaki K,Koshoji G,Komeyama K,et al.J.Org.Chem.,2003,68(17):6554-6565(c)Kawaoka A M,Marks T J.J.Am.Chem.Soc.,2004,126(40):12764-12765(d)Hu H F,Cui C M.Organometallics,2012,31(3):1208-1211(e)Behrle A C,Schmidt J A R.Organometallics,2013,32(5):1141-1149

    [12](a)Hung S C,Wen Y F,Chang J W,et al.J.Org.Chem.,2002,67(4):1308-1313(b)SchumannH,HeimA,DemtschukJ,etal.Organometallics,2003,22(1):118-128(c)Yuan Y Y,Wang X F,Li Y X,et al.Organometallics,2011,30(16):4330-4341

    [13](a)Guan B T,Hou Z M.J.Am.Chem.Soc.,2011,133(45):18086-18089(b)Oyamada J,Hou Z M.Angew.Chem.Int.Ed.,2012,51:12828-12832(c)Guan B T,Wang B L,Nishiura M,et al.Angew.Chem.Int.Ed.,2013,52:4418-4421(d)Shi X C,Nishiura M,Hou Z M.J.Am.Chem.Soc.,2016,138:61476150(e)Arnold P L,McMullon M W,Rieb J,et al.Angew.Chem.Int.Ed.,2015,55:82-100

    [14](a)Monsaert S,Vila A L,Drozdzak R,et al.Chem.Soc.Rev.,2009,38:3360-3372(b)Leitao E M,van der Eide E F,Romero P E,et al.J.Am.Chem.Soc.,2010,132(8):2784-2794(c)Woodward C P,Spiccia N D,Jackson W R,et al.Chem.Commun.,2011,47:779-781

    [15](a)Shima T,Hou Z M.J.Am.Chem.Soc.,2006,128 (25):8124-8125(b)Zhou J L,Chu J X,Zhang Y Y,et al.Angew.Chem.Int.Ed.,2013,52(15):4243-4246

    [16](a)Zhang W X,Wang Z,Nishiura M,et al.J.Am.Chem.Soc.,2011,133(15):5712-5715(b)Hong J Q,Zhang L X,Yu X Y,et al.Chem.Eur.J.,2011,17(7):2130-2137(c)Hong J Q,Zhang L X,Wang K,et al.Chem.Eur.J.,2013,19(24):7865-7873

    [17](a)Masui H,F(xiàn)use S,Takahashi T.Org.Lett.,2012,14(16):4090-4093(b)Campbell M J,Toste F D.Chem.Sci.,2011,2(7):1369-1378(c)Attanasi O A,de Crescentini L,F(xiàn)avi G S.et al.Org.Lett.,2011,13(3):353-355(d)Groenendaal B,Vugts D J,Schmitz R F,et al.J.Org.Chem.,2008,73(2):719-722(e)Church T L,Byrne C M,Lobkovsky E B,et al.J.Am.Chem.Soc.,2007,129(26):8156-8162

    [18](a)Braunstein P,Nobel D.Chem.Rev.,1989,89 (8):1927-1945(b)Kuninobu Y,Tokunaga Y,Kawata A,et al.J.Am.Chem.Soc.,2006,128(1):202-209(c)Paul F,Moulin S,Piechaczyk O,et al.J.Am.Chem.Soc.,2007,129(23):7294-7304(d)Zhu X C,F(xiàn)an J X,Wu Y J,et al.Organometallics,2009,28(13):3882-3888(e)Sharpe H R,Geer A M,Williams H E L,et al.Chem.Commun.,2017,53(5):937-940

    [19](a)Evans W J,F(xiàn)orrestal K J,Ziller J W.J.Am.Chem.Soc.,1998,120(36):9273-9282(b)Shen Q,Li H R,Yao C S,et al.Organometallics,2001,20(14):3070-3073(c)Shen Q,Yao Y M.J.Organomet.Chem.,2002,647(1/2):180-189(d)Han Y N,Zhang J,Han F Y,et al.Organometallics,2009,28(13):3916-3921(e)Yi W Y,Zhang J,Li M,et al.Inorg.Chem.,2011,50(22):11813-11824

    [20](a)Zhang J,Ma L P,Cai R F,et al.Organometallics,2005,24(4):738-742(b)Du Z,Zhou H,Yao H,et al.Chem.Commun.,2011,47(12):3595-3597

    [21]Tardif O,Hashizume D,Hou Z M.J.Am.Chem.Soc.,2004,126(26):8080-8081

    [22]Qian C T,Ye C Q,Lu H Z,et al.J.Organomet.Chem.,1983,247(2):161-170

    [23]SAINTPlus,Data Reduction and Correction Program Ver.6.02a,Bruker AXS,Madison,WI,2000.

    [24]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction,University of G?ttingen,Germany,1998.

    [25]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.[26](a)Sun Y,Zhang Z X,Wang X,et al.Organometallics,2009,28(21):6320-6330(b)Sun Y,Zhang Z X,Wang X,et al.Dalton Trans.,2010,39(1):221-226(c)Zhang J,Han Y N,Han F Y,et al.Inorg.Chem.,2008,47(13):5552-5554

    [27](a)Pi C F,Liu R T,Zheng P Z,et al.Inorg.Chem.,2007,46(13):5252-5259(b)Pi C F,Zhu Z Y,Weng L H,et al.Chem.Commun.,2007(21):2190-2192(c)Pi C F,Zhang Z X,Pang Z,et al.Organometallics,2007,26(8):1934-1946

    [28](a)Evans W J,Ulibarri T A,Chamberlain L R,et al.Organometallics,1990,9(7):2124-2130(b)Evans W J,F(xiàn)oster S E.J.Organomet.Chem.,1992,433(1/2):79-94(c)Venugopal A,Kamps I,Bojer D,et al.Dalton Trans.,2009(29):5755-5765

    [29](a)Willis M C,Snell R H,F(xiàn)letcher A J,et al.Org.Lett.,2006,8(22):5089-5091(b)Vorbrueggen H,Krolikiewicz K.Tetrahedron,1994,50(22):6549-6558(c)Li J R,Chen X A,Shi D X,et al.Org.Lett.,2009,11(6):1193-1196(d)Patil Y P,Tambade P J,Deshmukh K M,et al.Catal.Today,2009,148(3/4):355-360

    [30]Zhou X G,Huang Z E,Cai R F,et al.J.Organomet.Chem.,1998,563(1/2):101-112

    [31]Allen F H,Kennard O,Watson D G,et al.J.Chem.Soc.,Perkin Trans.,1987(12):S1-S19

    Syntheses,Cycloaminocarbonylation and Amidination of Rare Earth o-Aminobenzamido Dianion Complexes Bearing Cyclopentadienyl Co-ligand

    SUN Yan1LIU Rui-Ting1WENG Lin-Hong1ZHOU Xi-Geng*,1,2
    (1Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Fudan University,Shanghai 200433,China)
    (2State Key Laboratory of Organometallic Chemistry,Shanghai 200032,China)

    Treatment of Cp3Ln with o-aminobenzamide followed by crystallization in a HMPA and toluene mixture affords the tetranuclear organolanthanide complexes [CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)}2(Ln=Yb,1a;Er,1b;Y,1c).Reaction of 1 with PhNCO (nPhNCO/n1=4)in toluene gives the dianionic quinazolyldiolate (Quo)complexes [Cp2Ln(μ3-η2∶η2∶η1-Quo)]3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c),indicating that one isocyanate molecule can undergo the tandem reaction with both NH and CONH of 1 to construct a quinazoly-ldiolate skeleton,companying with the elimination of PhNH2.However,1a~1c react withiPrN=C=NiPr under the same conditions to give only the single ArNH addition products{Cp2Ln [μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln (HMPA)3(Ln=Yb,3a;Er,3b;Y,3c).Furthermore,treatment of Cp3Ln with o-aminobenzamide followed by reacting withiPrN=C=NiPr gave{CpLn[μ-η1∶η2∶η2-NHCOC6H4NC(NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c).Noticeably,HMPA could induce the transformation of 4 into 3 by a ligand redistribution.CCDC:951003,1a;951104,1b;951102,2a;951004,3a;951106,3b;951005,3c;951103,4a;951107,4b;951105,4c.

    lanthanide complexes;cycloaminocarbonylation;isocyanate;o-aminobenzamide;addition

    O614.346;O614.344;O614.32+2

    A

    1001-4861(2017)11-2124-15

    10.11862/CJIC.2017.255

    2017-09-01。收修改稿日期:2017-09-22。

    國(guó)家自然科學(xué)基金(No.21372047,21572034)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:xgzhou@fudan.edu.cn

    猜你喜歡
    甲酰胺負(fù)離子甲苯
    一種新1H-1,2,3-三唑-4-甲酰胺化合物的合成、晶體結(jié)構(gòu)和氫鍵研究
    森林公園負(fù)離子濃度及負(fù)離子物質(zhì)量和價(jià)值量研究
    負(fù)離子人造板研究現(xiàn)狀及發(fā)展建議
    靜電對(duì)負(fù)離子地板測(cè)試的影響
    高效液相色譜法測(cè)定降糖藥甲苯磺丁脲片中甲苯磺丁脲的含量
    1-(對(duì)甲苯基)-2-(三對(duì)甲苯基-5-亞磷?;?乙醛的汞(Ⅱ)配合物的X射線晶體學(xué)、光譜表征和理論計(jì)算研究
    20%氯蟲(chóng)苯甲酰胺懸浮劑防治棉鈴蟲(chóng)藥效試驗(yàn)
    高壓脈沖電刺激下龍舌蘭釋放負(fù)離子的研究
    氣相色譜-質(zhì)譜聯(lián)用法測(cè)定兒童產(chǎn)品中殘留的甲酰胺
    甲苯-4-磺酸催化高效合成尼泊金正丁酯防腐劑
    一区福利在线观看| 久热爱精品视频在线9| 新久久久久国产一级毛片| 精品少妇黑人巨大在线播放| a级毛片在线看网站| 三级毛片av免费| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区三 | 欧美日韩成人在线一区二区| 中文精品一卡2卡3卡4更新| 国产成人精品久久二区二区免费| 亚洲精品国产区一区二| 成年动漫av网址| 国产伦人伦偷精品视频| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 99热全是精品| 一区福利在线观看| 满18在线观看网站| 成人国产av品久久久| 一区二区三区激情视频| 亚洲第一av免费看| 精品国产一区二区三区久久久樱花| 在线观看免费午夜福利视频| 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| 久久狼人影院| 香蕉丝袜av| 操出白浆在线播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一卡2卡三卡4卡5卡 | 日韩制服骚丝袜av| 亚洲精品av麻豆狂野| 婷婷色av中文字幕| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 中文精品一卡2卡3卡4更新| 精品高清国产在线一区| 国产一级毛片在线| 人妻一区二区av| 国产精品九九99| 久久精品国产亚洲av高清一级| 亚洲七黄色美女视频| 天天操日日干夜夜撸| 亚洲av欧美aⅴ国产| 午夜福利在线观看吧| 国产黄色免费在线视频| 免费观看a级毛片全部| 十分钟在线观看高清视频www| www.熟女人妻精品国产| 高潮久久久久久久久久久不卡| 中文字幕精品免费在线观看视频| 黄色视频在线播放观看不卡| 每晚都被弄得嗷嗷叫到高潮| 无遮挡黄片免费观看| 久久精品国产亚洲av香蕉五月 | 午夜日韩欧美国产| 一本大道久久a久久精品| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品一区二区大全| 在线av久久热| 夜夜骑夜夜射夜夜干| 丁香六月天网| 黄频高清免费视频| 91麻豆av在线| 久久久久网色| 国产真人三级小视频在线观看| 狠狠狠狠99中文字幕| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 国产精品久久久av美女十八| 黄频高清免费视频| 成人三级做爰电影| 欧美日韩av久久| 久热这里只有精品99| 欧美精品人与动牲交sv欧美| 国产成人啪精品午夜网站| 手机成人av网站| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 夫妻午夜视频| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| 青草久久国产| 精品国产乱子伦一区二区三区 | 大码成人一级视频| 色老头精品视频在线观看| 青春草视频在线免费观看| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 日韩一区二区三区影片| 中文字幕人妻丝袜一区二区| 欧美人与性动交α欧美精品济南到| 久久人人爽av亚洲精品天堂| 12—13女人毛片做爰片一| 亚洲中文av在线| 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 人人妻,人人澡人人爽秒播| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 超碰成人久久| 日韩精品免费视频一区二区三区| 国产精品 国内视频| 正在播放国产对白刺激| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 男人操女人黄网站| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 亚洲精品国产一区二区精华液| av免费在线观看网站| 久久天堂一区二区三区四区| 欧美日韩成人在线一区二区| av在线播放精品| 久久人人97超碰香蕉20202| 色94色欧美一区二区| 国产成人免费观看mmmm| 欧美性长视频在线观看| 在线观看免费视频网站a站| 亚洲人成电影观看| 人人妻人人添人人爽欧美一区卜| 999久久久精品免费观看国产| 日本黄色日本黄色录像| 人人妻人人澡人人看| 在线观看舔阴道视频| 国产一区有黄有色的免费视频| 51午夜福利影视在线观看| 亚洲精品国产一区二区精华液| 亚洲欧美激情在线| videos熟女内射| 久久99一区二区三区| 欧美国产精品一级二级三级| 天堂俺去俺来也www色官网| 国产在线视频一区二区| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 少妇被粗大的猛进出69影院| 亚洲五月婷婷丁香| 亚洲精品久久午夜乱码| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 男女国产视频网站| 蜜桃国产av成人99| 成人亚洲精品一区在线观看| 成人三级做爰电影| 激情视频va一区二区三区| 日本精品一区二区三区蜜桃| 午夜老司机福利片| 欧美精品啪啪一区二区三区 | 精品欧美一区二区三区在线| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 操美女的视频在线观看| 手机成人av网站| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 中文字幕人妻熟女乱码| 丰满少妇做爰视频| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| av国产精品久久久久影院| av在线老鸭窝| 久久精品成人免费网站| 亚洲精品久久午夜乱码| 一个人免费看片子| 中国美女看黄片| 啦啦啦视频在线资源免费观看| 午夜福利视频在线观看免费| 欧美激情高清一区二区三区| 日本wwww免费看| 熟女少妇亚洲综合色aaa.| 天天躁日日躁夜夜躁夜夜| 热re99久久精品国产66热6| 国产在线观看jvid| 久久国产精品大桥未久av| 午夜精品久久久久久毛片777| 国产片内射在线| 色老头精品视频在线观看| 丁香六月天网| 亚洲人成77777在线视频| 69精品国产乱码久久久| 亚洲精品国产色婷婷电影| 色老头精品视频在线观看| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 99热国产这里只有精品6| 久久99热这里只频精品6学生| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 男男h啪啪无遮挡| av欧美777| 亚洲人成电影免费在线| 老司机亚洲免费影院| 男女床上黄色一级片免费看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品第二区| 色94色欧美一区二区| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三区在线| 精品福利永久在线观看| 啦啦啦在线免费观看视频4| 亚洲全国av大片| 人人妻人人澡人人爽人人夜夜| 桃红色精品国产亚洲av| 性高湖久久久久久久久免费观看| 99精国产麻豆久久婷婷| 热99re8久久精品国产| 看免费av毛片| 黑人巨大精品欧美一区二区mp4| 精品视频人人做人人爽| 国产福利在线免费观看视频| 夜夜夜夜夜久久久久| 国精品久久久久久国模美| 老熟妇仑乱视频hdxx| 中文字幕人妻丝袜一区二区| 免费看十八禁软件| 国产片内射在线| 国产精品一二三区在线看| 欧美老熟妇乱子伦牲交| 黄片大片在线免费观看| 久久ye,这里只有精品| 亚洲中文字幕日韩| h视频一区二区三区| 国产黄色免费在线视频| 欧美久久黑人一区二区| 秋霞在线观看毛片| kizo精华| 成年人黄色毛片网站| av在线播放精品| 国产在线一区二区三区精| 90打野战视频偷拍视频| 国产成人一区二区三区免费视频网站| 精品少妇内射三级| 精品人妻一区二区三区麻豆| 亚洲性夜色夜夜综合| 亚洲综合色网址| av电影中文网址| 免费少妇av软件| 亚洲一码二码三码区别大吗| 十分钟在线观看高清视频www| 久久久久国产精品人妻一区二区| 精品人妻一区二区三区麻豆| 91av网站免费观看| 亚洲综合色网址| 色老头精品视频在线观看| 一区二区日韩欧美中文字幕| 久久久久国内视频| 亚洲av电影在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 国产又色又爽无遮挡免| 亚洲精品久久久久久婷婷小说| 人人澡人人妻人| 午夜精品国产一区二区电影| 视频区欧美日本亚洲| 精品国产一区二区久久| 一本久久精品| 日本欧美视频一区| 中国美女看黄片| 精品一区二区三区av网在线观看 | 人人澡人人妻人| 韩国精品一区二区三区| 亚洲九九香蕉| 亚洲伊人久久精品综合| 亚洲精品国产一区二区精华液| 热99国产精品久久久久久7| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 91av网站免费观看| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 亚洲少妇的诱惑av| 大型av网站在线播放| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 国产免费现黄频在线看| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 青春草视频在线免费观看| 又大又爽又粗| 一级毛片精品| 日本91视频免费播放| 男女免费视频国产| av一本久久久久| 丝袜在线中文字幕| 国内毛片毛片毛片毛片毛片| www.精华液| 亚洲欧美激情在线| av有码第一页| 久久久久视频综合| 一二三四在线观看免费中文在| 免费在线观看完整版高清| av福利片在线| 一区二区三区乱码不卡18| 精品一区二区三卡| a在线观看视频网站| 高潮久久久久久久久久久不卡| 久久精品国产a三级三级三级| 黄频高清免费视频| 搡老乐熟女国产| 亚洲全国av大片| 69av精品久久久久久 | 窝窝影院91人妻| 少妇精品久久久久久久| 色精品久久人妻99蜜桃| 日本av手机在线免费观看| 91字幕亚洲| 精品免费久久久久久久清纯 | 视频在线观看一区二区三区| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 91av网站免费观看| 亚洲欧洲精品一区二区精品久久久| 女人被躁到高潮嗷嗷叫费观| 国产av精品麻豆| www.精华液| 老熟妇仑乱视频hdxx| 狠狠婷婷综合久久久久久88av| 法律面前人人平等表现在哪些方面 | 亚洲男人天堂网一区| 国产一区二区在线观看av| 下体分泌物呈黄色| 成年人免费黄色播放视频| 国产成人欧美在线观看 | 91麻豆av在线| 在线观看www视频免费| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 悠悠久久av| 一个人免费在线观看的高清视频 | 亚洲三区欧美一区| 国产三级黄色录像| 日韩大片免费观看网站| 精品福利观看| 亚洲中文av在线| www.精华液| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 国产精品99久久99久久久不卡| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| 建设人人有责人人尽责人人享有的| 一个人免费在线观看的高清视频 | 欧美日韩av久久| 女人久久www免费人成看片| 人妻久久中文字幕网| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 69av精品久久久久久 | 亚洲欧美清纯卡通| 十八禁网站免费在线| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 亚洲九九香蕉| 天堂8中文在线网| 欧美精品高潮呻吟av久久| 成人手机av| 无限看片的www在线观看| 亚洲男人天堂网一区| 大码成人一级视频| 欧美 日韩 精品 国产| 永久免费av网站大全| 久久青草综合色| 精品一品国产午夜福利视频| 国产成人av教育| 国产精品1区2区在线观看. | 色播在线永久视频| 日韩欧美一区二区三区在线观看 | 国产一级毛片在线| 大香蕉久久网| 国产片内射在线| 在线观看人妻少妇| 日韩大码丰满熟妇| 一区二区三区乱码不卡18| 99国产精品免费福利视频| 高清av免费在线| 12—13女人毛片做爰片一| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 日韩欧美一区视频在线观看| 日本一区二区免费在线视频| 欧美日韩精品网址| 国产成人精品在线电影| 久久影院123| 欧美av亚洲av综合av国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看视频国产中文字幕亚洲 | 日韩大码丰满熟妇| 黑人操中国人逼视频| 人人妻人人爽人人添夜夜欢视频| 午夜老司机福利片| 天堂俺去俺来也www色官网| 久久99一区二区三区| 中文字幕高清在线视频| 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 午夜福利免费观看在线| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 亚洲综合色网址| 国产深夜福利视频在线观看| 大香蕉久久成人网| 在线 av 中文字幕| 国产精品.久久久| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 桃红色精品国产亚洲av| 国产老妇伦熟女老妇高清| 色94色欧美一区二区| 国产精品一区二区免费欧美 | 精品久久蜜臀av无| 成年av动漫网址| 日韩大码丰满熟妇| 免费日韩欧美在线观看| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 欧美精品啪啪一区二区三区 | 黄色片一级片一级黄色片| 日韩一区二区三区影片| 99国产精品一区二区蜜桃av | 欧美人与性动交α欧美精品济南到| 9热在线视频观看99| 国产av精品麻豆| 国产成人免费无遮挡视频| 人妻一区二区av| 黑人猛操日本美女一级片| tube8黄色片| 国产精品秋霞免费鲁丝片| 另类精品久久| 1024视频免费在线观看| 搡老熟女国产l中国老女人| www.999成人在线观看| 欧美国产精品一级二级三级| 搡老岳熟女国产| 国产成人免费观看mmmm| 999久久久国产精品视频| 中文欧美无线码| 国产精品久久久久久精品电影小说| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| av在线老鸭窝| 搡老乐熟女国产| 三上悠亚av全集在线观看| 青草久久国产| 亚洲精品第二区| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 色94色欧美一区二区| 精品少妇久久久久久888优播| 他把我摸到了高潮在线观看 | av天堂久久9| 日韩欧美一区二区三区在线观看 | 日本欧美视频一区| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| bbb黄色大片| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| www日本在线高清视频| 亚洲人成77777在线视频| 亚洲精品久久午夜乱码| 人妻 亚洲 视频| 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 欧美人与性动交α欧美精品济南到| 国产亚洲一区二区精品| 啪啪无遮挡十八禁网站| 高清欧美精品videossex| 亚洲中文av在线| 亚洲精品久久午夜乱码| 深夜精品福利| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 免费久久久久久久精品成人欧美视频| 丝袜喷水一区| 可以免费在线观看a视频的电影网站| av在线app专区| 中文字幕人妻熟女乱码| 日韩一区二区三区影片| 69av精品久久久久久 | 男人爽女人下面视频在线观看| 免费观看av网站的网址| 在线观看舔阴道视频| 国产男女超爽视频在线观看| 黑人操中国人逼视频| 久久女婷五月综合色啪小说| 中文字幕高清在线视频| 女人久久www免费人成看片| 丁香六月欧美| 岛国毛片在线播放| 国产1区2区3区精品| 日本黄色日本黄色录像| 精品国内亚洲2022精品成人 | 国产精品一区二区免费欧美 | 黄色a级毛片大全视频| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看 | 国产又爽黄色视频| 777米奇影视久久| 欧美97在线视频| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| av网站在线播放免费| 国产又爽黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 岛国毛片在线播放| 国产1区2区3区精品| 视频区欧美日本亚洲| 亚洲av片天天在线观看| 国产精品av久久久久免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人系列免费观看| 国产成人欧美在线观看 | 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 精品国产乱子伦一区二区三区 | 91老司机精品| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 亚洲精品国产av成人精品| 国产精品av久久久久免费| 我要看黄色一级片免费的| 亚洲国产精品一区二区三区在线| www日本在线高清视频| 人成视频在线观看免费观看| 97精品久久久久久久久久精品| 一区二区三区精品91| 欧美 日韩 精品 国产| 国产成人一区二区三区免费视频网站| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 精品少妇黑人巨大在线播放| 成年人午夜在线观看视频| 99热国产这里只有精品6| 久久久精品免费免费高清| 王馨瑶露胸无遮挡在线观看| 嫁个100分男人电影在线观看| 无遮挡黄片免费观看| 午夜免费鲁丝| 亚洲一码二码三码区别大吗| 成年av动漫网址| 伦理电影免费视频| 91av网站免费观看| 美女视频免费永久观看网站| 午夜久久久在线观看| 男女床上黄色一级片免费看| 日日夜夜操网爽| 宅男免费午夜| 人成视频在线观看免费观看| 欧美日韩精品网址| 久久天躁狠狠躁夜夜2o2o| 麻豆乱淫一区二区| 69精品国产乱码久久久| av天堂在线播放| 日韩,欧美,国产一区二区三区| 高清在线国产一区| 亚洲成av片中文字幕在线观看| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 男女免费视频国产| 日韩 亚洲 欧美在线| 亚洲五月婷婷丁香| 亚洲全国av大片| 亚洲精品乱久久久久久| 久久精品国产亚洲av香蕉五月 | www.av在线官网国产| 黑人操中国人逼视频| 啪啪无遮挡十八禁网站| 天堂俺去俺来也www色官网| 午夜老司机福利片| 日韩视频在线欧美| 国产高清videossex| 日韩三级视频一区二区三区| 黑人操中国人逼视频| cao死你这个sao货| 国产精品一二三区在线看| 欧美日韩一级在线毛片| 精品国产一区二区三区四区第35| 午夜日韩欧美国产| 后天国语完整版免费观看| 两个人免费观看高清视频| 美国免费a级毛片| 一区在线观看完整版| 在线永久观看黄色视频| 高清欧美精品videossex| 美女主播在线视频| 国产一卡二卡三卡精品| 欧美精品啪啪一区二区三区 | 亚洲国产欧美日韩在线播放| 多毛熟女@视频| 免费女性裸体啪啪无遮挡网站|