徐克明,王 俊,鄧凡霏,韋真博,程紹明
?
用于山核桃陳化時間檢測的電子鼻傳感器陣列優(yōu)化
徐克明,王 俊※,鄧凡霏,韋真博,程紹明
(浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州310058)
為更好地進行山核桃陳化時間檢測,論文擬通過傳感器陣列優(yōu)化來有效提高電子鼻對其區(qū)分預(yù)測能力。該文依據(jù)響應(yīng)曲線保留響應(yīng)明顯的傳感器,并在提取傳感器特征值構(gòu)成初始特征矩陣的基礎(chǔ)上,結(jié)合均值分析、變異系數(shù)分析、聚類分析、相關(guān)性分析和多重共線性分析進行逐步優(yōu)化以獲取最終優(yōu)化傳感器陣列。對優(yōu)化前后的數(shù)據(jù)采用主成分分析法(principal component analysis,PCA)和偏最小二乘回歸(partial least squares regression,PLSR)進行樣品區(qū)分和預(yù)測能力的對比。結(jié)果表明:通過優(yōu)化,經(jīng)不同人工陳化時間(0、5、10、15d)處理的山核桃能有效區(qū)分開,且在PCA得分圖中更為聚集;優(yōu)化后的陳化時間回歸模型(2=0.933 4)較優(yōu)化前(2=0.888 7)具有更好的預(yù)測能力。說明所給出的陣列優(yōu)化方法有效可行,為電子鼻針對性檢測提供了一種思路。
傳感器;優(yōu)化;主成分分析;電子鼻;特征值矩陣;偏最小二乘回歸
中國是山核桃生產(chǎn)大國,2013~2015年,山核桃產(chǎn)量分別為1422萬t、1562萬t、172萬t[1-2],占世界總產(chǎn)量的近一半。由于山核桃極高的營養(yǎng)價值和獨特的口感,使其成為廣受消費者喜愛的高檔堅果。然而,堅果中的油脂易受光照、氧氣、水分等環(huán)境因素的影響,氧化酸敗而產(chǎn)生哈味,不僅使其營養(yǎng)價值大大降低,也嚴重破壞了其獨有的口感[3],因此進行山核桃品質(zhì)檢測具有一定的實際意義。常用的品質(zhì)檢測方法有感官評價、微生物檢測、理化指標測定等傳統(tǒng)檢測方法以及近紅外光譜分析[4-5]、機器視覺分析[6]等無損檢測方法。然而傳統(tǒng)檢測方法耗時且成本高昂,光譜分析與機器視覺在堅果品質(zhì)的檢測中易受外殼干擾,具有一定的局限性。
電子鼻是一種基于特定氣敏傳感器陣列來模擬動物嗅覺的仿生系統(tǒng),通過獲取樣品中揮發(fā)性成分的整體信息即“指紋圖譜”,以實現(xiàn)客觀、準確、快速地識別樣品。近年來,許多研究者將電子鼻技術(shù)應(yīng)用于復(fù)雜氣體的檢測識別,并得到了很好的應(yīng)用,其中也包含了堅果品質(zhì)檢測[7-9]。相比于傳統(tǒng)檢測方法及上述無損檢測方法,電子鼻具有高效、便捷的優(yōu)點,同時其通過檢測樣品揮發(fā)性氣體來分析其內(nèi)部品質(zhì),受外殼干擾小,準確度高,在堅果品質(zhì)檢測領(lǐng)域具有很好的應(yīng)用前景。
傳感器陣列是電子鼻系統(tǒng)尤為關(guān)鍵的一部分,其性能的優(yōu)劣在很大程上決定了電子鼻檢測性能的好壞。由于山核桃氣味成分復(fù)雜,且不同陳化時間山核桃之間的差異性較小,為提高識別的準確性,需進行陣列優(yōu)化以獲得較佳的傳感器陣列。
常見的傳感器陣列優(yōu)化方法多以傳感器個體為對象,即提取傳感器某一特征值表征傳感器,采用搜索性[10-12]或非搜索性[13-14]特征選擇策略進行優(yōu)化。搜索性特征選擇策略如史波林[15]等提取傳感器響應(yīng)最大值構(gòu)成特征矩陣并利用遺傳算法進行陣列優(yōu)化;非搜索性特征選擇策略如王智凝等[16]及亓培鋒等[17]提取傳感器響應(yīng)的相對變化值及穩(wěn)定值分別構(gòu)成特征矩陣并結(jié)合一系列多元統(tǒng)計算法進行優(yōu)化。然而,由于不同傳感器的不同特征值在模式識別中均具有包含有效信息的可能,為獲取較佳傳感器陣列,本文在提取電子鼻原始信息的多個相關(guān)特征值構(gòu)成初始特征矩陣的基礎(chǔ)上,提出一種以特征值為對象,并基于非搜索性特征選擇策略的傳感器陣列優(yōu)化方法。對陣列優(yōu)化前后的數(shù)據(jù),采用主成分分析(principal component analysis,PCA)法進行樣品區(qū)分能力對比,并用偏最小二乘回歸(partial least squares regression,PLSR)分析法驗證優(yōu)化矩陣的預(yù)測能力,以驗證優(yōu)化的有效性。
1.1 材料
試驗所用山核桃為采摘于臨安市龍崗鎮(zhèn)的新鮮山核桃。挑選顏色、大小基本一致的新鮮山核桃置于溫度為35 ℃、相對濕度為30%的陳化箱(CTHI-150B,施都凱儀器設(shè)備有限公司)進行人工陳化,每隔5 d取樣一次,獲得人工陳化時間為0、5、10、15 d的山核桃,其中未陳化的即為新鮮山核桃。
1.2 儀器與設(shè)備
試驗使用浙江大學(xué)農(nóng)業(yè)裝備與智能檢測(AE&ID)團隊自行研發(fā)設(shè)計的嵌入式電子鼻系統(tǒng),結(jié)構(gòu)如圖1所示。其由氣敏傳感器陣列、直筒式氣室、放大調(diào)理電路、DSP采集控制系統(tǒng)、可編程智能觸摸顯示屏(PS-LCD)、SD卡及藍牙模塊等組成。
1.氣體采樣操作器2. 進氣口 3. 數(shù)據(jù)線 4. 電源線 5. 開關(guān) 6. 觸摸顯示屏 7. 信息處理與控制系統(tǒng)
根據(jù)山核桃揮發(fā)性氣體已有的GC-MS分析結(jié)果[18-19],針對含量較多的醛類、烯烷烴類、醇類、酸類等揮發(fā)性成分初步選擇13只金屬氧化物傳感器,它們分別是S1(TGS2600)、S2(TGS2602)、S3(TGS822)、S4(TGS825)、S5(TGS2444)、S6(TGS2611)、S7(MQ138)、S8(TGS2620)、S9(WSP2110)、S10(TGS826)、S11(TGS2442)、S12(TGS813)、S13(TGS816)。各傳感器工作電壓為3.3V,加熱電壓為5V,保持采樣室溫度為(25±2)℃。
1.3 試驗方法
山核桃進行人工陳化后,將其均勻地分成30份,每份20顆。試驗采用靜態(tài)頂空采樣方式,將山核桃置于 500 mL的燒杯中,用保鮮膜將其密封靜置1 h。檢測前用空氣將電子鼻響應(yīng)信號清洗至基準值,清洗時間為90 s,然后用電子鼻的針頭刺入保鮮膜,抽取頂空氣體進行檢測,電子鼻檢測時間為60 s,數(shù)據(jù)采樣時間間隔為1 s。每檢測一次,都需用空氣進行清洗方可進行下一輪檢測。
1.4 傳感器陣列優(yōu)化方法
在電子鼻的應(yīng)用中,傳感器陣列由靈敏度高、敏感帶寬的氣敏傳感器組成,同時其具有穩(wěn)定性好、響應(yīng)速度快的特點[20-21]。本文待構(gòu)造初始傳感器陣列及進行特征提取獲得初始特征矩陣后,采用非搜索性特征選擇策略進行優(yōu)化。非搜索性特征選擇策略主要通過考察初始陣列中各傳感器的相關(guān)特性,如靈敏度、選擇性、重復(fù)性、穩(wěn)定性、相關(guān)性等,來淘汰陣列中性能不好的個體以實現(xiàn)優(yōu)化的目的。陣列優(yōu)化具體流程如圖2所示。
圖2 傳感器陣列優(yōu)化流程
本試驗以特征值為對象進行陣列優(yōu)化,故首先依據(jù)初步選擇的13只氣敏傳感器對山核桃的響應(yīng)信號來剔除響應(yīng)不敏感的傳感器以構(gòu)成初始傳感器陣列,然后對陣列中各傳感器進行多個特征值提取以獲得初始特征矩陣,并結(jié)合非搜索性特征選擇策略進行優(yōu)化。
2.1 傳感器響應(yīng)分析
圖3為新鮮山核桃檢測中的13個傳感器電阻比的變化響應(yīng)圖。從圖中可知,傳感器S11、S12、S13的響應(yīng)曲線比較平穩(wěn)即幾乎沒有響應(yīng)和變化,說明其對山核桃揮發(fā)性氣體不敏感。其余10只傳感器隨著揮發(fā)物在傳感器表面富集不斷地增大,傳感器的電導(dǎo)比不斷增大,并在40 s后趨于平緩,達到一個相對穩(wěn)定的狀態(tài)。對于幾種不同陳化時間的山核桃樣品,傳感器響應(yīng)趨勢大致相同(圖略),傳感器S11、S12、S13幾乎沒有響應(yīng)和變化,因此剔除傳感器S11、S12、S13,選擇剩余的10只傳感器構(gòu)成初始陣列。
2.2 特征參數(shù)提取及初始特征矩陣構(gòu)建
特征參數(shù)提取需盡可能選取能表征原始曲線信息的特征參數(shù),有效的提取可以大大提高電子鼻性能[22]。在實際應(yīng)用中,平均微分值[23]、穩(wěn)定值[24]、面積值[25]等作為常見的特征參數(shù)被應(yīng)用于模式識別中,且均取得不錯的區(qū)分效果。因此本試驗提取傳感器初始陣列中傳感器的平均微分值、穩(wěn)定值、面積值作為特征參數(shù),則每個測試樣品共提取10′3個特征參數(shù),構(gòu)成30維特征矩陣;每個測試樣本的30個特征參數(shù)分表標記為M,S,P,=1,2…10,其中M,S,P分別代表第個傳感器的平均微分值,穩(wěn)定值,面積值。陣列中的傳感器編號為1,2…10,對應(yīng)關(guān)系如表1所示。
表1 特征編號和傳感器編號的對應(yīng)關(guān)系
2.3 基于響應(yīng)差異性和穩(wěn)定性的傳感器陣列篩選
由于傳感器性能不一,不同傳感器的特征值往往會表現(xiàn)出不一樣的特性,因此每個測試樣品所提取的特征值不一定對分類識別都起到積極的作用,有的甚至?xí)a(chǎn)生消極的影響[26]。
2.3.1 均值分析
為獲得差異性較大的特征值和優(yōu)化傳感器陣列,本文采用均值分析[27]方法來分析特征值的差異性。均值分析指對處理結(jié)果均值的分析,是一種近似分析法,屬于非參數(shù)統(tǒng)計范疇。通過計算不同陳化時間山核桃30個樣品特征值均值的相對變化率,來直觀反映其差異性。
采用主成分分析對各個測試樣品的初始特征矩陣進行鑒別分析,結(jié)果如圖4a所示。由圖可知,陳化10 d和陳化15 d處理的山核桃并不能很好地被區(qū)分開,且未陳化與陳化5 d山核桃的類內(nèi)距較大。故以陳化10 d和陳化15 d山核桃原始數(shù)據(jù)為基礎(chǔ),進行均值分析,來剔除陳化10 d和陳化15 d山核桃樣本中變化不明顯,即差異性小的特征值,以降低數(shù)據(jù)冗余度。
由表2可知,陳化時間不同,各傳感器的特征值存在差異,而樣本間特征值差異性大小取決于成分變化顯著與否。故為了提高特征矩陣的有效信息比例,需剔除相對變化率較小的特征值。
陳化時間 Aging time/d
表2 人工陳化10 d與陳化15 d山核桃樣本特征值均值的相對變化率
經(jīng)對比發(fā)現(xiàn),剔除相對變化率小于5%的特征值,即剔除編號為1、1、2、5、5、6、7、7、7、8、8、9、10、10的特征值后,不同陳化時間處理的山核桃區(qū)分效果較佳,PCA1和PCA2貢獻率分別為73.60%、14.77%,其PCA得分圖如圖4b所示。此時,人工陳化10 d與陳化15 d的山核桃能基本區(qū)分開,且同類樣品聚集度明顯提升。
2.3.2 變異系數(shù)分析
變異系數(shù)常作為數(shù)據(jù)變異程度的判定標準,若變異系數(shù)過大,說明測試數(shù)據(jù)離散程度較大,即穩(wěn)定性不好,需將其剔除,反之則說明其穩(wěn)定性好,可以采用[28]。變異系數(shù)(CV)計算公式如式(1)所示:
根據(jù)上式分別計算陳化10 d與陳化15d山核桃響應(yīng)信號特征值的變異系數(shù),其結(jié)果如表3所示。從表中可知,編號為6和10的特征值在陳化10 d和陳化15 d處理的山核桃樣本中,其變異系數(shù)均大于0.15,故予以剔除。PCA處理結(jié)果如圖4c所示,可知各類樣品類內(nèi)距進一步減小,陳化10 d與陳化15 d山核桃類間距增大,且此時PCA1和PCA2累計貢獻率為91.47%,有所提高。
表3 人工陳化10 d與陳化15 d山核桃樣本特征值的變異系數(shù)
2.4 基于數(shù)據(jù)相關(guān)性的傳感器陣列篩選
2.4.1 聚類分析和相關(guān)性分析
聚類分析可依據(jù)研究對象的特征,將其根據(jù)一定的相關(guān)關(guān)系進行聚類,有助于后續(xù)探求其間的相關(guān)性。本文對經(jīng)均值分析和變異系數(shù)分析篩選得到的14個特征值以平方Euclidean距離為度量標準,組間聯(lián)接為聚類方法進行聚類分析[29]。
特征值聚類全過程如圖5所示。若特征值對應(yīng)的直方柱相連接,則相應(yīng)特征值歸為一類。反之,則屬于不同類。由此可知,當(dāng)特征值聚為2類時(圖中虛線所示),則3、4、6和2、3、4、8、9、1、2、3、4、5、9各聚為一類。聚類數(shù)為4類、5類、6類等時,特征值聚類情況依次可從圖中推出。
經(jīng)聚類分析處理后,各類內(nèi)特征值之間存在相似性,需從各類中選取有效信息較多的特征值作為該類的代表以剔除冗余信息[30]。由于在不同的聚類情況下,將會產(chǎn)生不同的特征值篩選結(jié)果。為獲取較佳優(yōu)化效果[31],本文在特征值分別聚為2、3、4、5、6、7、8類時,結(jié)合相關(guān)性分析進行逐一驗證。然而相關(guān)系數(shù)[32]只能反映任意兩個特征值之間的相關(guān)性,無法推知和其余類外特征值的整體相關(guān)度,故采用相關(guān)系數(shù)絕對值累加和R來反映特征值與其他類特征值的整體相關(guān)性,計算公式如下:
式中為類數(shù),為各類中特征值個數(shù),為該特征值所在類,R為該特征值與第類第個特征值之間的系數(shù)。
圖5 特征值聚類全過程冰柱圖
Fig.5 Icicles figure of clustering process of features
當(dāng)聚類數(shù)為4時,經(jīng)相關(guān)性分析所得特征矩陣的PCA結(jié)果如圖6所示。從中可知,未陳化與陳化5d山核桃類內(nèi)矩變大,類間距變小,區(qū)分效果相對變差。經(jīng)逐一對比發(fā)現(xiàn),當(dāng)特征值聚為6類時,即第一類:2、3、8、9;第二類:1、2、3、4、5、9;第三類:3;第四類:4;第5類:6;第6類:4,基于篩選后特征矩陣的PCA區(qū)分效果最佳,其結(jié)果如圖4d所示。此時,相關(guān)性分析結(jié)果如表4。
陳化時間 Aging time/d
圖6 聚類數(shù)為4時的PCA得分圖
表4 各特征值的相關(guān)系數(shù)絕對值累加和(Rr值)
R值越小,該特征值與其他類特征值相關(guān)度越低。但當(dāng)剔除第一類與第二類中R小于6的特征值時,由于剔除特征值過多,使得其有效信息丟失,從而導(dǎo)致PCA區(qū)分效果不佳。故優(yōu)先考慮第一類中R值小于8的特征值,即刪除特征值3;優(yōu)先考慮第二類中R值小于6的特征值,即刪除特征值1、4;其余各類特征值均保留。
2.4.2 VIF多重共線性分析
方差膨脹因子(variance inflation factor, VIF)即容忍度的倒數(shù)[33],其反映了特征值與特征矩陣間的相關(guān)性。VIF越大,共線性越大。一般地,0 式中VIFi是第個變量的方差膨脹因子;R是以第個變量為被解釋變量,其余1個解釋變量為解釋變量建立多元線性回歸模型的決定系數(shù)。 將不同人工陳化處理山核桃對應(yīng)的實際陳化時間預(yù)先設(shè)定為0、5、10、15 d,用SPSS對4種不同陳化時間山核桃檢測得到的特征值進行多元線性回歸分析并結(jié)合上式以獲取各特征值的VIF值,結(jié)果如表5所示。經(jīng)驗證,當(dāng)剔除VIF值大于20的特征值,能取得較好的區(qū)分效果。故剔除編號為2、3、9的特征值獲得最終優(yōu)化特征值矩陣。 表5 各特征值方差膨脹因子 2.5 檢驗結(jié)果與分析 綜合上述一系列對初始特征矩陣的優(yōu)化方法,選取編號為2、3、4、4、5、6、8、9的特征值作為最終優(yōu)化矩陣,并根據(jù)特征值選擇對應(yīng)的傳感器組成傳感器陣列,其對應(yīng)關(guān)系如表6所示。 表6 優(yōu)化陣列中傳感器型號、特征值編號及特征值之間的對應(yīng)關(guān)系 優(yōu)化后特征矩陣的PCA得分圖如圖4e所示,即為經(jīng)VIF多重共線性分析后的結(jié)果圖,通過對比圖4a和圖4e可知,優(yōu)化后的特征矩陣前兩個主成分的貢獻率分別為:76.01%、14.60%,較優(yōu)化前的66.36%、13.45%有所提高。陳化10 d和陳化15 d山核桃也得到了明顯的區(qū)分,同時各類山核桃的聚集度也明顯提高。 為進一步驗證優(yōu)化陣列對不同陳化時間山核桃的預(yù)測能力,每批樣品取20個樣本作為訓(xùn)練集,10個樣本作為預(yù)測集,分別提取經(jīng)PCA降維處理后矩陣的前5個主成分進行PLSR分析,以建立預(yù)測模型。 圖7a和圖7b分別為陣列優(yōu)化前后的PLSR分析結(jié)果,對比可知:優(yōu)化后預(yù)測模型的R(0.9334)和均方根誤差(RMSE=1.452 9 d)均優(yōu)于優(yōu)化前(R=0.8887,RMSE=2.509 2 d),且訓(xùn)練集與預(yù)測集的R和RMSE沒有很大差異,說明預(yù)測模型不存在過擬合現(xiàn)象,即表明基于優(yōu)化后特征矩陣建立回歸預(yù)測模型有效可用,且對不同陳化時間處理的山核桃較優(yōu)化前具有更好的預(yù)測能力。 圖7 優(yōu)化前后特征矩陣PLSR分析結(jié)果 本試驗以特征值為對象,根據(jù)非搜索性特征選擇策略進行傳感器陣列優(yōu)化。試驗采用AE&ID團隊自行設(shè)計的嵌入式電子鼻對經(jīng)不同人工陳化處理(0、5、10、15 d)的4批山核桃樣品進行檢測,在提取響應(yīng)明顯傳感器特征值構(gòu)成初始特征矩陣的基礎(chǔ)上,結(jié)合均值分析、變異系數(shù)分析、聚類分析、相關(guān)性分析及方差膨脹因子分析對初始特征矩陣進行逐步篩選優(yōu)化,最終獲得由TGS2602、TGS822、TGS825、TGS2444、TGS2611、TGS2620、WSP2110構(gòu)成的傳感器陣列及其相應(yīng)特征值組成的優(yōu)化特征矩陣。優(yōu)化后特征矩陣基于主成分分析(principal component analysis,PCA)的區(qū)分效果更好,所建立的偏最小二乘回歸(partial least squares regression,PLSR)預(yù)測模性能更佳(2=0.9334,RMSE=1.452 9d)。證實了本文提出的優(yōu)化方法能有效優(yōu)化傳感器陣列,降低了數(shù)據(jù)維度,為專用性電子鼻的研發(fā)提供了一種思路。 [1] 李淑芳,習(xí)學(xué)良,楊建華,等. 我國核桃產(chǎn)業(yè)標準化現(xiàn)狀與進展[J]. 北方園藝,2016(22):185-188. Li Shufang, Xi Xueliang, Yang Jianhua, el at. Present situation and progress of standardization of walnut industry in China[J]. Northern Horticulture, 2016(22): 185-188. (in Chinese with English abstract) [2] 張有林,原雙進,王小紀,等. 基于中國核桃發(fā)展戰(zhàn)略的核桃加工業(yè)的分析與思考[J]. 農(nóng)業(yè)工程學(xué)報,2015(21):1-8. Zhang Youlin, Yuan Shuangjin, Wang Xiaoji, el at. Analysis and reflection on development strategy of walnut processing industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 1-8. (in Chinese with English abstract) [3] 金應(yīng),路興花,龐林江,等. 基于理化指標的山核桃新鮮度模型構(gòu)建[J].食品與機械,2011(6):209-211,240. Jin Ying, Lu Xinghua, Pang Linjiang, el at. Model of aging time of walnut (carya cathayensis sarg) base on physical and chemical values[J]. Food & Mechinery, 2011(6):209-211, 240. (in Chinese with English abstract) [4] Nakariyakul S. Internal damage inspection of almond nuts using optimal near-infrared waveband selection technique[J]. Journal of Food Engineering, 2014, 126(1): 173-177. [5] Moscetti R, Monarca D, Cecchini M, et al. Detection of mold-damaged chestnuts by near-infrared spectroscopy[J]. Postharvest Biology and Technology, 2014, 93(2): 83-90. [6] Huang K Y. Detection and classification of areca nuts with machine vision[J]. Computers & Mathematics with Applications, 2012, 64(5): 739-746. [7] Wei Z, Wang J, Zhang W. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods[J]. Food chemistry, 2015, 177:89-96. [8] 龐林江,王俊,王允祥,等.基于電子鼻的山核桃陳化時間檢測[J].傳感技術(shù)學(xué)報,2011(6):928-933.Pang Linjiang, Wang Jun, Wang Yunxiang, et al. Discrimination of aging time of walnut (carya cathayensis sarg) by electronic nose[J]. Chinese Journal of Sensors and Actuators, 2011(6): 928-933. (in Chinese with English abstract) [9] Shui Jiang, Jun Wang. Internal quality detection of Chinese pecans (Carya cathayensis) during storage using electronic nose responses combined with physicochemical methods[J]. Postharvest Biology and Technology, 2016, 118: 17-25. [10] 閆嘉.基于電子鼻技術(shù)的人體傷口感染檢測系統(tǒng)構(gòu)建及算法研究[D].重慶:重慶大學(xué),2012. Yan Jia. System Construction and Algorithm Research in Human Wound Infection Detection Based on Electronic Nose Technology[D]. Chongqing: Chongqing University, 2012. (in Chinese with English abstract) [11] Bertolazzi P, Felici G, Festa P, et al. Integer programming models for feature selection: New extensions and a randomizedsolution algorithm[J]. European Journal of Operational Research, 2016, 250(2): 389-399. [12] Jeong Y S, Shin K S, Jeong M K. An evolutionary algorithm with the partial sequential forward floating search mutation for large-scale feature selection problems[J]. Journal of The Operational research society, 2014, 66(4): 529-538. [13] 費雅君,白雪,康小紅.LDA優(yōu)化電子鼻傳感器陣列的研究[J].食品與機械,2012,28(1):97-100. Fei Yajun, Bai Xue, Kang Xiaohong. Optimization for sensor array of electronic nose system by linear discriminant analysis[J]. Food & Machinery, 2012, 28(1): 97-100. (in Chinese with English abstract) [14] 鄒慧琴,劉勇,陶歐,等.電子鼻MOS傳感器陣列優(yōu)化及其在中藥材快速鑒別中的應(yīng)用[J].中國中藥雜志,2013(2):161-166. Zhou Huiqin, Liu Yong, Tao Ou, et al. Optimization method of MOS sensor array for identification of traditional Chinese medicine based on electronic nose[J]. China Journal of Chinese Meteria Medica, 2013(2): 161-166. (in Chinese with English abstract) [15] Bolin Shi, Lei Zhao, Ruicong Zhi, etal. Optimization of electronic nose sensor array by genetic algorithms in Xihu- Longjing Tea quality analysis[J]. Mathematical and Computer Modelling, 2013, 58(3), 752-758. [16] 王智凝,鄭麗敏,方雄武,等.電子鼻傳感器陣列優(yōu)化對豬肉新鮮度法的檢測[J].肉類研究,2015(5):27-30. Wang Zhining, Zheng Limin, Fang Xiongwu, et al. Pork freshness detection using optimized electronic nose sensor array[J]. Meat Research, 2015(5): 27-30. (in Chinese with English abstract) [17] 亓培鋒,孟慶浩,井雅琪,等.電子鼻中預(yù)處理算法選擇及陣列優(yōu)化[J].?dāng)?shù)據(jù)采集與處理,2015(5):1099-1108. Qi Peifeng, Meng Qinghao, Jing Yaqi, et al. Preprocessing algorithm selection and optimization of sensor array in electronic noses[J]. Journal of Data Acquisition & Processing, 2015(5): 1099-1108. (in Chinese with English abstract) [18] 王麗霞,盛希茜,吳峰華,等.浙江山核桃油脂香氣萃取條件優(yōu)化及組分分析[J].食品與機械,2010,26(1):38-41,73. Wang Lixia, Sheng Xixi, Wu Fenghua, et al. Optimize extraction condition of C. Cathayensis sarg.oil aroma and aroma components analysis[J]. Food & Machinery, 2010, 26(1): 38-41, 73. (in Chinese with English abstract) [19] 周擁軍,郜海燕,房祥軍,等.SPME-GC-MS分離鑒定山核桃的揮發(fā)性風(fēng)味物質(zhì)[J].中國糧油學(xué)報,2012,27(6):115-119. Zhou Yongjun, Gao Haiyan, Fang Xiangjun, et al. Separation and identification of volatile compounds of processed carya cathayensis by gas chromatography – mass spectrometry[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(6): 115-119. (in Chinese with English abstract) [20] 王俊,崔紹慶,陳新偉,等.電子鼻傳感技術(shù)與應(yīng)用研究進展[J].農(nóng)業(yè)機械學(xué)報,2013,44(11):160-167,179.Wang Jun, Cui Shaoqing, Chen Xinwei, et al. Advanced technology and new application in electronic nose[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 160-167, 179. (in Chinese with English abstract) [21] 吳文娟,方向生,蔡強,等.基于氣敏傳感器陣列和PCA的豬肉新鮮度快速分類方法[J].傳感技術(shù)學(xué)報,2010(11):1536-1540. Wu Wenjuan, Fang Xiangsheng, Cai Qiang, et al. Rapid classification of pork freshness using gas sensor array and PCA method[J]. Chinese Journal of Sensors and Actuators, 2010(11): 1536-1540. (in Chinese with English abstract) [22] 占瓊,張順平,范超群,等.特征選擇在電子鼻系統(tǒng)陣列優(yōu)化中的應(yīng)用[J].傳感器與微系統(tǒng),2008,27(2):114-117. Zhan Qiong, Zhang Shunping, Fan Chaoqun, et al. Application of feature selection in sensor array optimization of E-nose[J]. Transducer and Microsystem Technogies, 2008, 27(2): 114-117. (in Chinese with English abstract) [23] 趙赟,郭振華,孟凡利,等.基于分段平均微分值法的動態(tài)檢測識別系統(tǒng)[J].傳感技術(shù)學(xué)報,2007,20(8):1706-1711.Zhao Yun, Guo Zhenhua, Meng Fanli, et al. Dynamic detection and recognition system based on the segmental average differentiation[J]. Chinese Journal of Sensors and Actuators, 2007, 20(8): 1706-1711. (in Chinese with English abstract) [24] Hui G, Jin J, Deng S, et al. Winter jujube (Mill.) quality forecasting method based on electronic nose[J]. Food chemistry, 2015, 170: 484-491. [25] Wei Z, Wang J, Jin W. Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms[J]. Sensors and Actuators B: Chemical, 2013, 177(1): 684-694. [26] 張靖.面向高維小樣本數(shù)據(jù)的分類特征選擇算法研究[D].合肥:合肥工業(yè)大學(xué),2014. Zhang Jing. Classification and Feature Selection on High- dimensional and Small-sampling Data[D]. Hefei: Hefei University of Technology, 2014. (in Chinese with English abstract) [27] 吳文亮.聚類分析中-均值與-中心點算法的研究[D].廣州:華南理工大學(xué),2011.Wu Wenliang. Study of-means and K-medodis Algorithms in Clustering Analysis[D]. Guangzhou: South China Univeristy of Technology, 2011. (in Chinese with English abstract) [28] 周海濤,殷勇,于慧春.勁酒電子鼻鑒別分析中傳感器陣列優(yōu)化方法研究[J].傳感技術(shù)學(xué)報,2009(02):175-178. Zhou Haitao, Yin Yong, Yu Huichun. Optimization method of gas sensor array for identification of Jing wine based on electronic nose[J]. Chinese Journal of Sensors and Actuators, 2009(02): 175-178. (in Chinese with English abstract) [29] 薛芳,施豐成,李耀光,等.基于電子鼻的星座圖聚類分析法在煙葉分類中的應(yīng)用[J].煙草科技,2015(07):25-28.Xue Fang, Shi Fengcheng, Li Yaoguang, et al. Classifying flue- cured tobacco leaves with electronic nose-based constellation diagram clustering analysis[J]. Tobacco Science & Technlogy, 2015(07): 25-28. (in Chinese with English abstract) [30] 周世兵.聚類分析中的最佳聚類數(shù)確定方法研究及應(yīng)用[D].無錫:江南大學(xué),2011. Zhou Shibing. Research and Application on Determining Optimal Number of Clusters in Cluster Analysis[D]. Wuxi: JiangNan University, 2011. (in Chinese with English abstract) [31] 白雪.聚類分析中的相似性度量及其應(yīng)用研究[D].北京:北京交通大學(xué),2012. Bai Xue. Similarity Measures in Cluster Analysis and Its Application[D]. Beijing: BeiJing Jiaotong University, 2012. (in Chinese with English abstract) [32] 黎量,楊詩龍,劉玉杰,等.基于相關(guān)性分析的山楂炮制過程氣味變化機制研究[J].中國中藥雜志,2014(17):3283-3286. Li Liang, Yang Shilong, Liu Yujie, et al. Preliminary study of odor change mechanism in Crataegi Fructus stir-fried process based on correlation analysis[J]. China Journal of Chinese Materia Medica, 2014(17): 3283-3286. (in Chinese with English abstract) [33] 張鳳蓮.多元線性回歸中多重共線性問題的解決辦法探討[D].廣州:華南理工大學(xué),2010.Zhang Fenglian. The Discussion on Solutions of Multicollinearity in Multilinear Regression Models[D]. Guangzhou: South China University of Technology, 2010. (in Chinese with English abstract) Optimization of sensor array of electronic nose for aging time detection of pecan Xu keming, Wangjun※, Deng fanfei, Wei zhenbo, Cheng Shaoming (310058,) As one of the most popular nuts produced in China, pecan contains large amounts of protein and a variety of unsaturated fatty acids required for human body. However, pecans are prone to rancidity because of the influence of environmental factors such as light, oxygen, and moisture. Therefore, the detection of pecan’s quality has a certain practical significance. As a bionic electronic system, electronic nose (E-nose) detects the quality of pecan qualitatively and quantitatively through the analysis of sample volatile gas’s fingerprint information, and is pretty suitable for pecan quality detection. However, pecan odor is comprised of complicated compositions and small differences exist among pecans with different qualities, which makes the detection difficult. In order to improve the accuracy of detection, it’s essential to optimize the sensor array of E-nose during the application. In this research, an embedded E-nose based on digital signal processer (DSP) was designed for pecan detection, and 4 batches of pecans with different aging time were used for experiment. According to the existing GC-MS (gas chromatography- mass spectrometer) analysis of pecan volatile, 13 gas sensors were selected, and part of them with small response were obsoleted by analyzing the response curve of each sensor firstly. Then, 3 feature extraction methods were applied to each sensor’s abstraction to generate the initial feature matrix, thus the mean differential coefficient value, stable value and response area value. After that, a series of data analysis methods were applied to select the features with good performance and realize the optimization of array. First, features with smaller otherness were rejected by the mean analysis. Then, variation coefficient was used to remove the features with poor stability. Afterwards, the features reserved were classified through the cluster analysis based on the correlation, and the feature with the minimum redundancy in each class was selected according to the result of correlation coefficient analysis. Eventually, the degree of matrix’s multicollinearity was decreased by removing the features with high value of variance inflation factor, and the optimized sensor array was chosen according to the ultimate feature matrix. To verify the validity of optimization, principal component analysis (PCA) and partial least squares regression (PLSR) were used to compare the ability of discrimination and forecast between the data before and after optimization. Results indicated that pecans different in aging time were well classified by using the optimized array. Each group of samples were clustered closely in PCA score plot, and the contribution rates of the first 2 principal components of the optimized array (they were 76.01% and 14.60%, respectively) were obviously better than that of pre-optimized array (they were 66.36% and 13.45%, respectively). Meanwhile, the result of PLSR showed that the fitting determination coefficients and root mean square error (RMSE) of the regression model based on the optimized array (2=0.933 4, RMSE=1.452 9 d) performed better than that based on the pre-optimized array (2=0.888 7, RMSE=2.509 2 d), and there was little difference of prediction parameters between the training set and validation set, which meant the phenomena of over-fit didn’t exist and the ability of forecast was better for the optimized array. As a result, through the optimization of sensor array, E-nose can perform better in the detection of pecan’s quality and reduce the dimension of data, and the research provides an efficient method for E-nose’s application in various fields. sensors; optimization; principal component analysis; electronic nose; feature matrix; partial least squares regression 10.11975/j.issn.1002-6819.2017.03.038 S225.5+3 A 1002-6819(2017)-03-0281-07 2016-07-05 2016-12-09 國家自然科學(xué)基金資助項目(31370555) 徐克明,男,浙江溫州人,主要從事電子鼻開發(fā)及應(yīng)用。杭州浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,310058。 Email:xukeming@zju.edu.cn 王俊,男,浙江東陽人,教授,博士生導(dǎo)師,主要從事電子鼻電子舌技術(shù)開發(fā)及其智能檢測應(yīng)用。杭州浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,310058。Email:jwang@zju.edu.cn 徐克明,王 俊,鄧凡霏,韋真博,程紹明.用于山核桃陳化時間檢測的電子鼻傳感器陣列優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(3):281-287. doi:10.11975/j.issn.1002-6819.2017.03.038 http://www.tcsae.org Xu keming, Wangjun, Deng fanfei, Wei zhenbo, Cheng Shaoming. Optimization of sensor array of electronic nose for aging time detection of pecan[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 281-287. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.038 http://www.tcsae.org3 結(jié) 論