路洪艷,李 莉,羅自生
?
納米TiO2改性低密度聚乙烯包裝保持山核桃貯藏品質(zhì)
路洪艷,李 莉,羅自生※
(浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310058)
為了探索納米二氧化鈦(titanium dioxide,TiO2)改性低密度聚乙烯(low-density polyethylene,LDPE)薄膜對(duì)山核桃貯藏品質(zhì)的影響,研究了普通LDPE薄膜和納米TiO2改性LDPE薄膜兩種包裝對(duì)20 ℃下山核桃貯藏品質(zhì)的影響。結(jié)果表明:與對(duì)照組相比,納米TiO2改性LDPE薄膜可更快形成高CO2低O2氣體環(huán)境,延緩過氧化值和己醛升高,抑制過氧化物酶、脂氧合酶和脂肪酶活性,減緩脂肪、可溶性總糖、總酚和總生育酚降低。貯藏180 d后,納米TiO2改性LDPE薄膜包裝山核桃O2比對(duì)照組低36.36%(<0.05),CO2比對(duì)照組高7.25%(<0.05);過氧化值和己醛分別比對(duì)照組低35.32%和41.21%(<0.05);總脂肪、可溶性總糖、總酚和總生育酚分別比對(duì)照組高4.07%、6.90%(>0.05),11.37%和8.87%(<0.05);過氧化物酶、脂氧合酶和脂肪酶活性分別比對(duì)照組低17.21%、8.96%和20.55%(<0.05),表明納米TiO2改性LDPE薄膜有利于保持山核桃貯藏品質(zhì)。研究結(jié)果為山核桃保藏包裝的應(yīng)用提供理論參考。
包裝;貯藏;品質(zhì)控制;納米二氧化鈦;低密度聚乙烯薄膜;山核桃
山核桃(Sarg.)屬胡桃科、胡桃屬植物,果肉香脆可口、肥厚甘美,富含蛋白質(zhì)和礦物質(zhì),山核桃果含油脂高,其中不飽和脂肪酸高達(dá)95.34%,營(yíng)養(yǎng)價(jià)值高[1],具有防治動(dòng)脈硬化、降低膽固醇等保健功能,需求量日益增加,市場(chǎng)前景廣闊[2]。山核桃由于不飽和脂肪酸含量高,受品種[3]、溫度[4]、氧氣[5]、加工工藝[6]、包裝方式[7]等因素影響,貯藏過程易氧化酸敗,降低其品質(zhì),如何防止其油脂氧化酸敗,保持山核桃貯藏品質(zhì)備受關(guān)注。目前研究較多的生山核桃干果保藏方法主要有氣調(diào)保藏[8]、低溫保藏[9]、低氧保藏[10]。
傳統(tǒng)塑料薄膜保鮮材料由于簡(jiǎn)易、經(jīng)濟(jì)日益受到重視,且對(duì)果蔬具有一定保鮮效果[11],但相繼有研究發(fā)現(xiàn)其對(duì)果蔬保鮮效果欠佳:莊衛(wèi)東[12]研究發(fā)現(xiàn)高密度聚乙烯薄膜和普通聚乙烯薄膜袋內(nèi)龍眼果肉乙醇含量積累,加速其褐變;逯連靜[13]研究發(fā)現(xiàn)聚乙烯和聚氯乙烯薄膜包裝對(duì)草菇保鮮效果不佳,處理組硬度下降率高于不包膜對(duì)照組,保護(hù)性酶活出現(xiàn)峰值早于不包膜對(duì)照組,且可溶性蛋白含量在儲(chǔ)藏期間低于不包膜對(duì)照組。因此,傳統(tǒng)塑料薄膜的改進(jìn)日益受到關(guān)注。納米粒子對(duì)常規(guī)保藏材料進(jìn)行改性,提高材料保藏效果是近年來農(nóng)產(chǎn)品保鮮領(lǐng)域的熱點(diǎn)。納米材料具有獨(dú)特表面效應(yīng)、體積效應(yīng)、量子尺寸效應(yīng)等,且納米粒子細(xì)化,晶界數(shù)量大幅度增加,可提高材料強(qiáng)度、韌性和超塑性[14]。納米顆粒與生物細(xì)胞膜作用強(qiáng),極易進(jìn)入細(xì)胞內(nèi),故能殺死和抑制有害細(xì)菌生長(zhǎng),具有極強(qiáng)抑菌、除臭功效[15]。馬磊等[16]采用納米SiO2和TiO2分別對(duì)聚偏二氯乙烯(polyvinylidene chloride,PVDC)和聚乙烯醇(polyvinyl alcohol,PVA)基蜂蠟石蠟復(fù)合涂膜材料進(jìn)行功能改性并涂膜松花蛋,研究發(fā)現(xiàn)其對(duì)松花蛋具有良好的保鮮效果。添加納米材料可有效降低低密度聚乙烯(low-density polyethylene,LDPE)薄膜透氧性、提高阻濕率和縱向強(qiáng)度,抑制孢子萌發(fā)[17]。用于改性的納米粒子有納米TiO2[18]、納米SiO2[19]等,對(duì)納米改性材料應(yīng)用于農(nóng)產(chǎn)品保鮮的研究包括利用納米銀、納米TiO2和蒙脫石改性的聚乙烯(polyethylene,PE)膜貯藏獼猴桃,延緩其衰老[17];利用納米TiO2改性LDPE薄膜包裝和納米SiO2改性LDPE薄膜包裝保持草莓貯藏品質(zhì)[19]。Li等[18]通過在聚乙烯中添加納米銀和納米二氧化鈦粒子制成納米復(fù)合包裝材料,將其應(yīng)用于棗子的貯藏保鮮,發(fā)現(xiàn)其可有效維持棗子的貯藏品質(zhì)并延長(zhǎng)其貨架期。而目前采用納米改性材料用于山核桃保鮮的研究較少。
本文通過制備納米二氧化鈦(titanium dioxide,TiO2)改性低密度聚乙烯(low density polyethylene,LDPE)薄膜,探討其對(duì)20 ℃下山核桃貯藏品質(zhì)的影響,以期為納米TiO2改性薄膜包裝應(yīng)用于山核桃保藏提供參考。
1.1 材料
未加工山核桃生干果購(gòu)自浙江臨安,挑選大小一致、顏色均勻、無病蟲害的生山核桃為試驗(yàn)原料。LDPE樹脂,購(gòu)于中國(guó)石化茂名分公司;納米TiO2,購(gòu)于阿拉丁試劑(上海)有限公司。用LDPE薄膜(對(duì)照組)和自制納米TiO2改性LDPE薄膜分別制備規(guī)格為15 cm′20 cm,厚度為40m的薄膜袋,每袋裝30個(gè),封口后于20 ℃下貯藏180 d,每30 d測(cè)試一次各指標(biāo)。試驗(yàn)設(shè)3個(gè)重復(fù),共42袋。
1.2 儀器與設(shè)備
BSA223S型電子分析天平,賽多利斯科學(xué)儀器(北京)有限公司;DFT-250型高速混合機(jī),張家港市虎躍機(jī)械有限公司;HAAKE Polylab OS型雙螺桿擠出機(jī),德國(guó)Thermo Electron GmbH公司;KE19型單螺桿擠出機(jī),德國(guó)Brabender儀器公司;PBI Dansensor氣體分析儀,丹麥丹圣貿(mào)易有限公司;CF16R′Ⅱ型高速冷凍離心機(jī),日本日立公司;UV1750型紫外-可見分光光度計(jì),日本島津公司;MIR-254型恒溫試驗(yàn)箱,日本三洋電器集團(tuán)。
1.3 試驗(yàn)方法
納米TiO2改性薄膜的制備:稱取一定質(zhì)量納米TiO2粒子加入到異丙醇中,經(jīng)磁力攪拌器攪拌30 min,再超聲分散15 min。稱取納米TiO2粒子質(zhì)量10%的鈦酸酯偶聯(lián)劑溶于異丙醇中,鈦酸酯偶聯(lián)劑:異丙醇:水用量比為20 : 72 : 8,同時(shí)用質(zhì)量分?jǐn)?shù)5.0%的醋酸溶液調(diào)節(jié)pH值至4~5,超聲處理15 min。將鈦酸酯偶聯(lián)劑溶液加入到納米TiO2粒子溶液中,80 ℃下高速攪拌30 min,再繼續(xù)在80 ℃條件下超聲揮發(fā)溶液30 min,旋轉(zhuǎn)蒸發(fā)除去異丙醇和水,然后80 ℃真空干燥12 h。取出后經(jīng)高速粉碎機(jī)粉碎、過篩后待用[20]。
將改性納米TiO2粒子與LDPE樹脂在高速混合機(jī)內(nèi)混合,通過雙螺桿擠出機(jī)擠出造粒。設(shè)定螺桿轉(zhuǎn)速為 300 r/min,由進(jìn)料段到模頭溫度依次為:180、190、200、210 ℃。在預(yù)備試驗(yàn)基礎(chǔ)上,添加質(zhì)量分?jǐn)?shù)1.5%母粒與LDPE樹脂進(jìn)行二次造粒后,分別經(jīng)單螺桿擠出機(jī)擠出流延成膜。單螺桿擠出機(jī)轉(zhuǎn)速設(shè)定為40 r/min,四段溫度依次為200、200、200、210 ℃[19]。本研究制備薄膜厚度均為40m。
O2、CO2體積分?jǐn)?shù)測(cè)定:采用丹麥丹圣PBI Dansensor氣體分析儀測(cè)定O2和CO2體積分?jǐn)?shù)。己醛測(cè)定:按照SN/T 3626-2013測(cè)定[21]。過氧化值測(cè)定:按照GB/T 5009.227-2016測(cè)定[22]??傊緶y(cè)定:按照GB/T 5512-2008測(cè)定[23]。可溶性總糖測(cè)定:參照曹建康等[24]方法測(cè)定??偡訙y(cè)定:采用曹建康等[24]的方法測(cè)定??偵訙y(cè)定:按照GB/T 5009.82-2003測(cè)定[25]。
過氧化物酶活性測(cè)定:參照曹建康等[24]的方法測(cè)定,以每分鐘吸光值變化0.01為一個(gè)酶活力單位(U),活性以U/g表示。
脂氧合酶活性測(cè)定:參照曹建康等[24]的方法,以每分鐘吸光值變化0.01為一個(gè)酶活力單位(U),活性以U/g表示。
脂肪酶活性測(cè)定:按照GB/T 5523-2008規(guī)定執(zhí)行[26],用中和1 g試樣中生成的游離脂肪酸所消耗的氫氧化鉀的毫克數(shù)表示。
1.4 數(shù)據(jù)分析
采用OriginPro9.0軟件進(jìn)行作圖,采用DPS9.5軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,以Duncan’s進(jìn)行顯著性差異比較。
2.1 包裝內(nèi)O2和CO2體積分?jǐn)?shù)的變化
包裝袋內(nèi)氣體成分組成對(duì)食品原料品質(zhì)有重要影響,山核桃貯藏期間包裝內(nèi)O2和CO2隨時(shí)間變化情況見圖1,對(duì)照組和納米TiO2改性薄膜包裝O2體積分?jǐn)?shù)隨貯藏時(shí)間延長(zhǎng)逐漸降低(圖1a),但納米TiO2改性薄膜包裝組均顯著低于對(duì)照組(<0.05);貯藏末期,對(duì)照組O2體積分?jǐn)?shù)為9.9%,而納米TiO2改性薄膜O2體積分?jǐn)?shù)為6.3%,納米TiO2改性薄膜O2體積分?jǐn)?shù)比對(duì)照組低36.36%(<0.05)。對(duì)照組和納米TiO2改性薄膜包裝CO2體積分?jǐn)?shù)均隨貯藏時(shí)間延長(zhǎng)而升高(圖1b),貯藏末期,對(duì)照組包裝內(nèi)CO2體積分?jǐn)?shù)升高至6.9%,而納米TiO2改性薄膜包裝內(nèi)CO2體積分?jǐn)?shù)升高至7.4%,納米TiO2改性薄膜CO2體積分?jǐn)?shù)比對(duì)照組高7.25%(<0.05),這表明納米TiO2改性薄膜可更快形成高CO2低O2氣體環(huán)境,阻隔性優(yōu)于對(duì)照組。納米粒子的添加使薄膜阻隔性增加的原因可能是由于LDPE薄膜是孔膜,當(dāng)膜微孔半徑大于氣體分子平均自由程時(shí),氣體以黏性流動(dòng)方式通過膜孔,其規(guī)律服從Hagen-Poiseuille定律,即氣體黏性流動(dòng)透過多孔膜的阻隔性與微孔半徑的平方成反比,而納米粒子的填充使微孔半徑變小,因此阻隔性提高[27]。
圖1 包裝內(nèi)O2和CO2 體積分?jǐn)?shù)的變化
2.2 納米TiO2改性薄膜對(duì)山核桃過氧化值和己醛質(zhì)量分?jǐn)?shù)的影響
過氧化值是衡量脂肪一級(jí)氧化產(chǎn)物的指標(biāo),表明脂肪初級(jí)氧化程度[28]。由圖2a可知,貯藏初期山核桃過氧化值較低,僅為0.758 mmol/kg。貯藏期間對(duì)照組和納米TiO2改性薄膜組過氧化值呈現(xiàn)升高趨勢(shì),對(duì)照組后90 d過氧化值增加明顯加快,貯藏結(jié)束時(shí)過氧化值達(dá)到 26.33 mmol/kg;而納米TiO2改性薄膜組貯藏末期過氧化值為17.03 mmol/kg,比對(duì)照組低35.32%(<0.05),表明納米TiO2改性薄膜一定程度上可延緩山核桃過氧化值升高,有效延緩脂肪氧化初級(jí)產(chǎn)物生成。徐華[29]研究表明,低O2高CO2納米氣調(diào)包裝貯藏可抑制生核桃仁脂肪氧化作用,保持較好品質(zhì),對(duì)過氧化值增加有明顯延緩作用,與本研究結(jié)果一致。
圖2 納米TiO2改性薄膜對(duì)山核桃過氧化值和己醛質(zhì)量分?jǐn)?shù)的影響
己醛是由油酸過氧化分解形成,屬脂質(zhì)氧化次生代謝產(chǎn)物,是氧化變質(zhì)的重要標(biāo)志[28]。貯藏初期,不同包裝山核桃己醛含量較低,僅為0.78mg/kg(圖2b)。貯藏期間不同包裝山核桃己醛質(zhì)量分?jǐn)?shù)均逐漸增加,納米TiO2改性薄膜包裝山核桃己醛質(zhì)量分?jǐn)?shù)均低于對(duì)照組,180 d后,納米TiO2改性薄膜己醛質(zhì)量分?jǐn)?shù)增加至 3.21 mg/kg,而對(duì)照組包裝山核桃己醛質(zhì)量分?jǐn)?shù)增加至5.46 mg/kg,前者比后者低41.21%(<0.05),表明納米TiO2改性薄膜一定程度上可延緩山核桃油脂酸敗速率,減少脂質(zhì)氧化次生代謝產(chǎn)物生成。這可能是由于納米TiO2改性薄膜具有較好的氣體阻隔性,氧氣低,因此延緩了己醛增加[30]。
2.3 納米TiO2改性薄膜對(duì)山核桃總脂肪和可溶性總糖質(zhì)量分?jǐn)?shù)的影響
山核桃富含不飽和脂肪酸,脂肪和可溶性總糖屬于山核桃營(yíng)養(yǎng)物質(zhì),可作為反映貯藏情況指標(biāo)。由圖3a所示,貯藏前山核桃總脂肪質(zhì)量分?jǐn)?shù)為68.71%,各包裝山核桃總脂肪質(zhì)量分?jǐn)?shù)隨貯藏時(shí)間延長(zhǎng)逐漸下降。貯藏180 d后,納米TiO2改性薄膜組總脂肪質(zhì)量分?jǐn)?shù)下降至62.83%,而對(duì)照組下降至60.37%,二者差異不顯著(>0.05)。貯藏前山核桃可溶性總糖質(zhì)量分?jǐn)?shù)為2.16%,貯藏期間不同包裝山核桃可溶性總糖質(zhì)量分?jǐn)?shù)不斷下降(圖3b),對(duì)照組下降更快,貯藏180d時(shí)對(duì)照組和納米TiO2改性薄膜貯藏山核桃可溶性總糖質(zhì)量分?jǐn)?shù)分別下降至1.74%和1.86%。納米TiO2改性薄膜貯藏山核桃可溶性總糖質(zhì)量分?jǐn)?shù)較對(duì)照組高4.90%(>0.05)。納米TiO2改性薄膜阻隔性增加,降低了環(huán)境中可吸收O2(圖1),內(nèi)源性脂肪酶活性可能減弱,從而延緩脂肪氧化,保持貯藏品質(zhì)。
圖3 納米TiO2改性薄膜對(duì)山核桃總脂肪和可溶性總糖質(zhì)量分?jǐn)?shù)的影響
2.4 納米TiO2改性薄膜對(duì)山核桃過氧化物酶活性、脂氧合酶活性和脂肪酶活性的影響
過氧化物酶催化H2O2氧化酚類,生成醌類化合物,其進(jìn)一步縮合或與其他分子縮合,產(chǎn)生較深顏色產(chǎn)物[31]。由圖4a可知對(duì)兩種包裝山核桃過氧化物酶活性均先增大后減小,且納米TiO2改性薄膜組過氧化物酶活性均低于對(duì)照組。對(duì)照組和納米TiO2改性薄膜組過氧化物酶活性分別在90和120 d時(shí)達(dá)到峰值,為84.32和67.46 U/g;納米TiO2改性薄膜組過氧化物酶活性比對(duì)照組低17.21%(<0.05),表明納米TiO2改性薄膜能有效抑制過氧化物酶活性,耿陽(yáng)陽(yáng)等[5]研究發(fā)現(xiàn)隨貯藏時(shí)間延長(zhǎng),干果核桃過氧化物酶活性先增大后減少,低濃度氧氣能有效抑制細(xì)胞衰老。
脂肪氧合酶催化油脂中含順,順-1,4-戊二烯結(jié)構(gòu)的不飽和脂肪酸(主要是亞油酸和亞麻酸及其酯類)發(fā)生氫過氧化反應(yīng),產(chǎn)生一系列醛、酮類等化合物,影響油脂質(zhì)量[7]。由圖4b知,不同包裝山核桃脂氧合酶活性在貯藏期間呈上升趨勢(shì)。貯藏初期兩種包裝山核桃脂氧合酶活性為6.17 U/g,貯藏180 d后,對(duì)照組脂氧合酶活性為20.31 U/g,而納米TiO2改性LDPE薄膜組為18.49 U/g,比對(duì)照組低8.96%(<0.05),表明納米TiO2改性薄膜一定程度上可抑制脂氧合酶活性的升高。
脂肪酶是影響核桃油酸敗的主要因素[5]。由圖4c知,兩種包裝山核桃脂肪酶活性初期為32.38 mg/g,貯藏期間均先增大后減小且納米TiO2改性薄膜組山核桃脂肪酶活性顯著低于對(duì)照組(<0.05);對(duì)照組和納米TiO2改性薄膜組山核桃脂肪酶活性均在120 d達(dá)到峰值,分別為114.8和92.37 mg/g。表明納米TiO2改性薄膜一定程度上可抑制脂肪酶活性,且隨時(shí)間延長(zhǎng),山核桃酸敗速度先增大后減小,這與耿陽(yáng)陽(yáng)等[5]在干果核桃上得出的氧氣低能一定程度抑制脂肪酶活性,且隨貯藏時(shí)間延長(zhǎng),核桃油酸敗速率先增大后減少的結(jié)論一致。
圖4 納米TiO2改性薄膜對(duì)山核桃過氧化物酶活性、脂氧合酶活性和脂肪酶活性的影響
2.5 納米TiO2改性薄膜對(duì)山核桃總酚和總生育酚質(zhì)量分?jǐn)?shù)的影響
總酚具有一定抗氧化能力,是山核桃中的主要天然抗氧化物質(zhì)[2],由圖5a可知,貯藏初期,山核桃總酚質(zhì)量分?jǐn)?shù)為47.43 mg/g;隨后貯藏期間,不同包裝山核桃總酚隨貯藏時(shí)間延長(zhǎng)而下降,對(duì)照組總酚下降速度更快,180 d后下降至30.69 mg/g,而納米TiO2改性薄膜包裝山核桃總酚下降至34.18 mg/g,比對(duì)照組低11.37%(<0.05),表明貯藏180 d后納米TiO2改性薄膜形成的高CO2低O2氣體環(huán)境有利于山核桃酚類物質(zhì)保持。
圖5 納米TiO2改性薄膜對(duì)山核桃總酚和總生育酚質(zhì)量分?jǐn)?shù)的影響
單重態(tài)氧(1O2)是引起油脂自動(dòng)氧化的主要原因[32]。生育酚在生物體內(nèi)具有淬滅單重態(tài)氧(1O2)防止油脂氧化的作用[32],是核桃中主要的脂溶性抗氧化物質(zhì)[33]。貯藏初期山核桃生育酚質(zhì)量分?jǐn)?shù)為6.46 mg/g,貯藏期間,兩種包裝山核桃總生育酚隨時(shí)間延長(zhǎng)逐漸下降,180 d后對(duì)照組下降至4.62 mg/g,納米TiO2改性薄膜組下降至 5.03 mg/g(圖5b),與初始值比較分別下降了28.48%和22.14%,二者差異顯著(<0.05),表明納米TiO2改性薄膜一定程度上可延緩山核桃生育酚下降,保持其抗氧化能力。
這可能是由于納米TiO2改性薄膜形成的高CO2低O2氣體環(huán)境降低了O2,從而減少了酚類物質(zhì)的氧化降解。Bakkalbasi等[34]等研究表明20 ℃真空條件下透氧率低于(63.40±0.40) mL/(m2×24 h)的聚酰胺/聚乙烯(polyamide/ polyethylene,PA/PE)塑料可有效保護(hù)核桃仁中總酚和生育酚和抗氧化活性。
與普通低密度聚乙烯(low-density polyethylene,LDPE)薄膜相比,納米TiO2改性LDPE薄膜可更快形成高CO2低O2氣體環(huán)境,能有效抑制過氧化物酶、脂氧合酶和脂肪酶活性,減少總酚和總生育酚下降量,減緩脂肪、可溶性總糖降低,延緩過氧化值和己醛升高。貯藏180 d后,納米TiO2改性LDPE薄膜包裝山核桃O2比對(duì)照組低36.36%(<0.05),CO2比對(duì)照組高7.25%(<0.05);過氧化值和己醛分別比對(duì)照組低35.30%和41.21%(<0.05);總脂肪、可溶性總糖、總酚和總生育酚分別比對(duì)照組高4.07%、6.90%(>0.05),11.37%和8.87%(<0.05);過氧化物酶、脂氧合酶和脂肪酶活性分別比對(duì)照組低17.21%、8.96%和20.55%(< 0.05),因此,納米TiO2改性薄膜包裝可有效延緩山核桃脂質(zhì)氧化。
[1] 章亭洲. 山核桃的營(yíng)養(yǎng)、生物學(xué)特性及開發(fā)利用現(xiàn)狀[J]. 食品與發(fā)酵工業(yè),2006,32(4):90-93. Zhang Tingzhou. Nutrition, biological characteristics, development and utility of hickory[J]. Food and Fermentation Industries, 2006, 32(4): 90-93. (in Chinese with English abstract)
[2] 何志平. 浙江山核桃抗氧化與蛋白質(zhì)特性研究[D]. 杭州:浙江大學(xué),2011.He Zhiping. Study on the Functional Properties of Protein and Antioxidant Properties of Chinese Hickory (Sarg.)[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)
[3] 馬艷萍,劉興華,袁德保,等. 不同品種鮮食核桃冷藏期間呼吸強(qiáng)度及品質(zhì)變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1):370-374. Ma Yanping, Liu Xinghua, Yuan Debao, et al. Changes of respiration intensity and quality of different varieties of fresh walnut during cold storage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 370-374. (in Chinese with English abstract)
[4] 李鵬霞,王煒,梁麗松,等. 不同貯藏溫度對(duì)核桃生理和品質(zhì)的影響[J]. 保鮮與加工,2009,(4):38-41. Li Pengxia, Wang Wei, Liang Lisong, et al. Effect of different storage temperature on physiology and quality of walnut [J]. Sorage and Process, 2009, (4): 38-41. (in Chinese with English abstract)
[5] 耿陽(yáng)陽(yáng),徐俐,馬寶軍. 不同脫氧處理對(duì)干核桃品質(zhì)及生理變化的影響[J]. 食品工業(yè),2013,34(8):17-20. Geng Yangyang, Xu Li, Ma Baojun. The quality and physiological changes of the dry walnuts during storage in diffferent oxygen contents [J]. Food Industry, 2013, 34(8): 17-20. (in Chinese with English abstract)
[6] 陶菲,郜海燕,葛林梅,等. 加工工藝對(duì)山核桃脂肪氧化的影響[J]. 中國(guó)食品學(xué)報(bào),2008,8(1):99-102.Tao Fei, Gao Haiyan, Ge Linmei, et al. The efffect of process technology on lipoxygenation of walnut (Sarg.)[J]. Journal of Chinese Institute of Food Science and Technology, 2008, 8(1): 99-102. (in Chinese with English abstract)
[7] 陶菲,郜海燕,陳杭君,等. 不同包裝對(duì)山核桃脂肪氧化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(9):303-305.Tao Fei, Gao Haiyan, Chen Hangjun, et al. Effect of different types of packaging on; ipid oxidation of walnut (Sarg.) during storage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(9): 303-305. (in Chinese with English abstract)
[8] 馬惠玲,宋淑亞,馬艷萍,等. 自發(fā)氣調(diào)包裝對(duì)核桃青果的保鮮效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):262-267. Ma Huiling, Song Shuya, Ma Yanping, et al. Effects of modified atmosphere package on preservation of green walnut fruit[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 262-267. (in Chinese with English abstract)
[9] 陶菲,郜海燕,陳杭君,等. 冷藏對(duì)山核桃原料脂肪氧化和衰老進(jìn)程的影響研究[J]. 中國(guó)糧油學(xué)報(bào),2009,24(12):88-90,113.Tao Fei, Gao Haiyan, Chen Hangjun, et al. Lipid peroxidation and aging of walnut (Sarg.) in refrigerated storage[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(12): 88-90, 113. (in Chinese with English abstract)
[10] 李鵬霞,王煒,梁麗松,等. 常溫下低氧貯藏對(duì)核桃生理和品質(zhì)的影響[J]. 浙江農(nóng)業(yè)科學(xué),2009,(5):939-941.
[11] 張麗欣. 塑料薄膜在果蔬保鮮方面的應(yīng)用[J]. 中國(guó)塑料,1987,1(3):69-73,90. Zhang Lixin. Applieations of plastics film in fruits and vegetables fresh keeping[J]. China Plastics, 1987, 1(3): 69-73, 90. (in Chinese with English abstract)
[12] 莊衛(wèi)東. 不同保鮮薄膜袋包裝對(duì)‘松風(fēng)本’龍眼果實(shí)低溫貯藏效果的影響[J]. 熱帶作物學(xué)報(bào),2013,34(10): 2031-2037. Zhuang Weidong. Different film bag packaging on cold storage behavior of ‘Songfengben’ longan fruits[J]. Chinese Journal of Tropical Crops, 2013, 34(10): 2031-2037. (in Chinese with English abstract)
[13] 逯連靜. 草菇采后生理生化及保鮮方法的研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2011. Lu Lianjing. Study on Quality of Phisio-chemical and Fresh Keeping Thechologies of Post-harvest in[D]Nanjing:Nanjing Agricultural University,2011. (in Chinese with English abstract)
[14] 張中太,林元華,唐子龍,等. 納米材料及其技術(shù)的應(yīng)用前景[J]. 材料工程,(3):42-48. Zhang Zhongtai, Lin Yuanhua, Tang Zilong, et al. Nanometer materials and nanotechology and their application prospect[J]. Journal of Materials Engineering, 2000(3): 42-48. (in Chinese with English abstract)
[15] 施春熒. 納米TiO2/聚合物保鮮膜的制備及其在毛葉棗保鮮中的研究應(yīng)用[D]. 儋州: 華南熱帶農(nóng)業(yè)大學(xué),2006. Shi Chunying. Study on Nano-TiO2/Polymer Film and which Applied Research on Fresh-keeping Ber[D]. Danzhou: South China University of Tropocal Agriculture, 2006. (in Chinese with English abstract)
[16] 馬磊,嚴(yán)文靜,趙見營(yíng),等. 納米SiO2及TiO2改性復(fù)合涂膜提高松花蛋的保鮮效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):269-280.Ma Lei, Yan Wenjing, Zhao Jainying, et al. Preserved effect of nano-SiO2and nano-TiO2modified composite coating materials on pidan[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 269-280. (in Chinese with English abstract)
[17] Hu Qinhui, Fang Yong, Yang Yanting, et al. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit () during cold storage[J]. Food Research International, 2011, 44(6): 1589-1596.
[18] Li Hongmei, Li Feng, Wang Lin, et al. Effect of nano- packing on preservation quality of Chinese jujube (())[J]. Food Chemistry, 2009, 114(2): 547-552.
[19] 葉輕飏. 納米粒子改性LDPE薄膜的研制和保鮮性能研究[D]. 杭州:浙江大學(xué),2014.Ye Qingyang. Research on Preparation and Preservation Performance of Nanoparticle Modified LDPE Film [J]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
[20] 房春燕. 納米無機(jī)紫外線屏蔽劑在透明PE薄膜中的研究[D]. 貴陽(yáng):貴州大學(xué),2008.
[21] SN/T 3626-2013,出口食用油中正己醛含量的測(cè)定頂空固相微萃取氣相色譜法[S].
[22] GB/T 5009.227-2016,食品安全國(guó)家標(biāo)準(zhǔn)食品中過氧化值的測(cè)定[S].
[23] GB/T 5512-2008,糧油檢驗(yàn)糧食中粗脂肪含量測(cè)定[S].
[24] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)輕工業(yè)出版社,2007,44,54-57,101-107.
[25] GB/T 5009.82-2003,食品中維生素A和維生素E的測(cè)定[S].
[26] GB/T 5523-2008,糧油檢驗(yàn)糧食、油料的脂肪酶活動(dòng)度的測(cè)定[S].
[27] 陸文軍,劉麗. 非對(duì)稱膜及其復(fù)合膜結(jié)構(gòu)參數(shù)對(duì)氣體滲透影響的研究[J]. 高分子材料科學(xué)與工程,1994,10(5): 486-493.Lu Wenjun, Liu Li. Study on effect of the structure parameters of asymmetric polymer membrane and its composite membrane on gas permeation[J]. Polymeric Materials Science and Engineering, 1994, 10(5): 486-493. (in Chinese with English abstract)
[28] Bakkalbasi E, Yilmaz O M, Poyrazoglu E S, et al. Effects of packaging materials, storage conditions and variety on oxidative stability of shelled walnuts[J]. LWT-Food Science and Technology, 2012, 46(1): 203-209.
[29] 徐華. 氣調(diào)貯藏對(duì)生核桃仁及其加工品品質(zhì)的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2011.Xu Hua. Effect of Modified Atmosphere Storage on the Quality of Walnut Kernels and Processed Products[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract)
[30] Mexis S F, Badeka A V, Kontominas M G.Quality evaluation of raw ground almond kernels (Prunus dulcis): Effect of active and modified atmosphere packaging, container oxygen barrier and storage conditions[J]. Innovative Food Science and Emerging Technologies, 2009, 10(4): 580-589.
[31] 劉野,張超,趙曉燕,等. 高壓二氧化碳抑制西瓜汁褐變的試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(8):373-378. Liu Ye, Zhang Chao, Zhao Xiaoyan, et al. Experiment on inhibition of watermelon juice browing by compressed carbon dioxide[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 373-378. (in Chinese with English abstract)
[32] 王克建,郝艷賓,張燁,等. 不同包裝處理對(duì)碎核桃仁中抗氧化物質(zhì)的影響[J]. 食品科學(xué),2005,26(8):418-421.Wang Kejian, Hao Yanbin, Zhang Ye, et al. Effect on the antioxidation substances variation in the fragment walnut kernels by different package[J]. Food Science, 2005, 26(8): 418-421. (in Chinese with English abstract)
[33] Bakkalbasi E, YilmazO M, Poyrazoglu E S, et al. Tocopherol contents of walnut varieties grown in turkey and the effect of storage on tocopherol c ontent[J]. Journal of Food Processing and Preservation, 2014, 38(1): 518-526.
[34] Bakkalbasi E, Yilmaz O M, YemisO, et al. Changes in the phenolic content and free radical-scavenging activity of vacuum packed walnut kernels during storage[J]. Food Science and Technology Research, 2013, 19(1): 105-112.
Nano-TiO2modified low-density polyethylene packaging preserving storage quality of Chinese hickory (Sarg.)
Lu Hongyan, Li Li, Luo Zisheng※
(310058,)
Nanoparticle usually has unique physical and chemical characteristics and has become attractive to researchers in recent years.Chinese hickory is well known because of its high polyunsaturated fatty acid (PUFA) content. However, high PUFA content limits the shelf life of the products due to the susceptibility of PUFA to oxidation. Lipid oxidation decreases economic value of walnuts during the storage. Oxidation resulting in an undesirable rancid taste makes Chinese hickory unacceptable for the consumer. Oxygen concentration is one of the most important environmental factors affecting lipid oxidation. Lipid oxidation can be inhibited by using packaging material with low oxygen permeability. Improving barrier properties through the use of nanocomposites is an important topic of research, especially for the food packaging industry. Nano-titanium dioxide (nano-TiO2) is a kind of nano metallic oxide which has been researched in some academic fields. Adding nanoparticles to the polyethylene (PE) could significantly decrease the oxygen, water vapor permeability and longitudinal strength, and inhibit spore germination. TiO2has been the focus of photocatalysts because of its physical and chemical stability, low cost, ease of availability and non-toxicity. Nanoparticle composite material has revealed its importance in agricultural products preservation these years. In this study, nano-TiO2modified low density polyethylene (LDPE) film packaging was prepared by blending LDPE with nano-TiO2. The effects of nanoparticle modified LDPE film packaging on both physiology and quality of postharvest Chinese hickory stored under 20℃ were investigated. During the storage the physical and chemical indicators included CO2and O2volume fraction in packing, oxidation value, hexanal, total fat, total soluble sugar, activities of peroxidase, lipoxygenase and lipase, total phenol and total tocopherol, which were detected every 30 d to determine the Chinese hickory quality. Results showed that most physical and chemical indicators of Chinese hickory in each group were significantly changed (<0.05) during the whole storage time. Compared with the control group, nano-TiO2modified LDPE film was more effective in forming high CO2and low O2, delaying the increase of peroxide value and hexanal, slowing the decrease of fat, soluble sugar, total tocopherol and total phenols, and inhibiting the activities of peroxidase, lipoxygenase and lipase. After 180 d, O2content of nano-TiO2modified LDPE film was 36.36% lower and CO2content was 7.25% higher than that of the control. The results indicated that nano-TiO2modified LDPE film had low gas permeability (<0.05). Oxidation value and hexanal content were respectively 35.03% and 41.21% lower than that of the control (<0.05). Total fat, soluble total sugar, total phenol and total tocopherol were respectively 4.07% (>0.05), 6.9%, 11.37% and 8.87% higher than that of the control (<0.05). Activities of peroxidase, lipoxygenase and lipase were respectively 17.21%, 8.96%, and 20.55%lower than that of the control (<0.05). All these were maybe due to the lower gas permeability of nano-TiO2modified LDPE film. These results indicated nano-TiO2modified LDPE film is effective in maintaining the quality and prolonging the storage life of Chinese hickory and has a potential application prospect in the packaging of postharvest Chinese hickory.This paper provides the reference for the application of nanoparticle modified composite film materials in the preservation of Chinese hickory.
packing; storage; quality control; nano-titanium dioxide (nano-TiO2); low-density polyethylene (LDPE); Chinese hickory
10.11975/j.issn.1002-6819.2017.03.039
TS255.6
A
1002-6819(2017)-03-0288-06
2016-08-10
2016-12-26
國(guó)家科技支撐計(jì)劃(2015BAD16B06);浙江省科技項(xiàng)目(2014C32089);杭州市社會(huì)發(fā)展科研專項(xiàng)(20140533B61)。
路洪艷,女(漢),山東菏澤人,農(nóng)產(chǎn)品加工與貯藏工程。 Email:luhongyan@zju.edu.cn
羅自生,男(漢),江西宜豐人,博士,教授(博導(dǎo)),農(nóng)產(chǎn)品采后生理及保鮮研究。Email:luozisheng@zju.edu.cn
路洪艷,李 莉,羅自生. 納米TiO2改性低密度聚乙烯包裝保持山核桃貯藏品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):288-293. doi:10.11975/j.issn.1002-6819.2017.03.039 http://www.tcsae.org
Lu Hongyan, Li Li, Luo Zisheng.Nano-TiO2modified low-density polyethylene packaging preserving storage quality of Chinese hickory (Sarg)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 288-293. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.039 http://www.tcsae.org