• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    茂基稀土鄰氨基苯甲酰胺基雙負(fù)離子配合物的合成及其環(huán)胺羰化反應(yīng)和脒基化反應(yīng)

    2017-11-13 12:22:10劉瑞婷翁林紅周錫庚
    關(guān)鍵詞:甲酰胺負(fù)離子甲苯

    孫 燕 劉瑞婷 翁林紅 周錫庚*,,2

    茂基稀土鄰氨基苯甲酰胺基雙負(fù)離子配合物的合成及其環(huán)胺羰化反應(yīng)和脒基化反應(yīng)

    孫 燕1劉瑞婷1翁林紅1周錫庚*,1,2

    (1復(fù)旦大學(xué)化學(xué)系,上海市分子催化與功能材料重點(diǎn)實(shí)驗(yàn)室,上海 200433)
    (2金屬有機(jī)化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200032)

    Cp3Ln與鄰氨基苯甲酰胺在甲苯中反應(yīng),之后在HMPA和甲苯中結(jié)晶,以中等到高收率得到四核稀土有機(jī)配合物[CpLn(μη2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)}2(Ln=Yb,1a;Er,1b;Y,1c)。 化合物 1 與 4 倍物質(zhì)的量的 PhNCO 在甲苯中反應(yīng)形成 1,3-喹唑啉二氧基(Quo)雙負(fù)離子稀土配合物[Cp2Ln(μ3-η2∶η2∶η1-Quo)]3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c),表明化合物1中的Ln-NHAr鍵和ArCONH-Ln鍵能與異氰酸酯分子發(fā)生連續(xù)加成/胺消除反應(yīng),形成1,3-喹唑啉二氧基骨架。但化合物1a~1c 與iPrN=C=NiPr反應(yīng),僅得到 ArNH 基單加成產(chǎn)物{Cp2Ln[μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)。 而 Cp3Ln 與鄰氨基苯甲酰胺和iPrN=C=NiPr在甲苯中進(jìn)行“一鍋”反應(yīng),則形成雙核配合物{CpLn[μ-η1∶η2∶η2-NHCOC6H4NC(NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c)。 值得注意的是,HMPA 能夠誘導(dǎo)配合物 4 發(fā)生配體重排反應(yīng),轉(zhuǎn)化成化合物 3。

    稀土配合物;環(huán)胺羰化反應(yīng);異氰酸酯;鄰氨基苯甲酰胺;加成反應(yīng)

    0 Introduction

    There is currently a fundamental interest in the reactivity of organolanthanide complexes toward unsaturated small molecules,because this is the source for design of new catalytic reactions and catalysts[1-6].The selective insertion of an organic functional group into a lanthanide-ligand bond has proved to be a successful and pervasive method for the formation of carbon-carbon and carbon-heteroatom bonds in synthesis of organolanthanide derivatives and organic compounds[6-13].For example,by applying this type of insertions as the key step,many organolanthanidecatalyzed reactions such as hydrosilylation[7],hydroamination[2b,8], hydroalkoxylation[9], hydrothiolation[10],hydrophosphination[11],hydroboration[12],and C-H bond addition[2c,13]of diverse C-C unsaturated substrates have been developed.In contrast,the development of metathesisreactionsoftrivalentorganolanthanide complexes with unsaturated substrates leading to the complete cleavage of the unsaturated chemical bond,lags far behind,despite their fundamental scientific interest and the potential utility in organic synthesis.The major reason might be attributed to the absence of conventional oxidative-addition/reductive-elimination processes and the difficulties encountered in the formation of rare earth metal-carbon and rare earth metal-heteroatom multiply-bonded intermediates,which often involvein transition metal-catalyzed metathesis reactions of unsaturated substrates[14].Recent pioneering works show that reaction of tetranuclear rare earth metal polyhydrido complexes with CO yielded ethylene and the corresponding tetraoxo cubane complexes[15a].Chen and coworkers reported that yttrium dihydride reacted with Ph3P=Se to give an yttrium selenide complex in the company of the liberation of Ph3P and H2[15b].Furthermore,methylidene complexes of rare earth metals have proven their ability to cleave the C=O,N=N and C=N double bonds[16].Despite these achievements,the use of trivalent organolanthanide complexes as reagents for the transformation of an unsaturated functional group into another unsaturated one in the context of metathesis reactionsremainsunderutilized.The question of whether or not rare earth metal amido complexes can promote formation and transformation of unsaturated carbon-heteroatom bonds as readily as rare earth metal polyhydrido and methylidene complexes mediate C=O bond metathesis reaction is still an open issue.

    The chemical nature of isocyanates,with an electrophilic center at carbon and nucleophilic centers at oxygen and nitrogen,allows a diverse variety of reactions to occur,thus leading to a great potential for constructing higher organic structures[17].The selectivity ofisocyanatetransformationshasbeen profitably controlled by metal species,since their participation allows the fine-tuning of bond forming processes and reactivity of isocyanates[18].In attempts to establish more selective catalystsystemsand tohave abetter understanding of the mechanistic aspects as well as to develop new reactions,extensivestudieson the reaction of organometallic complexes with isocyanates have been carried out.Noticeably,in contrast to transition metals,selective C=N or C=O bond cleavage of isocyanates mediated by rare earth metals remains a significant challenge,mainly due to the instability of the resulting nitrene and carbonyl complexes and to the facile C=O addition pathways available[18].The stoichiometric reaction of trivalent organolanthanide compounds with isocyanates gives generally the addition products (Scheme 1)[19].

    Scheme 1

    On the other hand,using isocyanates as CO precursors in organic synthesis remains little explored[20].Hou and coworkers reported in 2004 that yttrocene tetrahydrido complex [(C5Me4SiMe3)Y(μ-H)]4(L)(L=Me3SiCCHCHCSiMe3)could abstract the oxygen from aryl isocyanate to form the corresponding μ3-oxo complex [(C5Me4SiMe3)Y]4(μ3-O)(μ-H)2(L)or [(C5Me4SiMe3)Y]4(μ3-O)2(L),depending on the substrate ratio[21].In the course of our ongoing studies involving the reaction of organolanthanide complexes with isocyanates,we found that the further interaction of the neighboring NH2group with an isocyanate unit inserted into the lanthanide-sulfur bond could lead to unique reactivity and selectivity trends,allowing a mild and efficient construction of the coordinated benzothiazole 2-oxide ligand[20a](Scheme 2).So far,no general method for rare earth metal-based carbonylation has been reported.Given that the above reaction provides an alternative route to carbonylation of organic substrates,we were interested in broadening the reaction.Herein,we report the synthesis and structure of lanthanocene complexes containing oaminobenzamido dianion ligand,and a new reactivity pattern ofamido complexes toward isocyanates:carbonylative coupling/cyclization,which provides a new method for the construction of a coordinated quinazolyldiolate ring skeleton.

    Scheme 2

    1 Experimental

    1.1 General remarks

    Alloperations involving air-and moisturesensitive compounds were carried out under an inert atmosphere of purified nitrogen using standard Schlenk techniques.All organic solvents such as THF,toluene,and n-hexanewererefluxed and distilled over sodium benzophenone ketyl under N2prior to use.o-Aminobenzamide,HMPA (hexamethylphosphorictriamide),N,N′-diisopropyl carbodiimide(DIC)and phenyl isocyanate (PhNCO)were purchased from commercial sources and were used without further purification.Elemental analyses for C,H,and N were carried out by using a Rapid CHN-O analyzer.Metal analyses were accomplished using the literature method[22].Infrared spectra for air-and moisturesensitive compounds were obtained on a Nicolet FTIR 360 spectrometer with samples prepared as Nujol mulls.1H NMR data were obtained on a Bruker DMX-400 NMR spectrometer.

    1.2 Preparation

    1.2.1 Synthesis of[CpYb(μ-η2∶η2-NHC6H4CONH)(μ3-

    η1∶η1∶η2-NHC6H4CONH)YbCp(HMPA)]2(1a)To a toluene solution (20 mL)of Cp3Yb (0.331 g,0.898 mmol)was added o-aminobenzamide (0.122 g,0.898 mmol)atroom temperature.Thereaction mixture was stirred at room temperature overnight.Then,HMPA (0.161 g,0.898 mmol)was added to the resulting yellow turbid solution.After stirring for 2 h,the reaction mixture was changed to a clear solution.The solution was then cooled at-10℃overnight to give 1a as orange crystals.Yield:0.388 g (94% ).Anal.Calcd.for C60H80N14O6P2Yb4(%):C,39.01;H,4.36;N,10.61;Yb,37.47.Found(%):C,39.12;H,4.41;N,10.53;Yb,37.33.IR (Nujol,cm-1):3 365 m,3 309 w,1 601 m,1 526 m,1 457 vs,1 378 m,1 327 m,1 145 s,990 s,873 w,758 s.

    1.2.2 Synthesis of[CpEr(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)ErCp(HMPA)]2(1b)

    Following the described method for synthesis of 1a,using Cp3Er (0.496 g,1.37 mmol),o-aminobenzamide (0.187 g,1.37 mmol)and HMPA (0.246 g,1.37 mmol)afforded 1b as light pink crystals.Yield:0.534 g (86%).Anal.Calcd.for C60H80N14O6P2Er4(%):C,39.50;H,4.42;N,10.75;Er,36.67.Found(%):C,39.55;H,4.43;N,10.69;Er,36.58.IR (Nujol,cm-1):3 365 m,3 310 w,1 600 m,1 525 m,1 457 vs,1 379 m,1 327 m,1 144 s,989 s,872 w,757 s.

    1.2.3 Synthesis of[CpY(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)YCp(HMPA)]2(1c)

    Following the described method for synthesis of 1a,using Cp3Y (0.86 g,1.01 mmol),o-aminobenzamide (0.137 g,1.01 mmol)and HMPA (0.181 g,1.01 mmol)afforded 1c as a light yellow crystalline powder.Yield:0.281 g (74%).Anal.Calcd.for C60H80N14O6P2Y4(%):C,47.69;H,5.34;N,12.98;Y,23.54.Found(%):C,47.74;H,5.37;N,12.90;Y,23.52.IR (Nujol,cm-1):3 364 m,3 309 w,1 600 m,1 524 m,1 458 vs,1 378 m,1 327 m,1 143 s,988 s,758 s.1H NMR (C6D6,400 MHz,25 ℃):δ 7.92 (s,NH,2H),7.90 (s,NH,2H),7.08~6.43 (m,C6H4,16H),6.29 (s,C5H5,20H),3.71 (s,NH,2H),3.56 (s,NH,2H),2.28 (d,J=8.0Hz,N(CH3)2,36H).

    1.2.4 Synthesis of[Cp2Yb(μ3-η2∶η2∶η1-Quo)]3Yb(HMPA)2(2a)

    To a toluene solution (20 mL)of 1a (0.412 g,0.225 mmol)was added PhNCO (0.107 g,0.901 mmol)at 0 ℃.The reaction mixture was stirred at room temperature overnight. The solution was concentrated and cooled at-15℃for several days to give 2a as a yellow powder.Crystals of 2a suitable for X-ray analysis were obtained by recrystallization in a mixed solvent of toluene and THF.Yield:0.230 g(53%).Anal.Calcd.for C66H78N12O8P2Yb4(% ):C,41.25;H,4.09;N,8.75;Yb,36.02.Found (%):C,41.29;H,4.14;N,8.69;Yb,35.96.IR(Nujol,cm-1):3 411 w, 3 339 s,2 192 m,1 598 m,1 537 s,1 465 s,1 373 s,1 300 m,1 149 m,991 s,751 s.

    1.2.5 Synthesis of[Cp2Er(μ3-η2∶η2∶η1-Quo)]3Er(HMPA)2(2b)

    Following the method described for synthesis of 2a,using 1b (0.552 g,0.30 mmol)and PhNCO (0.144 g,1.21 mmol)afforded 2b as a pink powder.Yield:0.268 g (46%).Anal.Calcd.For C66H78N12O8P2Er4(%):C,41.76;H,4.14;N,8.85;Er,35.24.Found(%):C,41.47;H,4.04;N,8.69;Er,35.16.IR (Nujol,cm-1):3 410 w,3 339 s,2 191 m,1 597 m,1 537s,1 463 s,1 373 s,1 300 m,1 149 m,991 s,753 s.

    1.2.6 Synthesis of[Cp2Y(μ3-η2∶η2∶η1-Quo)]3Y(HMPA)2(2c)

    Following the method described for synthesis of 2a,using 1c (0.408 g,0.27 mmol)and PhNCO (0.128 g,1.08 mmol)afforded 2c as a light yellow powder.Yield:0.214 g (50%).Anal.Calcd.for C66H78N12O8P2Y4(%):C,50.01;H,4.96;N,10.60;Y,22.44.Found:C,49.96;H,4.91;N,10.49;Y,22.39.IR (Nujol,cm-1):3 407 w,3 337 s,2 192 m,1 597 m,1 536s,1 463 s,1 373 s,1 301 m,1 240 w,1 147 m,990 s,756 s.1H NMR (C6D6,400 MHz,25 ℃): δ 7.34~7.08 (m,C6H4,12H),6.15 (s,C5H5,30H),2.12 (s,NMe2,36H).

    1.2.7 Synthesis of{Cp2Yb[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Yb(HMPA)3(3a)

    To a toluene solution (20 mL)of 1a (0.412 g,0.225 mmol)was added DIC (0.141 g,1.12 mmol)at 0℃.The reaction mixture was stirred at room tempera-ture overnight.The solution was concentrated and cooled at-15℃for several days to give 3a as a yellow powder.The yellow crystals of 3a·THF suitable for X-ray analysis were obtained by recrystallization in a mixed solvent of toluene and THF.Yield:0.389 g(70%).Anal.Calcd.for C90H144N21O6P3Yb4(%):C,45.01;H,6.04;N,12.25;Yb,28.82.Found(%):C,45.14;H,6.07;N,12.17;Yb,28.75.IR (Nujol,cm-1):3 410 m,3 381 w,3 280 w,1 600 w,1 522 w,1 460 vs,1 377 s,1 127 m,837 w,727 s.

    1.2.8 Synthesis of{Cp2Er[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Er(HMPA)3(3b)

    Following the described method for synthesis of 3a,using 1b (0.552 g,0.30 mmol)and DIC (0.152 g,1.20 mmol)afforded 3b·THF as light pink crystals.Yield:0.375 g (50%).Anal.Calcd.for C90H144N21O6P3Er4(%):C,45.45;H,6.10;N,12.37;Er,28.13.Found(%):C,45.44;H,6.13;N,12.31;Er,28.05.IR(Nujol,cm-1):3 409 m,3 381 w,3 279 w,1 599 w,1 556 w,1 459 vs,1 379 s,1 158 w,1 126 m,988 w,729 s.

    1.2.9 Synthesis of{Cp2Y[μ-η1∶η1∶η3-iPrNC(NHiPr)NC6H4-CONH]}3Y(HMPA)3(3c)

    Following the described method for synthesis of 3a,using 1c (0.468 g,0.31 mmol)and DIC (0.154 g,1.22 mmol)afforded 3c as light yellow crystalline solid.Yield:0.285 g (43%).Anal.Calcd.for C90H144N21O6P3Y4(%):C,52.35;H,7.03;N,14.25;Y,17.22.Found(%):C,52.39;H,7.09;N,14.23;Er,17.20.IR(Nujol,cm-1):3 406 m,3 380 w,3 280 w,1 598 w,1 554 w,1 460 vs,1 377 s,1 155 w,1 128 m,993 w,726 w.1H NMR(C6D6,400 MHz,25 ℃):δ 8.31 (s,NH,3H),7.23~6.99(m,C6H4,12H),6.09 (s,C5H5,30H),3.75 (m,CH(CH3)2,3H),3.55 (s,NH,3H),3.33 (m,CH(CH3)2,3H),2.49(d,J=8.0 Hz,N(CH3)2,54H),1.34 (d,J=6.4 Hz,CH(CH3)2,18H),0.93 (d,J=6.4 Hz,CH(CH3)2,18H).Crystals of 3c·THF suitable for X-ray analysis were obtained by layering n-hexane to its concentrated toluene/THF solution.

    1.2.10 Synthesis of{CpYb[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4-CONH]}2(4a)

    To a toluene solution (20 mL)of Cp3Yb (0.238 g,0.646 mmol)was added o-aminobenzamide (0.088 g,0.646 mmol)at room temperature.After stirred at room temperature overnight,DIC (0.082 g,0.646 mmol)was added to the resulting yellow turbid solution at 0℃.Then,the reaction mixture was heated at 110 ℃for 12 h.The hot clear solution was slowly cooled to room temperature,affording 4a as yellow crystals.Yield:0.300 g (93%).Anal.Calcd.for C38H50N8O2Yb2(%):C,45.78;H,5.06;N,11.24;Yb,34.71.Found(%):C,45.84;H,5.02;N,11.20;Yb,34.65.IR(Nujol,cm-1):3 396 m,3 381 w,1 598 w,1 463 vs,1 377 s,1 327 m,1 170 m,1 124 w,875 w,763 s.

    1.2.11 Synthesis of{CpEr[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4-CONH]}2(4b)

    Following the method described for synthesis of 4a,using Cp3Er (0.326 g,0.898 mmol),o-aminobenzamide (0.123 g,0.898 mmol)and DIC (0.113 g,0.898 mmol)afforded 4b as light pink crystals.Yield:0.400 g (91%).Anal.Calcd.for C38H50N8O2Er2(%):C,46.32;H,5.11;N,11.37;Er,33.95.Found(%)C,46.39;H,5.15;N,11.28;Er,33.82.IR (Nujol,cm-1):3 399 m,3 379 w,1 598 w,1 548 w,1 459 vs,1 377 s,1 172 m,1 124 m,874 w,764 s.

    1.2.12 Synthesis of{CpY[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4CO-NH]}2(4c)

    Following the method described for synthesis of 4a,using Cp3Y (0.317 g,1.11 mmol),o-aminobenzamide(0.152 g,1.11 mmol)and DIC (0.140 g,1.11 mmol)afforded 4c as light yellow crystals.Yield:0.321 g(70%).Anal.Calcd.for C38H50N8O2Y2(%):C,55.08;H,6.08;N,13.52;Y,21.46.Found(%):C,55.09;H,6.12;N,13.50;Y,21.45.IR (Nujol,cm-1):3 399 m,3 375 w,1 741 w,1 598 w,1 547 w,1 460 vs,1 377 s,1 171 m,1 124 m,763 s.1H NMR (C6D6,400 MHz,25 ℃):δ 7.28~7.11 (m,C6H4,8H),6.94 (s,NH,2H),6.45 (s,C5H5,10H),6.12 (s,NH,2H),3.35~3.22(m,CH(CH3)2,4H),1.28 (d,J=6.4 Hz,CH3,6H),0.86(d,J=6.4 Hz,CH3,6H).

    1.2.13 Transformation from 4a to 3a

    To a toluene solution (20 mL)of 4a (0.254 g,0.255 mmol)was added HMPA (0.091 g,0.510 mmol)at room temperature.After stirring for 12 h,the solution was concentrated and cooled at-15℃for several days to give 3a as yellow crystals.Yield:0.165 g (54%).

    1.3 X-ray data collection,structure determination and refinement

    Suitable single crystals were sealed under N2in thin-walled glass capillaries forX-ray structural analysis.X-ray diffraction data were collected on a SMART APEX CCD diffractometer(graphite-monochromated Mo Kα radiation,φ-ω scan technique,λ=0.071 073 nm).The intensity data were integrated by means of the SAINT program[23].SADABS[24]was used to perform area-detector scaling and absorption corrections.The structures were solved by direct methods and were refined against F2using all reflections with the aid of the SHELXTL package[25].All non-hydrogen atoms were found from the difference Fourier syntheses and refined anisotropically.The H atoms were included in calculated positions with isotropic thermal parameters related to those of the supporting carbon atoms but were not included in the refinement.All calculations were performed using the Bruker Smart program.Details of this SQUEEZE are given in the cif files.Crystal data,data collection,and processing parameters for the complexes are summarized in Table 1~2.

    CCDC:951003,1a;951104,1b;951102,2a;951004,3a;951106,3b;951005,3c;951103,4a;951107,4b;951105,4c.

    Table 1 Crystal and data collection parameters of complexes 1a,1b and 4a~4c

    Table 2 Crystal and data collection parameters of complexes 2a and 3·THF

    2 Results and discussion

    2.1 Syntheses and characterization of lanthanocene derivatives with the o-aminobenzamido dianion ligand

    Considering thatthe ureido resulting from addition of amine to isocyanate might potentially undergo the nucleophilic substitution or addition[26-27](Scheme 3),our interest in the rare earth metalmediated C=N bond cleavage of isocyanates prompted us to explore the possibility of reacting two coordinated NH anions with one isocyanate molecule.

    Scheme 3

    On the basis of this idea,we focused our attention on using the linked NH/CONH dianion lanthanide complexes as the template of the target reaction as the anionic NH and CONH groups offer a degree of selectivity,in which the two NH groups can react either with a reagent having two functionalities or with two separate reagents bearing the same or different functionality.Thus,it may be expected that the different reactivity between coordinated NH and CONH anions toward the same functionality would control reaction degree of advancement,for less reactive substrates only the NH addition takes place,whereas the more reactive ones lead to the occurrence of a tandem reaction involved the two kinds of amido groups.Three o-aminobenzamido dianion lanthanide complexes [CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)]2(Ln=Yb,1a;Er,1b;Y,1c)as the designed starting materials were synthesized in good yields by protonolysis of Cp3Ln with oaminobenzamide followed by crystallization in a HMPA and toluene mixture (Scheme 4).

    Complexes 1a~1c are air-and moisture-sensitive,and readily dissolved in toluene and THF.They are thermally stable at room temperature.Complexes 1a~1c were characterized by elemental analysis and spectroscopic methods.In the IR spectra,all of them show two sharp N-H stretching vibration peaks at about 3 310 and 3 365 cm-1attributable to the different chemical environments of NH groups.1H NMR spectra of complex 1c show four NH resonance peaks at 7.92,7.90 3.71,and 3.56,respectively.The solid-state structures of 1a and 1b were determined by X-ray analysis.

    As shown in Fig.1,X-ray analysis results show that 1a and 1b are isostructural,four o-aminobenzamido dianion ligands connect with two CpLn and two CpLn(HMPA)fragments via two different μ-η2∶η2-and μ3-η1∶η1∶η2-bonding modes,respectively.These bond parameters indicate that the amido moiety acts as both a bridging and side-on chelating group,in which the negative charge is delocalized over the OCN unit.Characteristically,both of bridging O and N atoms have two distinctive metal-oxygen (nitrogen)distances.One is between those expected for an Ln3+-O(N)single bond and an Ln3+←∶O(N)donor bond,while another falls in the range of the Ln3+←∶O(N)donating bond lengths for neutral oxygen or nitrogen donor ligands[28].This difference may be attributed to the chelating coordination effect caused by the amido ligand.

    Scheme 4

    Fig.1 Thermal ellipsoid (30%)plot of complexes{CpLn(μ-η2∶η2-NHC6H4CONH)[μ3-η1∶η1∶η2-NHC6H4CONH]LnCp-(HMPA)}2 (Ln=Yb,1a;Er,1b)

    2.2 Reaction of 1 with phenyl isocyanate

    With dianionic o-aminobenzamido organolanthanides 1 in hand,we next explored their reactivity toward phenyl isocyanate.As expected,treatment of 1 with PhNCO (nPhNCO/n1=4)in toluene led to the occurrence of an unusual tandem addition/cyclization/amine elimination/ligand redistribution reaction,giving the dianionic quinazolyldiolate lanthanide complexes{Cp2Ln[μ3-η2∶η2∶η1-Quo]}3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c)in moderate isolated yields (Scheme 5).The elimination product PhNH2was unambiguously identified by GC-MS,but attempts to isolate another metal-containing productwere unsuccessful.The metathesis reactions of isocyanates with organolanthanide complexes are rarely observed[20-21].This is the first example of the amido complex-mediated C=N bond cleavage ofisocyanates,and provides an effective method for the construction of quinazolyldiol skeleton[29].

    Scheme 5

    Fig.2 Thermal ellipsoid (30%)plot of complex{Cp2Yb[μ3-η2∶η2∶η1-Quo]}3Yb(HMPA)2 (2a)

    Complexes 2a~2c are readily dissolved in THF but slightly soluble in toluene.They were characterized by elemental analysis and IR spectroscopy.The1H NMR spectra of 2c was also determined and showed that there is no N-H resonance absorption peak.The structure of 2a was identified by X-ray single-crystal diffraction analysis.As shown in Fig.2,2a is a tetranuclearstructure possessing three bridging dianionic quinazolinyldione ligands.2a has a three-fold rotation axis on the O-O alignment,and the three ytterbium and two HMPA oxygen atoms occupy an equatorial plane and an apical position of the hexahedral skeletal structure,respectively (Fig.2).The four Yb atoms locate in two different coordinate environments.Atoms Yb(2),Yb(2A)and Yb(2B)are coordinated by one chelating η2-N,O unit,one nonbridging oxygen atom and two η5-Cp groups,respectively,to form a distorted triagonal-bipyramidal geometry,while the central Yb(1)is coordinated by three η2-N,O units from different quinazolyldiolate ligands and two HMPA oxygen atoms to form a hexagonal bipyramidal geometry.The bond parameters indicate that the π-electrons of C=O and C=N double bonds are delocalized over the pyrimidinyldionate skeleton.The Yb-O distances are in normal range[5c].The rather long distances between ytterbium and N atoms may be attributed to both the rigidity of the quinazolyldiolate ring and the steric crowding[30].

    2.3 Reactivity of 1 toward diisopropylcarbodiimide

    To obtain additional insight into the mechanism and scope of the reaction,we further examined the behavior of 1 toward carbodiimide.In markedly contrast to isocyanate,treatment of 1 withiPrN=C=NiPr (nligand/n1=4)provided{Cp2Ln[μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)as the main metal-containing products,even with a prolonged heating at 110 ℃ (Scheme 6).In addition,3a~3c are inactive to excessiPrN=C=NiPr.These results indicate thatiPrN=C=NiPr is preferentially added to NH rather than CONH group.The coordinated CONH group is inert,and undergoes neither addition toiPrN=C=NiPr nor nucleophilic attack to the newly formed guanidinate ligand under the conditions involved.This difference might be attributed to the strong chelating interaction between CONH and metal,leading to the lower nucleophilicity compared with the NH group.

    Crystallographic data for 3 show that there are two independent molecules (Fig.3),crystallizing in one asymmetrical unit.Itisnoteworthythatthe πelectrons of the C=N double bond of two guanidinate groups are delocalized over the N-C-N unit(N(2)-C(1)and N(4)-C(1),0.135(2)and 0.134(2)nm;C(49)-N(10)and C(49)-N(12),0.136(2)and 0.135(2)nm),whereas the bond parameters (N(6)-C(25)and N(8)-C(25)of a third guaninate group suggest a tendency toward CN double and single bonds(cf.mean values of 0.136 nm for C(sp2)-N and 0.129 nm for C(sp2)=N)[31].

    In order to exclude the effect of HMPA,the HMPA-free reaction was examined.As shown in Scheme 6,the treatment of Cp3Ln with o-aminobenzamide followed by reacting withiPrN=C=NiPr gave{CpLn [μ-η1∶η2∶η2-NHCOC6H4NC (NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c),indicating that the CONH group in 4 is also inert.Interestingly,4 can be transformed into 3 in the presence of HMPA,revealing an unusual HMPA-induced ligand redistribution of organolanthanides.

    Crystals suitable for a single-crystal X-ray study were grown by slow cooling a hot toluene solution of 4.As shown in Fig.4,compounds 4a,4b and 4c are isostructural,and each of the lanthanide atoms is coordinated by one η5-C5H5ligand,one chelating η2-CONH with side donating coordination,one chelating guanidinate group and one bridging oxygen atom,indicating that only NHAr groups have combined withiPrN=C=NiPr.There are no informal bond lengths and anglescompared to otherguanidinate lanthanide complexes[27].

    Scheme 6

    Fig.3 Thermal ellipsoid (30%)plot of complex{Cp2Ln[μ-η1∶η2∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln(HMPA)3(Ln=Yb,3a;Er,3b;Y,3c)

    Scheme 7

    Based on these experimental results,a possible reaction pathway for the formation of 2 is proposed in Scheme 7.Coordination insertion of PhNCO into the Ln-NHAr bond followed by a ligand redistribution give the intermediateⅡ,which places the CONH group and the resulting ureido into close proximity,as observed in the formation of 3.A sequential addition of the activated N-H to the C=N double bond leads to the occurrence of the cyclization[13].Reductive elimination of PhNH2generates the quinazolyldiolate ring.Obviously,the formation of a more stable aromatic quinazolyldiolate skeleton might contribute to the occurrence of the cyclization/amine-elimination reaction of the putative amido intermediate(Ⅲ).But attempts to isolate the intermediatesⅠandⅡhave been unsuccessful due to their thermodynamic instability.A tandem addition/cyclization/elimination reaction is observed in the treatment of 1 with PhNCO,whereas for 3 no subsequent reactions are observed even with a longer reaction time and higher temperature.It is possible that both the larger steric hindrance and the weaker electrophilic reactivity of guanidinate compared to ureido prevent the subsequent cyclization.

    Fig.4 Thermal ellipsoid (30%)plot of complex{CpLn[μ-η1∶η2∶η2-OCNHC6H4NC(NHiPr)NiPr]}2 (Ln=Yb,4a;Er,4b;Y,4c)

    3 Conclusions

    In conclusion,three new tetranuclear lanthanocene derivatives incorporating the o-aminobenzamido dianion ligand,[CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp-(HMPA)}2(Ln=Yb,Er,Y),have been synthesized by reaction of Cp3Ln with oaminobenzamide followed by crystallization in a mixed HMPA and toluene solvent.The first example of tandem reaction of two coordinated NH moieties with an isocyanate molecule resulting in the formation of a dianionic quinazolyldiolate fragmentisdescribed.Furthermore,these o-aminobenzamido complexes can also undergo the single NH addition to carbodiimide selectively.In addition,an unusual HMPA-induced ligand redistribution of organolanthanides is observed in these processes.The present results demonstrate that o-aminobenzamido organolanthanide complexes can be expected to have synthetic potential because they provide a reaction system in which the two coordinated NH moieties show different reactivity toward the same functionality.In this case,after the first reaction one surviving NH group could undergo cyclization across the first reaction product.On the other hand,this work provides an alternative route to carbonylation of organic substrates,which is very difficult to achieve by rare earth metal system due to the mismatch in the orbital energy of the hard rare earth metal ion and the soft CO ligand.The catalytic synthesis of heterocycles,which is based on such reactions,is undergoing.

    [1] (a)Molander G A,Romero J A C.Chem.Rev.,2002,102(6):2161-2185(b)Muller T E,Hultzsch K C,Yus M.Chem.Rev.,2008,108(9):3795-3892(c)Bartoli G,Marcantoni E,Marcolini M,et al.Chem.Rev.,2010,110(10):6104-6143(d)Zeng X M.Chem.Rev.,2013,113(8):6864-6900

    [2] (a)Evans W J,Davis B L.Chem.Rev.,2002,102(6):2119-2136(b)Zhou X G,Zhu M.J.Organomet.Chem.,2002,647(1/2):28-49(c)Hong S,Marks T J.Acc.Chem.Res.,2004,37(9):673-686(d)Zhang J,Zhou X G.Dalton Trans.,2011,40(38):9637-9648(e)Liu R T,Zhou X G.Chem.Commun.,2013,49(31):3171-3187

    [3](a)Jeske G,Lauke H,Mauermann H,et al.J.Am.Chem.Soc.,1985,107(26):8091-8103(b)Cui D M,Nishiura M,Hou Z M.Angew.Chem.Int.Ed.,2005,44(6):959-962(c)Wang B L,Wang D,Cui D M,et al.Organometallics,2007,26(13):3167-3172(d)Kaneko H,Nagae H,Tsurugi H,et al.J.Am.Chem.Soc.,2011,133(49):19626-19629(e)Zhou S L,Wang H Y,Ping J,et al.Organometallics,2012,31(5):1696-1702(f)Hong L C,Lin W J,Zhou X G,et al.Chem.Commun.,2013,49(49):5589-5591

    [4] (a)Li W B,Xue M Q,Xu F,et al.Dalton Trans.,2012,41(27):8252-8260(b)Basalov I V,Lyubov D M,F(xiàn)ukin G K,et al.Angew.Chem.Int.Ed.,2012,51(14):3444-3447(c)Sun J L,Berg D J,Twamley B.Organometallics,2008,27(4):683-690(d)Yang Y,Cui D M,Chen X S.Dalton Trans.,2010,39(16):3959-3967(e)Li X Q,Hong J Q,Zhou X G,et al.Organometallics,2010,29(20):4606-4610(f)Pi C F,Li X Q,Zhang L L,et al.Inorg.Chem.,2010,49(17):7632-7634(g)Zhang Z X,Bu X L,Zhang J,et al.Organometallics,2010,29(9):2111-2117(h)Lu E L,Chen Y F,Leng X B.Organometallics,2011,30(20):5433-5441(i)Casely I J,Ziller J W,Evans W J.Organometallics,2011,30(18):4873-4881

    [5](a)Liu R T,Zhang C M,Zhu Z Y,et al.Chem.Eur.J.,2006,12(26):6940-6952(b)Li X Q,Liu R T,Zhang Z X,et al.Organometallics,2010,29(15):3298-3302(c)Chu J X,Lu E L,Liu Z X,et al.Angew.Chem.Int.Ed.,2011,50(33):7677-7680(d)Shao Y L,Zhang F J,Zhang J,et al.Angew.Chem.Int.Ed.,2016,55(38):11485-11489(e)Hong J Q,Li Z H,Chen Z N,et al.Dalton Trans.,2016,45(15):6641-6649(f)Huang S J,Shao Y L,Zhang L X,et al.Angew.Chem.Int.Ed.,2015,54(48):14452-14456(g)Luo Y,Teng H L,Nishiura M,et al.Angew.Chem.Int.Ed.,2017,56(31):9207-9210

    [6] (a)Yasuda H,Yamamoto H,Yokota K,et al.J.Am.Chem.Soc.,1992,114(12):4908-4910(b)Giardello M A,Yamamoto Y,Brard L,et al.J.Am.Chem.Soc.,1995,117(11):3276-3277(c)Zhang W X,Nishiura M,Hou Z M.Angew.Chem.Int.Ed.,2008,47(50):9700-9703(d)Yang J Y,Shen H,Xie Z W.J.Organomet.Chem.,2015,798:204-208(e)Xu L,Zhai M K,Wang F,et al.Dalton Trans.,2016,45(43):17108-17112(f)Song G Y,Wang B L,Nishiura M,et al.Chem.Eur.J.,2015,21(23):8394-8398(g)Xu P F,Yao Y M,Xu X.Chem.Eur.J.,2017,23(6):1263-1267

    [7] (a)Molander G A,Romero J A C.Chem.Rev.,2002,102(6):2161-2185(b)Konkol M,Kondracka M,Voth P,et al.Organometallics,2008,27(15):3774-3784(c)Ohashi M,Konkol M,Rosal D,et al.J.Am.Chem.Soc.,2008,130(22):6920-6921(d)Barros N,Eisenstein O,Maron L.Dalton Trans.,2010,39(44):10757-10767(e)Abinet E,Spaniol T P,Okuda J.Chem.Asian J.,2011,6(2):389-391

    [8](a)Lauterwasser F,Hayes P G,Piers W E,et al.Adv.Synth.Catal.,2011,353(8):1384-1390(b)Zhang Y Y,Yao W,Li H,et al.Organometallics,2012,31(13):4670-4679(c)Trambitas A G,Melcher D,Hartenstein L,et al.Inorg.Chem.,2012,51(12):6753-6761(d)Reznichenko A L,Hultzsch K C.Organometallics,2013,32(5):1394-1408(e)Huang S J,Shao Y L,Zhang L X,et al.Angew.Chem.Int.Ed.,2015,54(48):14452-14456(f)Hong S,Marks T J.Acc.Chem.Res.,2004,37(9):673-686

    [9] (a)Yu X H,Seo S Y,Marks T J.J.Am.Chem.Soc.,2007,129(23):7244-7245(b)Seo S Y,Yu X H,Marks T J.J.Am.Chem.Soc.,2009,131(1):263-276

    [10](a)Weiss C J,Marks T J.Dalton Trans.,2010,39:6576-6588(b)Weiss C J,Wobser S D,Marks T J.Organometallics,2010,29(23):6308-6320

    [11](a)Douglass M R,Stern C L,Marks T J.J.Am.Chem.Soc.,2001,123(42):10221-10238(b)Takaki K,Koshoji G,Komeyama K,et al.J.Org.Chem.,2003,68(17):6554-6565(c)Kawaoka A M,Marks T J.J.Am.Chem.Soc.,2004,126(40):12764-12765(d)Hu H F,Cui C M.Organometallics,2012,31(3):1208-1211(e)Behrle A C,Schmidt J A R.Organometallics,2013,32(5):1141-1149

    [12](a)Hung S C,Wen Y F,Chang J W,et al.J.Org.Chem.,2002,67(4):1308-1313(b)SchumannH,HeimA,DemtschukJ,etal.Organometallics,2003,22(1):118-128(c)Yuan Y Y,Wang X F,Li Y X,et al.Organometallics,2011,30(16):4330-4341

    [13](a)Guan B T,Hou Z M.J.Am.Chem.Soc.,2011,133(45):18086-18089(b)Oyamada J,Hou Z M.Angew.Chem.Int.Ed.,2012,51:12828-12832(c)Guan B T,Wang B L,Nishiura M,et al.Angew.Chem.Int.Ed.,2013,52:4418-4421(d)Shi X C,Nishiura M,Hou Z M.J.Am.Chem.Soc.,2016,138:61476150(e)Arnold P L,McMullon M W,Rieb J,et al.Angew.Chem.Int.Ed.,2015,55:82-100

    [14](a)Monsaert S,Vila A L,Drozdzak R,et al.Chem.Soc.Rev.,2009,38:3360-3372(b)Leitao E M,van der Eide E F,Romero P E,et al.J.Am.Chem.Soc.,2010,132(8):2784-2794(c)Woodward C P,Spiccia N D,Jackson W R,et al.Chem.Commun.,2011,47:779-781

    [15](a)Shima T,Hou Z M.J.Am.Chem.Soc.,2006,128 (25):8124-8125(b)Zhou J L,Chu J X,Zhang Y Y,et al.Angew.Chem.Int.Ed.,2013,52(15):4243-4246

    [16](a)Zhang W X,Wang Z,Nishiura M,et al.J.Am.Chem.Soc.,2011,133(15):5712-5715(b)Hong J Q,Zhang L X,Yu X Y,et al.Chem.Eur.J.,2011,17(7):2130-2137(c)Hong J Q,Zhang L X,Wang K,et al.Chem.Eur.J.,2013,19(24):7865-7873

    [17](a)Masui H,F(xiàn)use S,Takahashi T.Org.Lett.,2012,14(16):4090-4093(b)Campbell M J,Toste F D.Chem.Sci.,2011,2(7):1369-1378(c)Attanasi O A,de Crescentini L,F(xiàn)avi G S.et al.Org.Lett.,2011,13(3):353-355(d)Groenendaal B,Vugts D J,Schmitz R F,et al.J.Org.Chem.,2008,73(2):719-722(e)Church T L,Byrne C M,Lobkovsky E B,et al.J.Am.Chem.Soc.,2007,129(26):8156-8162

    [18](a)Braunstein P,Nobel D.Chem.Rev.,1989,89 (8):1927-1945(b)Kuninobu Y,Tokunaga Y,Kawata A,et al.J.Am.Chem.Soc.,2006,128(1):202-209(c)Paul F,Moulin S,Piechaczyk O,et al.J.Am.Chem.Soc.,2007,129(23):7294-7304(d)Zhu X C,F(xiàn)an J X,Wu Y J,et al.Organometallics,2009,28(13):3882-3888(e)Sharpe H R,Geer A M,Williams H E L,et al.Chem.Commun.,2017,53(5):937-940

    [19](a)Evans W J,F(xiàn)orrestal K J,Ziller J W.J.Am.Chem.Soc.,1998,120(36):9273-9282(b)Shen Q,Li H R,Yao C S,et al.Organometallics,2001,20(14):3070-3073(c)Shen Q,Yao Y M.J.Organomet.Chem.,2002,647(1/2):180-189(d)Han Y N,Zhang J,Han F Y,et al.Organometallics,2009,28(13):3916-3921(e)Yi W Y,Zhang J,Li M,et al.Inorg.Chem.,2011,50(22):11813-11824

    [20](a)Zhang J,Ma L P,Cai R F,et al.Organometallics,2005,24(4):738-742(b)Du Z,Zhou H,Yao H,et al.Chem.Commun.,2011,47(12):3595-3597

    [21]Tardif O,Hashizume D,Hou Z M.J.Am.Chem.Soc.,2004,126(26):8080-8081

    [22]Qian C T,Ye C Q,Lu H Z,et al.J.Organomet.Chem.,1983,247(2):161-170

    [23]SAINTPlus,Data Reduction and Correction Program Ver.6.02a,Bruker AXS,Madison,WI,2000.

    [24]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction,University of G?ttingen,Germany,1998.

    [25]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.[26](a)Sun Y,Zhang Z X,Wang X,et al.Organometallics,2009,28(21):6320-6330(b)Sun Y,Zhang Z X,Wang X,et al.Dalton Trans.,2010,39(1):221-226(c)Zhang J,Han Y N,Han F Y,et al.Inorg.Chem.,2008,47(13):5552-5554

    [27](a)Pi C F,Liu R T,Zheng P Z,et al.Inorg.Chem.,2007,46(13):5252-5259(b)Pi C F,Zhu Z Y,Weng L H,et al.Chem.Commun.,2007(21):2190-2192(c)Pi C F,Zhang Z X,Pang Z,et al.Organometallics,2007,26(8):1934-1946

    [28](a)Evans W J,Ulibarri T A,Chamberlain L R,et al.Organometallics,1990,9(7):2124-2130(b)Evans W J,F(xiàn)oster S E.J.Organomet.Chem.,1992,433(1/2):79-94(c)Venugopal A,Kamps I,Bojer D,et al.Dalton Trans.,2009(29):5755-5765

    [29](a)Willis M C,Snell R H,F(xiàn)letcher A J,et al.Org.Lett.,2006,8(22):5089-5091(b)Vorbrueggen H,Krolikiewicz K.Tetrahedron,1994,50(22):6549-6558(c)Li J R,Chen X A,Shi D X,et al.Org.Lett.,2009,11(6):1193-1196(d)Patil Y P,Tambade P J,Deshmukh K M,et al.Catal.Today,2009,148(3/4):355-360

    [30]Zhou X G,Huang Z E,Cai R F,et al.J.Organomet.Chem.,1998,563(1/2):101-112

    [31]Allen F H,Kennard O,Watson D G,et al.J.Chem.Soc.,Perkin Trans.,1987(12):S1-S19

    Syntheses,Cycloaminocarbonylation and Amidination of Rare Earth o-Aminobenzamido Dianion Complexes Bearing Cyclopentadienyl Co-ligand

    SUN Yan1LIU Rui-Ting1WENG Lin-Hong1ZHOU Xi-Geng*,1,2
    (1Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Fudan University,Shanghai 200433,China)
    (2State Key Laboratory of Organometallic Chemistry,Shanghai 200032,China)

    Treatment of Cp3Ln with o-aminobenzamide followed by crystallization in a HMPA and toluene mixture affords the tetranuclear organolanthanide complexes [CpLn(μ-η2∶η2-NHC6H4CONH)(μ3-η1∶η1∶η2-NHC6H4CONH)LnCp(HMPA)}2(Ln=Yb,1a;Er,1b;Y,1c).Reaction of 1 with PhNCO (nPhNCO/n1=4)in toluene gives the dianionic quinazolyldiolate (Quo)complexes [Cp2Ln(μ3-η2∶η2∶η1-Quo)]3Ln(HMPA)2(Ln=Yb,2a;Er,2b;Y,2c),indicating that one isocyanate molecule can undergo the tandem reaction with both NH and CONH of 1 to construct a quinazoly-ldiolate skeleton,companying with the elimination of PhNH2.However,1a~1c react withiPrN=C=NiPr under the same conditions to give only the single ArNH addition products{Cp2Ln [μ-η1∶η1∶η2-iPrNC(NHiPr)NC6H4CONH]}3Ln (HMPA)3(Ln=Yb,3a;Er,3b;Y,3c).Furthermore,treatment of Cp3Ln with o-aminobenzamide followed by reacting withiPrN=C=NiPr gave{CpLn[μ-η1∶η2∶η2-NHCOC6H4NC(NHiPr)NiPr]}2(Ln=Yb,4a;Er,4b;Y,4c).Noticeably,HMPA could induce the transformation of 4 into 3 by a ligand redistribution.CCDC:951003,1a;951104,1b;951102,2a;951004,3a;951106,3b;951005,3c;951103,4a;951107,4b;951105,4c.

    lanthanide complexes;cycloaminocarbonylation;isocyanate;o-aminobenzamide;addition

    O614.346;O614.344;O614.32+2

    A

    1001-4861(2017)11-2124-15

    10.11862/CJIC.2017.255

    2017-09-01。收修改稿日期:2017-09-22。

    國(guó)家自然科學(xué)基金(No.21372047,21572034)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:xgzhou@fudan.edu.cn

    猜你喜歡
    甲酰胺負(fù)離子甲苯
    一種新1H-1,2,3-三唑-4-甲酰胺化合物的合成、晶體結(jié)構(gòu)和氫鍵研究
    森林公園負(fù)離子濃度及負(fù)離子物質(zhì)量和價(jià)值量研究
    負(fù)離子人造板研究現(xiàn)狀及發(fā)展建議
    靜電對(duì)負(fù)離子地板測(cè)試的影響
    高效液相色譜法測(cè)定降糖藥甲苯磺丁脲片中甲苯磺丁脲的含量
    1-(對(duì)甲苯基)-2-(三對(duì)甲苯基-5-亞磷?;?乙醛的汞(Ⅱ)配合物的X射線晶體學(xué)、光譜表征和理論計(jì)算研究
    20%氯蟲(chóng)苯甲酰胺懸浮劑防治棉鈴蟲(chóng)藥效試驗(yàn)
    高壓脈沖電刺激下龍舌蘭釋放負(fù)離子的研究
    氣相色譜-質(zhì)譜聯(lián)用法測(cè)定兒童產(chǎn)品中殘留的甲酰胺
    甲苯-4-磺酸催化高效合成尼泊金正丁酯防腐劑
    国产精品蜜桃在线观看| 久久精品国产99精品国产亚洲性色| 秋霞在线观看毛片| 国产成人aa在线观看| 精品久久久久久久久久久久久| 免费看光身美女| 午夜福利在线在线| 亚洲精品乱久久久久久| 欧美激情在线99| 能在线免费观看的黄片| 最近最新中文字幕大全电影3| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 国产高清视频在线观看网站| 免费观看性生交大片5| 日韩一区二区三区影片| 丝袜喷水一区| 小说图片视频综合网站| 日本午夜av视频| 一级二级三级毛片免费看| 1024手机看黄色片| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 日日啪夜夜撸| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 精品久久久噜噜| 亚洲经典国产精华液单| 3wmmmm亚洲av在线观看| h日本视频在线播放| 国产成人午夜福利电影在线观看| 国产精品一区二区三区四区免费观看| 亚洲av日韩在线播放| 免费播放大片免费观看视频在线观看 | 久久亚洲国产成人精品v| 在线观看66精品国产| 国产精品国产三级专区第一集| 国产精品国产三级国产av玫瑰| 免费大片18禁| 国产真实乱freesex| 国产精品蜜桃在线观看| 亚洲人成网站在线观看播放| .国产精品久久| 精品人妻偷拍中文字幕| 国产三级在线视频| 欧美日韩精品成人综合77777| 免费播放大片免费观看视频在线观看 | 免费观看性生交大片5| 成人二区视频| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 青春草亚洲视频在线观看| 久久精品夜色国产| 亚洲人成网站在线观看播放| 午夜福利在线在线| 免费大片18禁| 极品教师在线视频| 免费看光身美女| av免费观看日本| 午夜亚洲福利在线播放| 女人被狂操c到高潮| av在线亚洲专区| 亚洲欧美精品专区久久| 超碰av人人做人人爽久久| 成年免费大片在线观看| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 中文字幕熟女人妻在线| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 日本色播在线视频| 欧美成人a在线观看| 午夜福利成人在线免费观看| 大香蕉久久网| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 国产精品.久久久| 欧美bdsm另类| 色播亚洲综合网| 成人亚洲精品av一区二区| 免费看光身美女| 少妇被粗大猛烈的视频| 丝袜美腿在线中文| 超碰97精品在线观看| av专区在线播放| 亚洲av中文av极速乱| 偷拍熟女少妇极品色| 久热久热在线精品观看| 久久久久国产网址| 久久精品久久久久久噜噜老黄 | 纵有疾风起免费观看全集完整版 | 免费大片18禁| 中文字幕免费在线视频6| .国产精品久久| 久久久久久久久久黄片| 国产老妇伦熟女老妇高清| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 成年女人永久免费观看视频| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放 | 十八禁国产超污无遮挡网站| 三级国产精品欧美在线观看| 有码 亚洲区| 韩国av在线不卡| 91狼人影院| 国产 一区精品| 久久6这里有精品| 高清毛片免费看| 国产精品1区2区在线观看.| 亚洲精品亚洲一区二区| 嫩草影院新地址| 中文字幕亚洲精品专区| 亚洲成色77777| 久久久久久久久大av| 国产精品熟女久久久久浪| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| 成人午夜高清在线视频| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 99在线人妻在线中文字幕| 国产精品美女特级片免费视频播放器| 欧美激情国产日韩精品一区| 成人国产麻豆网| 能在线免费看毛片的网站| 亚洲av成人精品一区久久| 天天躁夜夜躁狠狠久久av| 深爱激情五月婷婷| 亚洲人成网站在线播| 日本黄色视频三级网站网址| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 国产精品国产高清国产av| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美成人精品一区二区| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 成人综合一区亚洲| 蜜臀久久99精品久久宅男| 我要看日韩黄色一级片| 亚洲不卡免费看| 一级黄色大片毛片| 变态另类丝袜制服| 超碰97精品在线观看| av天堂中文字幕网| 一级毛片电影观看 | 亚洲激情五月婷婷啪啪| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 建设人人有责人人尽责人人享有的 | 国内少妇人妻偷人精品xxx网站| 精华霜和精华液先用哪个| 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 卡戴珊不雅视频在线播放| 狂野欧美白嫩少妇大欣赏| 天堂影院成人在线观看| 搞女人的毛片| 亚洲精品自拍成人| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 91精品国产九色| 亚洲人成网站在线观看播放| 国产成人精品久久久久久| www.色视频.com| 久久精品久久精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产色爽女视频免费观看| 一个人看的www免费观看视频| www日本黄色视频网| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 成年版毛片免费区| 亚洲内射少妇av| 如何舔出高潮| av.在线天堂| 欧美性猛交黑人性爽| 欧美成人精品欧美一级黄| 国产老妇女一区| 高清av免费在线| 又爽又黄无遮挡网站| 小说图片视频综合网站| 欧美性感艳星| 别揉我奶头 嗯啊视频| 1000部很黄的大片| 亚洲国产精品成人综合色| 一级爰片在线观看| 成人三级黄色视频| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 国产欧美另类精品又又久久亚洲欧美| 久久久国产成人精品二区| 最近中文字幕2019免费版| 久久久久久国产a免费观看| 一级av片app| 国产成人精品久久久久久| 视频中文字幕在线观看| 夜夜爽夜夜爽视频| 久久久久精品久久久久真实原创| 国产亚洲精品久久久com| 高清视频免费观看一区二区 | 18禁在线无遮挡免费观看视频| 看片在线看免费视频| 黄片wwwwww| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 国产黄色视频一区二区在线观看 | 色吧在线观看| 国产单亲对白刺激| 国产成人精品久久久久久| 一夜夜www| 中文字幕人妻熟人妻熟丝袜美| 日韩av在线免费看完整版不卡| 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 日韩制服骚丝袜av| 久久久久性生活片| 你懂的网址亚洲精品在线观看 | 91狼人影院| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 免费无遮挡裸体视频| 丰满乱子伦码专区| 国产在视频线在精品| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 插阴视频在线观看视频| 九草在线视频观看| 舔av片在线| av线在线观看网站| 波多野结衣高清无吗| 一区二区三区乱码不卡18| 国产精品99久久久久久久久| АⅤ资源中文在线天堂| 欧美成人精品欧美一级黄| 永久网站在线| 卡戴珊不雅视频在线播放| 日韩欧美在线乱码| 亚洲国产欧美在线一区| 蜜桃久久精品国产亚洲av| 又粗又爽又猛毛片免费看| 丝袜美腿在线中文| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 亚洲久久久久久中文字幕| 欧美又色又爽又黄视频| 久久久久网色| 国产av码专区亚洲av| 我要搜黄色片| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 国产精品久久电影中文字幕| 久久99蜜桃精品久久| 国产精华一区二区三区| 亚洲成色77777| 深爱激情五月婷婷| 看片在线看免费视频| 色吧在线观看| 亚洲久久久久久中文字幕| 国产亚洲5aaaaa淫片| 男人的好看免费观看在线视频| 国产免费男女视频| 麻豆国产97在线/欧美| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 搞女人的毛片| 亚洲av电影在线观看一区二区三区 | videossex国产| 熟妇人妻久久中文字幕3abv| 国产亚洲最大av| 国产乱人偷精品视频| 亚洲自拍偷在线| 亚洲最大成人手机在线| 国产黄片美女视频| 免费观看人在逋| 午夜精品一区二区三区免费看| 日韩中字成人| 99热6这里只有精品| 国产精品一区二区性色av| 91精品伊人久久大香线蕉| 国产欧美日韩精品一区二区| 日韩欧美三级三区| 欧美一区二区精品小视频在线| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| av专区在线播放| 亚州av有码| or卡值多少钱| 国产色爽女视频免费观看| 午夜a级毛片| 成人二区视频| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 91久久精品国产一区二区三区| 国产综合懂色| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 国产精品无大码| 国产中年淑女户外野战色| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 免费无遮挡裸体视频| 校园人妻丝袜中文字幕| 国产伦理片在线播放av一区| 乱人视频在线观看| 麻豆一二三区av精品| 亚州av有码| 尤物成人国产欧美一区二区三区| av国产免费在线观看| 成年免费大片在线观看| 日产精品乱码卡一卡2卡三| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 97热精品久久久久久| 亚洲国产精品合色在线| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 嫩草影院精品99| 波多野结衣巨乳人妻| 精品午夜福利在线看| 直男gayav资源| 精品国产三级普通话版| 高清毛片免费看| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| 亚洲精品亚洲一区二区| 99热全是精品| 人人妻人人澡欧美一区二区| 欧美丝袜亚洲另类| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 精品一区二区三区人妻视频| 日本欧美国产在线视频| 免费观看在线日韩| 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| 97热精品久久久久久| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人| 国产免费男女视频| 狠狠狠狠99中文字幕| 一个人看视频在线观看www免费| 嫩草影院精品99| 免费av观看视频| 国产精品日韩av在线免费观看| 日韩视频在线欧美| 精品久久国产蜜桃| 久久这里有精品视频免费| 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| 有码 亚洲区| 天堂影院成人在线观看| 国产精品国产三级专区第一集| 国产精品人妻久久久久久| 国内少妇人妻偷人精品xxx网站| or卡值多少钱| 国产精品永久免费网站| 国产一区二区在线观看日韩| 国产精品国产三级国产专区5o | 精华霜和精华液先用哪个| 精品免费久久久久久久清纯| 直男gayav资源| 天天躁夜夜躁狠狠久久av| 99在线人妻在线中文字幕| 亚洲不卡免费看| 国产高潮美女av| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 中文字幕制服av| 日本-黄色视频高清免费观看| or卡值多少钱| 老司机福利观看| 欧美精品一区二区大全| 欧美激情在线99| 18+在线观看网站| 日韩欧美三级三区| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 有码 亚洲区| 久热久热在线精品观看| 日本熟妇午夜| 精品久久久久久电影网 | 亚洲欧美精品自产自拍| 一个人免费在线观看电影| 中文字幕久久专区| 日韩中字成人| 亚洲成人久久爱视频| 搞女人的毛片| 国产私拍福利视频在线观看| av国产久精品久网站免费入址| 国产伦在线观看视频一区| 欧美bdsm另类| 精品无人区乱码1区二区| 欧美人与善性xxx| 亚洲av男天堂| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区 | 一边亲一边摸免费视频| 国产乱人偷精品视频| 2021天堂中文幕一二区在线观| 国产精品久久久久久av不卡| 老女人水多毛片| 国产一区二区在线观看日韩| 欧美zozozo另类| 欧美高清成人免费视频www| www.色视频.com| 国产精品伦人一区二区| 久久久亚洲精品成人影院| 亚洲国产精品成人综合色| 成人美女网站在线观看视频| 日本与韩国留学比较| 国内精品宾馆在线| 亚洲成人av在线免费| 亚洲国产最新在线播放| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 成年版毛片免费区| 国产欧美另类精品又又久久亚洲欧美| 成人性生交大片免费视频hd| 亚洲色图av天堂| 免费看美女性在线毛片视频| 亚洲美女搞黄在线观看| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 在线播放国产精品三级| 国产精品国产三级专区第一集| 综合色av麻豆| 九九爱精品视频在线观看| 国产女主播在线喷水免费视频网站 | 国产一区二区在线观看日韩| 精品久久久久久久末码| 亚洲人成网站在线观看播放| 在线观看一区二区三区| 国产美女午夜福利| 国产av码专区亚洲av| 国产成人a∨麻豆精品| 国产成人freesex在线| 久久婷婷人人爽人人干人人爱| 中文字幕精品亚洲无线码一区| 麻豆久久精品国产亚洲av| 午夜福利在线观看吧| 岛国毛片在线播放| 久久久久久久午夜电影| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| 亚洲四区av| 国内精品一区二区在线观看| 青青草视频在线视频观看| 赤兔流量卡办理| 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 人人妻人人澡欧美一区二区| 日本欧美国产在线视频| 你懂的网址亚洲精品在线观看 | av在线亚洲专区| 久久久久久国产a免费观看| 欧美成人精品欧美一级黄| 亚洲中文字幕日韩| 69av精品久久久久久| 欧美潮喷喷水| www日本黄色视频网| 免费黄色在线免费观看| 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 亚洲自偷自拍三级| 日本三级黄在线观看| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| 日本熟妇午夜| 色综合亚洲欧美另类图片| 熟女人妻精品中文字幕| 国产高清不卡午夜福利| 日本av手机在线免费观看| 成人综合一区亚洲| 丰满人妻一区二区三区视频av| 国产亚洲一区二区精品| 亚洲国产高清在线一区二区三| 我要搜黄色片| 免费看光身美女| 欧美zozozo另类| 伦精品一区二区三区| 一级毛片电影观看 | 精品熟女少妇av免费看| 国模一区二区三区四区视频| 国产精品一区二区三区四区免费观看| 国产黄色小视频在线观看| 国产又色又爽无遮挡免| 国产成人福利小说| 男女那种视频在线观看| 亚洲国产精品专区欧美| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 超碰97精品在线观看| 国产一区二区三区av在线| 在线免费观看不下载黄p国产| 全区人妻精品视频| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| 性色avwww在线观看| 一级黄色大片毛片| 日韩高清综合在线| 熟女电影av网| 久久国内精品自在自线图片| 国产免费福利视频在线观看| 1024手机看黄色片| 一区二区三区高清视频在线| 亚洲国产色片| 永久免费av网站大全| 欧美+日韩+精品| 观看美女的网站| 亚洲最大成人中文| 日韩av在线大香蕉| 国产精品一区二区在线观看99 | 国产亚洲午夜精品一区二区久久 | 久久亚洲国产成人精品v| 一边摸一边抽搐一进一小说| 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 成人特级av手机在线观看| 色综合色国产| 亚洲欧美中文字幕日韩二区| 久久久久精品久久久久真实原创| 国产精品野战在线观看| 99国产精品一区二区蜜桃av| 成人毛片60女人毛片免费| 午夜福利成人在线免费观看| 精品久久国产蜜桃| 人人妻人人澡人人爽人人夜夜 | 别揉我奶头 嗯啊视频| 成人特级av手机在线观看| 亚洲成色77777| 在线免费观看不下载黄p国产| 久久婷婷人人爽人人干人人爱| 午夜免费男女啪啪视频观看| 国产成人午夜福利电影在线观看| av国产久精品久网站免费入址| 午夜福利在线在线| 国产又黄又爽又无遮挡在线| 观看美女的网站| av在线蜜桃| 中文字幕制服av| 成年女人永久免费观看视频| 老司机影院毛片| 99热6这里只有精品| 国产精品一及| 内射极品少妇av片p| 2021少妇久久久久久久久久久| 久久99蜜桃精品久久| 一级爰片在线观看| 久久精品久久精品一区二区三区| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 国产亚洲最大av| 国产av码专区亚洲av| 成人二区视频| 有码 亚洲区| av天堂中文字幕网| 国产69精品久久久久777片| 97超视频在线观看视频| 亚洲在久久综合| 成人av在线播放网站| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看| 男人的好看免费观看在线视频| 97人妻精品一区二区三区麻豆| 亚洲丝袜综合中文字幕| 18禁在线无遮挡免费观看视频| 自拍偷自拍亚洲精品老妇| 久久久精品大字幕| 卡戴珊不雅视频在线播放| 2022亚洲国产成人精品| 日韩欧美国产在线观看| 一夜夜www| 中文字幕av成人在线电影| videos熟女内射| 免费看美女性在线毛片视频| 国产女主播在线喷水免费视频网站 | 一级爰片在线观看| 一二三四中文在线观看免费高清| 日日啪夜夜撸| 亚洲在线观看片| 久久6这里有精品| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 99国产精品一区二区蜜桃av| 日日啪夜夜撸| 黄色欧美视频在线观看| 嫩草影院入口| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| av国产久精品久网站免费入址| 深夜a级毛片| 精品久久久久久久人妻蜜臀av| 男插女下体视频免费在线播放| 久久精品国产自在天天线| 欧美变态另类bdsm刘玥| 免费观看的影片在线观看| 午夜a级毛片| 国产成人一区二区在线| 久99久视频精品免费| 99热网站在线观看|