付 玉,李光錄,2※,鄭騰輝,李柏橋,張 騰
?
雨滴擊濺對耕作層土壤團聚體粒徑分布的影響
付 玉1,李光錄1,2※,鄭騰輝1,李柏橋3,張 騰4
(1. 西北農林科技大學水土保持研究所,楊凌 712100;2. 西北農林科技大學資源環(huán)境學院,楊凌 712100; 3. 綿陽市農業(yè)科學研究院,綿陽 621023;4. 中國電建集團華東勘測設計研究院有限公司,杭州 311122)
為研究不同雨滴直徑的降雨對耕作層團聚體的破碎及其粒徑分布特征的影響,該文選取4個雨滴直徑(2.67~3.79 mm)對耕層土壤(0~20 cm)團聚體進行雨滴擊濺試驗,每次試驗各滴5 000滴,每1 000滴收集1次濺蝕團聚體。結果表明:1)所有收集次序中雨滴直徑3.79 mm濺蝕量最大,累積雨滴數(shù)為2 000、3 000和4 000時,濺蝕量與雨滴直徑均呈顯著的指數(shù)函數(shù)關系。2)各雨滴直徑的濺蝕量隨粒徑減小呈增大-減小-增大趨勢,>2 mm粒徑的濺蝕量幾乎為0,<0.053 mm粒徑的濺蝕量隨雨滴直徑增大而增大。3)相同雨滴直徑不同累積雨滴數(shù)之間平均重量直徑值差異不顯著,相同累積雨滴數(shù)不同雨滴直徑之間平均重量直徑值差異不顯著(<0.05)。4)不同雨滴直徑濺蝕團聚體富集率隨粒徑變化一致,>1 mm粒徑濺蝕量團聚體富集率值接近0,0.053~1 mm粒徑團聚體富集,>1 mm粒徑團聚體主要破碎成0.053~1 mm粒徑團聚體,且粒級越小,富集率越高。研究可為黃土高原地區(qū)水土保持提供理論依據(jù)。
侵蝕;團聚體;粒徑;雨滴擊濺;富集率;黃土高原
土壤團聚體是礦物顆粒和有機物通過膠體的凝聚、粘結和膠結作用及有機-礦質膠體的復合作用,并在生物參與下形成的不同粒徑大小的多孔結構,也是土壤結構的基本單元,被認為是調節(jié)土壤生物、物理和化學特性的重要因素[1-3]。雨滴擊濺導致土壤表層團聚體分散破碎,是土壤侵蝕發(fā)生的初級階段[4-5],雨滴打擊使團聚體崩解、分散,為后續(xù)徑流搬運提供了豐富的松散顆粒[6-9]。同時,土粒遷移造成土壤表層孔隙減少或堵塞,形成“板結”使土壤滲透性下降。
擊濺侵蝕是降雨特性和土壤特性相互作用的結果,任何降雨所引發(fā)的濺蝕都受這兩方面的制約。降雨特性包括降雨強度、雨滴動能及降雨歷時等[10]。降雨動能是決定土壤顆粒分散和搬運的重要因素[11]。Rose[12]和Parsons等[13]研究表明濺蝕量與降雨動能呈正相關關系。Salles等[14]指出雨滴直徑控制著雨滴能量,是土壤擊濺侵蝕的重要參數(shù),降雨歷時不同,團聚體破壞程度也不同。Woodbarn[15]發(fā)現(xiàn)單位時間濺蝕率隨降雨歷時的增加呈指數(shù)遞減,這主要是由于粗顆粒增加了地表粗糙度從而增加了雨滴在土壤顆粒上的能量消耗。Yang等[16]研究表明60 mm/h雨強條件下,1.5 mm降雨量是團聚體破碎的主要階段。土壤種類不同,其黏粒、有機質含量以及其他引起土壤黏結和膠結作用的物質也存在差異,土壤團粒黏結結構的增加能有效減少雨滴擊濺下土粒的分散破壞。Epstein等[17]指出相同降雨條件下,粘粒含量最低的砂土濺蝕量最多。范榮生等[18-19]認為土壤顆粒級配狀況決定濺蝕特征,并且認為細砂最易被雨滴擊濺,而粗砂則相反。此外,降雨對坡面侵蝕和侵蝕團聚體粒徑分布特征的影響也有較為廣泛的研究[20-25]。土壤團聚體的粒徑分布及穩(wěn)定性不僅影響土壤的孔隙分布,還決定著孔隙徑級的分布和形態(tài)特征[26]。
黃土高原是世界上水土流失最嚴重地區(qū)之一,雨滴擊濺使團聚體破碎遷移、土壤結構破壞、表層孔隙阻塞和耕作層土壤板結。此外,土壤團聚體破壞使耕層土壤保水保肥性能下降,土壤結構變差,直接制約著黃土高原地區(qū)的農業(yè)發(fā)展。擊濺實際是由眾多雨滴接力作用的總效果[27],雖然單個雨滴的能量較小,但累積雨滴降雨對土壤團聚體破壞的影響不容忽視,并且目前的研究主要集中在擊濺侵蝕的影響因素方面,而雨滴直徑作為降雨特性的研究較少。本文以黃土高原典型地帶性耕作層土壤為對象,定量研究不同降雨條件下濺蝕團聚體粒級分布特征及其數(shù)量變化,以深入揭示降雨侵蝕機理,為黃土高原地區(qū)水土保持提供理論依據(jù)。
1.1 采樣點及土樣理化性質
試驗地位于陜西省楊凌區(qū)黎張溝村(108°03′29.18″E,34°18′24.30″N),海拔532 m,屬暖溫帶半濕潤半干旱區(qū)。年均氣溫13 ℃,年平均降雨量550~650 mm,主要集中在7、8、9月,土壤為黃土母質發(fā)育的塿土,主要作物為玉米(L)和冬小麥()。采樣前先去除表層枯枝落葉,采用對角線法用環(huán)刀(直徑10 cm,高5 cm)取表層土(0~20 cm),共采集15個環(huán)刀樣品和1 000 g散土,其中3個環(huán)刀用來測定土壤容重和含水率,其余12個環(huán)刀樣品用于雨滴擊濺試驗。1 000 g散土自然風干后,用于基本理化性質分析,容重、含水率、有機質、全氮、全磷和機械組成分別采用環(huán)刀法、烘干法、重鉻酸鉀外加熱法、HClO4-H2SO4法和馬爾文激光粒度儀法[28-29]。樣地土壤容重(1.37±0.13)g/cm3、有機質1.46%±0.03%、全氮(1.04±0.02)g/kg、全磷(0.62± 0.02)g/kg,砂粒(2~0.02 mm)、粉粒(0.002~< 0.02 mm)、黏粒(<0.002 mm)各占33.26%±0.05%、44.07%±0.03%、22.67%±0.02%。
1.2 試驗設計與分析
試驗采用針頭式模擬降雨裝置,由雨滴發(fā)生裝置、收集裝置和水箱3部分組成。圖1為擊濺裝置圖。雨滴發(fā)生裝置為下滴式,其形狀為上部開口的圓柱體(直徑10 cm,高10 cm),圓柱體底部中心布設醫(yī)用針頭1個,當選用的針頭型號不同時,產生的雨滴直徑不同。測試區(qū)為直徑10 cm,高5 cm環(huán)刀,環(huán)刀上下兩端不封閉。收集裝置是一個反向去頂?shù)腻F形擊濺盤,收集裝置與測試區(qū)之間有個斜面,在斜面的最底部有排水孔。模擬降雨時,擊濺出測試區(qū)所有土壤都會被收集。在整個試驗裝置外圍布設遮擋塑料薄膜,以防止雨滴降落過程中受到橫向氣流的擾動。
圖1 擊濺裝置圖
試驗選用4個雨滴直徑,采用人工計時的方法,當?shù)?滴雨滴從針頭滴出時,開始計數(shù),每次試驗各滴5 000滴,每1 000滴收集1次濺蝕團聚體,為保護團聚體結構,減少濺蝕盤清洗過程對團聚體的破壞,使用酒精將其通過排水孔洗出[30],收集次序為Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ。各次試驗重復3次。用團聚體分析儀(浙江省上虞市舜龍實驗儀器廠TTF-100)將收集的團聚體濕篩分為≥2、1~<2、0.5~<1、0.25~<0.5、0.106~<0.25、0.053~<0.106、<0.053 mm共7個等級,然后用蒸餾水分別洗到鋁盒中并標記,在105 ℃下烘干24 h后稱質量。每次試驗結束后均將擊濺盤清洗干凈,準備下次試驗。模擬降雨雨滴主要參數(shù)見表1。選取的雨滴直徑為2.67、3.05、3.39和3.79 mm,符合自然降雨雨滴直徑范圍,其對應的降雨強度5.76、21.00、68.61和127.44 mm/h分別對應小雨、中雨、暴雨和大暴雨,并且終點速度和降雨動能均符合黃土高原的降雨特征[31]。
表1 模擬降雨雨滴主要參數(shù)
1.3 數(shù)據(jù)分析
團聚體富集率(enrichment ratio,ER)是反映濺蝕對土壤團聚體分選作用的重要指標。對于每個粒級,ER由原團聚體和濺蝕團聚體質量百分數(shù)計算得來。當ER>1表明顆粒富集,ER<1時表明顆粒減少,ER計算如下:
ER=P/P(1)
式中P和P分別為濺蝕前后土壤團聚體中某一粒級的含量。
土壤團聚體平均重量直徑(mean weight diameter,MWD)可作為團聚體分布情況評價指標之一[32]。MWD越大,說明破碎后大粒徑團聚體含量越多。本研究使用Le Bissonnais法[28]計算MWD:
式中r為每個網(wǎng)篩的孔隙大小,mm;m為在級篩中團聚體含量。
采用Excel 2003和SPSS 16.0進行數(shù)據(jù)處理和相關及回歸分析,差異顯著性檢驗采用雙尾最小顯著差異法多重比較(least significance difference test,LSD)確定,顯著性水平0.05,采用Origin 8.5進行數(shù)據(jù)繪圖。
2.1 雨滴直徑對團聚體濺蝕量的影響
不同雨滴直徑各收集次序團聚體濺蝕量統(tǒng)計結果如表2所示。雨滴直徑2.67 mm各收集次序之間差異不顯著(>0.05),雨滴直徑3.05 mm收集次序Ⅰ和Ⅱ濺蝕量之間差異不顯著(>0.05),與其余次序濺蝕量之間差異顯著(<0.05)。對于雨滴直徑3.39和3.79 mm,Ⅱ~Ⅴ濺蝕量之間基本不顯著(>0.05),與Ⅰ相比顯著減小了33.90%~52.09%和25.68%~39.79%。這可能是由于隨著雨滴直徑增大,雨滴在同一處連續(xù)擊打后形成一定深度的濺蝕坑,阻礙被分散的土粒濺出。
表2 雨滴直徑對濺蝕量的影響
注:不同大寫字母表示相同次序下雨滴直徑間差異顯著(<0.05);不同小寫字母表示相同雨滴直徑下不同次序間差異顯著(<0.05)。
Note: Different capital letters indicate significant difference (<0.05) among raindrop diameters for the same order(<0.05); Different small letters indicate significant difference (<0.05) among order at the same raindrop diameter.
各次序(I~Ⅴ)中雨滴直徑3.79 mm濺蝕量最大,分別是其他雨滴直徑濺蝕量的1.11~1.53倍、1.16~1.58倍、1.43~1.58倍、1.24~1.65倍和1.12~1.41倍。圖2表示累積雨滴數(shù)濺蝕量與雨滴直徑的關系,累積雨滴數(shù)為2 000、3 000和4 000時,濺蝕量隨雨滴直徑增大均呈顯著遞增的指數(shù)函數(shù)關系(R=0.933~0.992,<0.05)。雨滴直徑通過影響降雨動能進而影響降雨侵蝕力,最終會影響土壤濺蝕量[33]。這表明雨滴直徑可以作為雨滴擊濺過程中有效影響濺蝕的降雨特征參數(shù)之一。
圖2 不同累積雨滴數(shù)條件下濺蝕量與雨滴直徑的關系
2.2 團聚體粒徑分布特征
圖3表示不同雨滴直徑擊濺下累積雨滴數(shù)5 000滴產生濺蝕量的粒徑分布。通過對濺蝕團聚體的粒徑分析,能有效地闡明團聚體在不同雨滴直徑降雨條件下的濺蝕特征。由圖3可知,4個雨滴直徑的濺蝕量隨粒徑減小呈增大-減小-增大的“N”型變化趨勢。當雨滴直徑為2.67和3.39 mm時,濺蝕團聚體以0.5~1 mm粒徑為主,質量為0.423和0.435 g;雨滴直徑為3.05和3.79 mm時, <0.053 mm團聚體質量分數(shù)最多,分別占其雨滴直徑濺蝕量的22.26%和28.03%。雨滴直徑最大時,除了粒徑 ≥2 mm,其余各粒級團聚體含量均高于其他雨滴直徑(圖3),這是由于雨滴直徑越大,其動能越大,產生的濺蝕團聚體越多[34]。對于所有降雨試驗,≥2 mm的濺蝕量幾乎為0,是因為雨滴打擊土粒的能量較低,且大粒徑團聚體由于本身質量較大,所以受擊濺影響很小。雨滴直徑越大即雨強越大,<0.053 mm濺蝕量越多。Sajjadi等[35]研究在57和80 mm/h 2種不同雨強下雨滴擊濺試驗,結果表明較大的雨強下,<0.043 mm團聚體濺蝕的數(shù)量更多。這說明雨滴直徑越大,降雨侵蝕力越大,大團聚體破碎程度越高,產生更多的細顆粒。
圖3 5 000滴不同雨滴直徑濺蝕團聚體粒徑分布
篩分濺蝕團聚體得到其粒徑分布如表3所示。
表3 不同雨滴直徑累積雨滴數(shù)的濺蝕團聚體的粒徑分布
表3表明,>1mm團聚體隨積累雨滴的增加變化不明顯,而0.5~<1 mm隨之呈減少趨勢。雨滴直徑為 2.67 mm時,0.25~<0.5 mm團聚體含量隨累積雨滴數(shù)增大而增大,當雨滴直徑>2.67 mm時,總體呈相反趨勢。<0.25 mm的3個粒級團聚體含量隨累積雨滴數(shù)的增大呈波動式上升,這表明>0.25 mm團聚體逐步破碎成< 0.25 mm的微團聚體,Legout等[5]研究認為大團聚體(>0.25 mm)是由微團聚體(<0.25 mm)粘結成,在破壞時大團聚體逐步分解成微團聚體,這與本研究結果一致。對相同雨滴直徑<0.053 mm團聚體含量與累積雨滴數(shù)進行回歸分析(表4),表明對于雨滴直徑2.67和3.05 mm,<0.053 mm團聚體含量隨累積雨滴數(shù)的增加分別呈顯著遞增關系;當雨滴直徑>3.05 mm,<0.053 mm團聚體含量隨累積雨滴數(shù)的增加皆呈極顯著遞增指數(shù)函數(shù)關系。由表3可知,累積雨滴數(shù)相同時,≥2和1~<2 mm團聚體質量分數(shù)最低,僅為0~4.69%和6.83%~12.84%;>0.5~1和0.25~<0.5 mm團聚體所占比例最大,是濺蝕總量的37.01%~48.73%,且隨著雨滴直徑增加,比例逐漸降低;0.106~<0.25 mm團聚體含量隨雨滴直徑增大呈大-小-大的“N”型變化趨勢;0.053~<0.106 mm團聚體隨雨滴直徑增加變化不明顯<0.053 mm團聚體含量隨雨滴直徑增大總體呈增大趨勢,極差為5.23%~10.45%。
表4 不同雨滴直徑條件下粒徑<0.053 mm團聚體含量與累積雨滴數(shù)的關系
2.3 濺蝕團聚體特征參數(shù)與雨滴直徑的關系
圖4為不同雨滴直徑濺蝕團聚體MWD的變化。相同雨滴直徑不同累積雨滴數(shù)之間MWD值差異不顯著,相同累積雨滴數(shù)不同雨滴直徑之間MWD值差異不顯著(>0.05)。這說明在本試驗模擬降雨條件下,累積雨滴數(shù)降雨對土壤團聚體MWD值影響不大。
圖4 不同累積雨滴數(shù)濺蝕團聚體平均重量直徑
濺蝕團聚體7個粒徑級別ER的變化如圖5所示,總體來說,不同雨滴直徑濺蝕團聚體ER值隨粒徑變化是一致的,除了<0.053 mm團聚體,其余粒徑團聚體ER值皆隨粒徑減小逐漸增大,這一結論與Legout等[36]相反,可能是由于本研究所選取的土是塿土,黏結性較高,且本試驗采用的是單雨滴,單個雨滴的能量較小且在一處連續(xù)擊濺,大顆粒易破碎成較小粒徑的團聚體。
圖5 不同雨滴直徑7種粒徑的濺蝕富集率
通過所有土壤樣品降雨試驗,結果表明,>1 mm濺蝕量ER值接近0,這與Ma等[37]的研究一致,其認為在雨強為58.1 mm/h條件下,2~5和1~2 mm富集率值接近0。這表明在本研究試驗條件下,擊濺侵蝕能力不足以搬運這些粒徑的團聚體。研究表明,在雨強及降雨動能不變時,濺蝕過程中雨滴對土壤顆粒具有分選特性,而這一特性主要取決于表土顆粒粒徑分布及表土結構[36]。Puget等[38]提出土壤團聚體分層模型,即大團聚體由微團聚體粘結而成。也有研究[39]在此基礎上假設土壤耕作層中大團聚體在外界條件破壞下逐步分離微團聚體(<0.25 mm)。在本研究中,對于所有雨滴直徑,>1和<0.053 mm團聚體較擊濺前減少,其余粒徑團聚體ER>1,說明0.053~1 mm團聚體富集,且粒級越小,富集率越高。
1)所有收集次序中雨滴直徑3.79 mm濺蝕量最大,累積雨滴數(shù)為2 000、3 000和4 000時,濺蝕量隨雨滴直徑增大均呈顯著遞增的指數(shù)函數(shù)關系(R=0.933~0.992,<0.05)。各雨滴直徑的濺蝕量隨粒徑的減小呈增大-減小-增大趨勢,0.053~<0.106 mm團聚體隨雨滴直徑增加的變化不明顯?!? mm濺蝕量幾乎為0,<0.053 mm濺蝕量隨雨滴直徑增大而增大,雨滴直徑越大,降雨侵蝕力越大,大團聚體破碎程度越高,產生更多的細顆粒。
2)相同累積雨滴數(shù)不同雨滴直徑之間MWD值差異不顯著(>0.05),說明累積雨滴數(shù)降雨對MWD值影響不大。
3)不同雨滴直徑濺蝕團聚體ER值隨粒徑變化一 致,>1 mm濺蝕量ER值接近0,粒徑1~0.053 mm團聚體富集,>1 mm團聚體主要破碎成1~0.053 mm團聚體,且粒級越小,富集率越高。
本文通過模擬降雨的方法,研究了雨滴直徑(2.67~3.79 mm)對耕層土壤團聚體破碎及其粒徑分布特征的影響,揭示了不同直徑雨滴擊濺下團聚體粒徑分布的數(shù)量關系,對認識和指導黃土高原地區(qū)農業(yè)發(fā)展有重要科學意義。限于模擬降雨選擇的參數(shù)有限,所產生的樣本數(shù)量較少,并且本研究僅考慮降雨因子對耕層團聚體的影響,今后的研究可以分析比較室內模擬降雨與自然降雨條件下土壤團聚體破壞程度的差異,也可以從坡度,耕作方式,作物類型等方面進行擴展研究。
[1] Jasinska E, Wetzel H, Baumgartl T, et al. Heterogeneity of physico-chemical properties in structured soils and its consequences[J]. Pedosphere, 2006, 16(3): 284-296.
[2] Huang Li, Wang Chunyan, Tan Wenfang, et al. Distribution of organic matter in aggregates of eroded Ultisols Central China[J]. Soil Tillage Research, 2010, 108 (1): 59-67.
[3] Falsone G, Bonifacio E, Zanini E. Structure development in aggregates of poorly developed soils through the analysis of the pore system[J]. Catena, 2012, 95(1): 169-176.
[4] Shainber G I, Levy G J, Rengasamy P, et al. Aggregate stability and seal formation as affected by drops impact energy and soil amendments[J]. Soil Science, 1992, 154(2): 113-119.
[5] Legout C, Leguédois S, Le Bissonnais Y. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements[J]. European Journal of Soil Science, 2005b, 56(2): 225-38.
[6] Ramos M C, Nacci S, Pla I. Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces[J]. Catena, 2003, 53(4): 365-376.
[7] Salles C, Poeson J, Govers G. Statistical and physical analysis of soil detachment by rainfall impact:Rain erosivity indices and threshold energy[J]. Water Resource Research, 2000, 36(9): 2721-2729.
[8] 李光錄,吳發(fā)啟,龐小明,等. 泥沙輸移與坡面降雨和徑流能量的關系[J]. 水科學進展,2008,19(6):868-874. Li Guanglu, Wu Faqi, Pang Xiaoming, et al. Relationship between sediment transport with surface rainfall and runoff energies on sloping[J]. Advances in Water Science, 2008, 19(6): 868-874. (in Chinese with English abstract)
[9] 馬仁明,蔡崇法,李朝霞,等. 前期土壤含水率對紅壤團聚體穩(wěn)定性及濺蝕的影響[J]. 農業(yè)工程學報,2014,30(3):95-103. Ma Renming, Cai Chongfa, Li Zhaoxiao, et al. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 95-103. (in Chinese with English abstract)
[10] Sutherland R A, Wan Y, Ziegler A D, et al. Splash and wash dynamics: an experimental investigation using an Oxisol[J]. Geoderma, 1996, 69(1): 85-103.
[11] Martinez-Mena M, Castillo V, Albaladejo J. Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain[J]. Geomorphology, 2002, 45(3): 261-275.
[12] Rose C W. Soil detachment caused by rainfall[J]. Soil Science, 1960, 89(1): 28-35.
[13] Parsons A J, Abrahams A D, Wainwright J. Rainsplash and erosion rates in an interrill area on semi-arid grassland southern Arizona[J]. Catena, 1994, 22(3): 215-226.
[14] Salles C, Poeson J, Govers G. Statistical and physical analysis of soil detachment by rainfall impact:Rain erosivity indices and threshold energy[J]. Water Resource Research, 2000, 36(9): 2721-2729.
[15] Woodbarn R. The effect of structural condition on soil detachment by raindrop action[J]. Agricultural Engineering, 1958, 29: 154-158.
[16] Yang Wei, Li Zhaoxia, Cai Chongfa, et al. Tensile strength and friability of Ultisols in sub-tropical China and effects on aggregate breakdown under simulated rainfall[J]. Soil Science, 2012, 177(6): 377-384.
[17] Epstein E, Grant W J. Soil losses and crust formation as related to some soil physical properties[J]. Soil Science Society of America Proceedings, 1967, 31(4): 547-550.
[18] 范榮生,李占斌. 坡地降雨濺蝕及輸沙模型[J]. 水利學報,1993(6):24-29. Fan Rongsheng, Li Zhanbin. Slope rainfall splash erosion and sediment tranport model[J]. Journal of Hydraulic Engineering, 1993(6): 24-29. (in Chinese with English abstract)
[19] 程勤娟,蔡強國,胡霞. 不同粒徑黃綿土的濺蝕規(guī)律及表土結皮發(fā)育研究[J]. 土壤學報,2007,44(3):392-396. Cheng Qinjuan, Cai Qianghuo, Hu Xia. Rain splash erosion and soil crust development of Loess soil didderent in particle-size[J]. Acta Pedologica Sinica, 2007, 44(3): 392-396. (in Chinese with English abstract)
[20] Barthès B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133-149.
[21] Lado M, Ben-Hur M, Shainberg I. Soil wetting and texture effects on aggregate stability, seal formation, and erosion[J]. Soil Science Society of American Journal, 2004, 68(6): 1992-1999.
[22] Abu-Hamdeh N H, Abo-Qudais S A, Othman A M. Effect of soil aggregate size on infiltration and erosion characteristics[J]. European Journal of Soil Science, 2006, 57(5): 609-616.
[23] Furbish D J, Hamner K K, Schmeeckle M, et al. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets[J]. Journal of Geophysical Research, 2007, 112(F1): 1-19.
[24] Warrington D N, Mamedov A I, Bhardwag A K, et al. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development[J]. European Journal of Soil Science, 2009, 60(1): 84-93.
[25] Yan Fengling, Shi Zhihua, Cai Chongfa, et al. Wetting rate and clay content effects on interrill erosion in Ultisols of southeastern China[J]. Pedosphere, 2010, 20(1): 129-136.
[26] Biox-Fayos C, Calvo-Cases A, Imeson A C, et al. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators[J]. Catena, 2001, 44(1): 47-67.
[27] 趙曉光,吳發(fā)啟. 單雨滴擊濺規(guī)律及其對濺蝕土粒的分選作用[J]. 水土保持學報,2001,15(1):43-45. Zhao Xiaoguang, Wu Faqi. Single raindrop splash law and its selection role on soil particles splashed[J]. Journal of Soil and Water Conservation, 2001, 15(1): 43-45. (in Chinese with English abstract)
[28] 劉光崧. 土壤理化分析與剖面描述[M]. 北京:中國標準出版社,1996.
[29] Wang Bing, Zhang Guanghui, Shi Yangyang, et al. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China[J]. Catena, 2014b, 116(5): 51-59.
[30] Le Bissonnais Y, Arrouays D. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology[J]. European Journal of Soil Science, 1996, 47(4): 425-437.
[31] 焦菊英,王萬中,郝小品. 黃土高原不同類型暴雨的降水侵蝕特征[J]. 干旱區(qū)資源與環(huán)境,1999,13(1):34-42. Jiao Juying, Wang Wanzhong, He Xiaopin. Precipitation and erosion characteristics of rain-storm in different pattern on Loess Plateau[J]. Journal of Arid Land Resources and Environment, 1999, 13(1):34-42. (in Chinese with English abstract)
[32] 周虎,呂貽忠,楊志臣,等. 保護性耕作對華北平原土壤團聚體特征的影響[J]. 中國農業(yè)科學,2007,40(9):1973-1979. Zhou Hu, Lü Yizhong, Yang Zhichen, et al. Effects of conservation tillage on soil aggregates in huabei plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. (in Chinese with English abstract)
[33] 陳安強,張丹,熊東紅,等. 元謀干熱河谷坡面表層土壤力學特性對其抗沖性的影響[J]. 農業(yè)工程學報,2012,28(5):108-113. Chen Anqiang, Zhang Dan, Xiong Donghong, et al. Effects of mechanical properties of surface soil on soil anti-scourability in Yuanmou dry-hot valley[J]. Scientia Agricultura Sinica, 2012, 28(5):108-113. (in Chinese with English abstract)
[34] 程金花,秦越,張洪江,等. 華北土石山區(qū)模擬降雨下土壤濺蝕研究[J]. 農業(yè)機械學報,2015,46(2):153-161. Cheng Jinhua, Qin Yue, Zhang Hongjiang, et al. Splash erosion under artificial rainfall in Rocky mountain area of northern China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 153-161. (in Chinese with English abstract)
[35] Sajjadi A S, Mahmoodabadi M. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size[J]. Solid Earth, 2015, 6(1): 311-321.
[36] Legout C, Leguedois S, Le Bissonnais Y, et al. Splash distance and size distributions for various soils[J]. Geoderma, 2005a, 124(3): 279-292.
[37] Ma Renming, Li Zhaoxia, Cai Chongfa, et al. The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China)[J]. Catena, 2014, 121(7): 279-287.
[38] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605.
[39] Plante A F, Feng Y, Mcgill W B. A modelling approach to quantifying soil macroaggregate dynamics[J]. Canadian Journal of Soil Science, 2002, 82(2): 181-190.
Effects of raindrop splash on aggregate particle size distribution of soil plough layer
Fu Yu1, Li Guanglu1,2※, Zheng Tenghui1, Li Baiqiao3, Zhang Teng4
(1.712100;2.712100;3.621023,4.311122)
Splash erosion, which is a main dynamic for the detachment and transport of soil aggregates, is the initial stage of soil water erosion. Soil aggregate is a crucial indicator determining the plough layer soil fertility. Destruction of the plough layer aggregate has a negative effect on the content of soil available water and soil fertility, destroying the soil structure and restricting agricultural development of the Loess Plateau. To determine the effect of raindrop diameters on the breakdown of soil aggregates of plough layer and the characteristic of splashed fragment size distribution in the process of raindrop splash erosion, an artificially simulated raindrop splash experiment was conducted with 4 raindrop diameters (2.67, 3.05, 3.39 and 3.79 mm) using a self-designed simulated device that had a circular room with a 10-cm diameter for placing soil samples. The soil sample was collected from the soil plough layer (0-20 cm) with a steel ring (10 cm in diameter).The sampling site was located in a traditional agricultural planting region in Yangling of Shanxi Province (108°03′29″E, 34°18′24″N). Each raindrop diameter splash test was replicated 3 times. For each raindrop diameter, 5000 raindrops were dripped from a generator device on sample, and splashed aggregate fragments were collected every 1000 raindrops. The splashed fragments were sieved with aperture (2, 1, 0.5, 0.25, 0.106, 0.053 mm) using an aggregate analyzer (HR-TTF-100). All aggregate fragments were oven dried for 24 h at 105°C and weighed. The results showed that the splash amount among the collected order was not significantly different for raindrop diameter 2.67 and 3.05 mm, whereas, the splash amount of the II-V order was significantly lower than that of the I order for raindrop diameter 3.39 and 3.79 mm. An exponential function could be used to describe the relationship between splash amount and raindrop diameter when raindrop accumulation number was 2000-4000 (<0.05). For all the raindrop diameters, the total splash amount presented an up-down-up trend as the particle size decreased. The amount of splashed fragments >2 mm was almost 0 for each raindrop diameter test. However, the amounts of splashed aggregates <0.053 mm increased with the increase of raindrop diameter. There was no significant difference in mean weight diameter of splashed fragments among different accumulation raindrop numbers or different raindrop diameters (>0.05). The variation in enrichment ratio with the fragment size was consistent under different raindrop diameters. Compared with the undisturbed soil, the splashed fragments in particle size >1 mm and < 0.053 mm were decreased for all raindrop diameters. However, the enrichment ratios of splashed fragments of the other particle sizes were greater than 1. The results can provide valuable information for agricultural development in the Loess Plateau.
erosion; aggregates; particle size; rain splash; splash enrichment ratio; Loess Plateau
10.11975/j.issn.1002-6819.2017.03.021
S157.1
A
1002-6819(2017)-03-0155-06
2016-03-26
2016-10-10
國家自然科學基金(41571262)
付 玉,女,主要從事土壤侵蝕研究。楊凌西北農林科技大學水土保持研究所,712100。Email:aily_fy@163.com
李光錄,男,博士生導師,副教授,主要從事土壤侵蝕與土地利用研究。楊凌西北農林科技大學資源環(huán)境學院,712100。 Email:guangluli@nwsuaf.edu.cn。
付 玉,李光錄,鄭騰輝,李柏橋,張 騰. 雨滴擊濺對耕作層土壤團聚體粒徑分布的影響[J]. 農業(yè)工程學報,2017,33(3):155-160. doi:10.11975/j.issn.1002-6819.2017.03.021 http://www.tcsae.org
Fu Yu, Li Guanglu, Zheng Tenghui, Li Baiqiao, Zhang Teng. Effects of raindrop splash on aggregate particle size distribution of soil plough layer [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 155-160. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.021 http://www.tcsae.org