吳啟俠,朱建強(qiáng),2,程倫國,晏 軍,徐笑笑
?
基于地下水埋深的江漢平原冬小麥防澇漬排水指標(biāo)確定
吳啟俠1,朱建強(qiáng)1,2※,程倫國3,晏 軍1,徐笑笑1
(1. 長江大學(xué)農(nóng)學(xué)院,荊州 434025;2. 主要糧食作物產(chǎn)業(yè)化湖北省協(xié)同創(chuàng)新中心,荊州 434025; 3. 湖北省荊州市四湖工程管理局排灌試驗(yàn)站,荊州 434125)
2014—2015年在測(cè)坑(筒)分別開展孕穗期、灌漿期冬小麥遭受淺地下水埋深和先澇后漬脅迫試驗(yàn),研究江漢平原冬小麥關(guān)鍵生育期適宜的地下水埋深。同時(shí),構(gòu)建不同排水標(biāo)準(zhǔn)計(jì)算方法,量化作物相對(duì)產(chǎn)量,提出先澇后漬脅迫下的排水指標(biāo)。結(jié)果表明,孕穗期0、20和40 cm地下水位(持續(xù)受漬18 d)分別使小麥減產(chǎn)44.78%、17.31%和10.44%,而灌漿期相應(yīng)減產(chǎn)67.72%、33.70%和10.34%。導(dǎo)致小麥減產(chǎn)的主要原因可能是穗粒數(shù)減少和千粒質(zhì)量降低,建議江漢平原小麥田孕穗期和灌漿期地下水位維持在50 cm左右。先澇后漬過程中澇害使小麥減產(chǎn)幅度大于漬害,可以考慮以受澇歷時(shí)和降漬歷時(shí)為控制指標(biāo)的排水模型、按時(shí)間劃分澇害和漬害的排水模型,以及澇漬綜合水深指標(biāo)作為江漢平原小麥花后排除澇漬的排水模型。若允許小麥減產(chǎn)15%(即相對(duì)產(chǎn)量為85%)作為排水控制標(biāo)準(zhǔn),建議小麥花后澇漬綜合水深指標(biāo)控制在275.6~283.6 cm·d。
排水;地下水;脅迫;先澇后漬;多生育期;小麥
長江中下游麥區(qū)是中國小麥主產(chǎn)區(qū)之一,播種面積約占中國麥區(qū)的12%[1]。該區(qū)小麥主要采取稻麥連作栽培模式,小麥生長后期雨水偏多且集中,加上農(nóng)田地勢(shì)較低,農(nóng)田地下水位較淺,田間小麥經(jīng)常因?yàn)榕潘粫承纬蓾n水逆境,限制小麥生長和產(chǎn)量形成[2-4]。澇漬導(dǎo)致小麥減產(chǎn)幅度不僅取決于澇漬災(zāi)害發(fā)生的程度,還取決于災(zāi)害發(fā)生的時(shí)期:李金才等[5-6]認(rèn)為小麥生殖生長期漬水比營養(yǎng)生長期漬水對(duì)產(chǎn)量的影響要大;Shao等[1,7]研究表明從拔節(jié)期到花期都是小麥漬害敏感期;Wu等[8]研究認(rèn)為分蘗期是小麥對(duì)漬害最敏感的時(shí)期,其次是拔節(jié)期、孕穗期和灌漿期;吳元奇等[9]研究認(rèn)為苗期漬水是四川稻茬小麥漬害臨界期;魏鳳珍等[10-11]認(rèn)為長江中下游麥區(qū)孕穗期是漬害的臨界期。雖然不同科研工作者研究得出的小麥漬害敏感期有所差異,不同區(qū)域小麥漬害敏感期也不盡相同,但針對(duì)長江中下游麥區(qū),研究集中在作物后期漬害,并普遍認(rèn)為孕穗期是漬害的敏感期。針對(duì)作物不同漬水脅迫程度和漬水時(shí)期,選取不同排水指標(biāo)或建立不同排水標(biāo)準(zhǔn),降低產(chǎn)量損失,對(duì)于當(dāng)?shù)鼗蝾愃频佧溙锱潘芾韰^(qū)有重要的科學(xué)理論價(jià)值。邵光成等[12]研究發(fā)現(xiàn),在黃淮海地區(qū),以澇漬連續(xù)抑制天數(shù)作為排水標(biāo)準(zhǔn),可有效衡量小麥抽穗開花期受澇漬脅迫的產(chǎn)量損失。王礦等[13]研究認(rèn)為,以澇漬綜合水深指標(biāo)作為小麥灌漿期排水評(píng)價(jià)指標(biāo)是可行的。以上關(guān)于小麥排水指標(biāo)的研究主要針對(duì)黃淮海地區(qū),而針對(duì)江漢平原小麥的排水指標(biāo)研究較少。
本研究團(tuán)隊(duì)曾針對(duì)小麥孕穗期、灌漿期漬澇提出了相應(yīng)的排水指標(biāo)[14],而漬澇脅迫只是澇漬復(fù)合脅迫的一種形式,實(shí)際在江漢平原地區(qū),地下水埋深較淺、澇漬交替脅迫等氣象災(zāi)害在小麥生長后期都有可能發(fā)生。本文通過測(cè)坑(筒)試驗(yàn),在小麥生育中后期,對(duì)其遭受不同澇漬脅迫形式(淺地下水埋深和先澇后漬)下的減產(chǎn)差異進(jìn)行定量分析,提出江漢平原小麥孕穗期、灌漿期適宜的地下水埋深,同時(shí),參考并構(gòu)建多種排水指標(biāo)研究方法,篩選出適宜于江漢平原小麥遭受先澇后漬后用于產(chǎn)量評(píng)估的排水模型。
1.1 研究區(qū)及試驗(yàn)地概況
江漢平原屬于亞熱帶季風(fēng)氣候區(qū),降水多(多年平均降水1 166 mm)、強(qiáng)度大,且時(shí)空分布不均,其中70%以上降水集中在4—8月,致使平原河流水位往往高出農(nóng)田數(shù)米至十余米,形成地上懸河,導(dǎo)致垸落內(nèi)的積水不能及時(shí)排除。區(qū)域氣候特點(diǎn)加上地勢(shì)平坦、多洼地、排水不暢的地形地貌,決定了江漢平原是典型的易澇易漬地區(qū),是洪、澇、漬害頻繁發(fā)生的地區(qū)和重災(zāi)區(qū)[15]。
淺地下水埋深(2015年)試驗(yàn)在位于地處江漢平原腹地的長江大學(xué)科研基地(地面高程32 m)內(nèi)的澇漬測(cè)筒內(nèi)進(jìn)行。澇漬測(cè)筒內(nèi)部具體構(gòu)造及測(cè)筒內(nèi)土壤養(yǎng)分狀況見文獻(xiàn)[14],測(cè)筒土壤田間持水量33.82%。澇漬相隨(2014—2015年)試驗(yàn)在湖北省荊州市四湖工程管理局排灌試驗(yàn)站(簡稱丫角排灌站)內(nèi)供排水可控制的有底混凝土測(cè)坑中進(jìn)行。排灌站概況、測(cè)坑構(gòu)造及測(cè)坑內(nèi)土壤養(yǎng)分狀況見文獻(xiàn)[16]。測(cè)坑土壤田間持水量為29.45%。
1.2 試驗(yàn)設(shè)計(jì)及過程
供試品種均為鄭麥9 023,整個(gè)生育期純氮施肥量為240 kg/hm2、純磷為120 kg/hm2、純鉀為120 kg/hm2,其中磷肥、鉀肥和60%氮肥作為基肥,40%氮肥作為拔節(jié)孕穗肥。?;販y(cè)筒小麥采用點(diǎn)播種植方式,每筒80粒種子,至小麥三葉期,每筒留苗60株。丫角排灌站測(cè)坑小麥采用條播種植方式,667 m2播種量為9 kg,行距為25 cm。
2015年在小麥孕穗-抽穗期(3月14日—3月31日)、灌漿期(4月1日—4月18日)分別進(jìn)行淺地下水埋深試驗(yàn),地下水埋深設(shè)0、20、40和60 cm,持續(xù)18 d。
2014、2015年在小麥開花-灌漿期(2014年3月28日開始,2015年4月5日開始)進(jìn)行不同程度的澇漬相隨試驗(yàn),澇害歷時(shí)設(shè)3、6、9和12 d,澇害時(shí)控制淹水深度為5 cm;降漬歷時(shí)設(shè)2、5和8 d,在規(guī)定的降漬時(shí)間內(nèi)將地下水位降到50 cm以下。試驗(yàn)采用完全隨機(jī)設(shè)計(jì),每處理重復(fù)4次。同時(shí)設(shè)定對(duì)照(CK):試驗(yàn)處理期間測(cè)坑(筒)土壤水分保持在田間持水量的70%~80%(即大田正常水分管理要求的土壤水分含量,地下水埋深維持在80 cm以下)。
1.3 測(cè)定指標(biāo)
小麥成熟后,隨機(jī)取生長基本一致的20穗,按常規(guī)方法考察穗粒數(shù)、單穗質(zhì)量。每測(cè)坑(筒)單獨(dú)收獲,收獲后考察每測(cè)坑(筒)有效穗數(shù),小麥脫粒曬干除雜后稱質(zhì)量,作為每測(cè)坑(筒)的實(shí)際產(chǎn)量(g),同時(shí)考察每測(cè)坑(筒)千粒質(zhì)量(g)。
1.4 分析方法
1.4.1 澇漬分離指標(biāo)
參考錢龍等[17]對(duì)澇害和漬害的分離方法,本研究亦將澇害與漬害視作2類相對(duì)獨(dú)立的影響因素。根據(jù)劃分方式的不同,澇漬分離指標(biāo)又可分為按時(shí)間劃分與按空間劃分的2類指標(biāo)。1)按空間劃分的澇漬分離指標(biāo)包括累計(jì)超標(biāo)準(zhǔn)水深(E)和地表累計(jì)水深(),按文獻(xiàn)[17]給出的方法計(jì)算E和,本研究中取50 cm。2)按時(shí)間劃分的澇漬分離指標(biāo)包括淹水期間地表及地下超標(biāo)準(zhǔn)累計(jì)水位(F)和澇去漬存期間地下水動(dòng)態(tài)(E)按文獻(xiàn)[16]給出的方法計(jì)算F和E,本研究中取50 cm。
1.4.2 澇漬綜合指標(biāo)
錢龍等[17-18]將先澇后漬脅迫看作一個(gè)連續(xù)完整的過程,本研究以澇漬綜合水深指標(biāo)()綜合衡量先澇后漬對(duì)小麥產(chǎn)量的危害程度,按文獻(xiàn)[17]給出的方法計(jì)算S,本研究中取50 cm。
1.4.3 排水指標(biāo)
單澇時(shí)采用式(1)建立排水指標(biāo)。
R=(T) (1)
式中T為受澇歷時(shí),d;R為相對(duì)產(chǎn)量,即實(shí)際產(chǎn)量占對(duì)照(CK)產(chǎn)量的百分比,%。
淺地下水埋深時(shí)采用式(2)建立排水指標(biāo)。
R=(50) (2)
式中50為累計(jì)超標(biāo)準(zhǔn)地下水深,計(jì)算方法同文獻(xiàn)[17];為了明確孕穗期、灌漿期實(shí)際地下水動(dòng)態(tài)對(duì)小麥產(chǎn)量的影響,從而探尋出孕穗期、灌漿期比較適宜的地下水埋深,與文獻(xiàn)[17]不同的是地下水埋深>時(shí),取地下水埋深為實(shí)際值,本試驗(yàn)中取50 cm,淺地下水埋深試驗(yàn)中淺地下水埋深持續(xù)18 d。
先澇后漬脅迫時(shí)采用下列4種方法建立排水指標(biāo):
1)從澇、漬兼治的角度建立先澇后漬過程和澇除后的降漬歷時(shí)(50)與小麥R之間的關(guān)系。
R=(T,50) (3)
2)從空間分離澇漬的角度建立和50與R之間的關(guān)系。
R=(,50) (4)
3)從時(shí)間分離澇漬的角度建立F和E50與R之間的關(guān)系。
R=(F, E50) (5)
4)將先澇后漬脅迫看作一個(gè)連續(xù)完整的過程,建立50與R之間的關(guān)系
R=(50) (6)
2.1 淺地下水埋深對(duì)小麥產(chǎn)量的影響
淺地下水埋深對(duì)小麥產(chǎn)量形成有較大影響(表1)。
與對(duì)照(CK)相比,孕穗期、灌漿期0 cm地下水位持續(xù)18 d使小麥分別減產(chǎn)44.78%和67.72%(<0.05);20 cm地下水位持續(xù)18 d時(shí)分別減產(chǎn)17.31%、33.70%(<0.05);40 cm地下水位持續(xù)18 d時(shí)分別減產(chǎn)10.44%、10.34%(<0.05);60 cm地下水位持續(xù)18 d時(shí)的產(chǎn)量與維持在100cm以下相比差異不顯著(>0.05)。在排水不暢地下水長期維持在較高水平的農(nóng)田,孕穗期和灌漿期可以將地下水埋深維持在50 cm左右。從方差分析結(jié)果可知,穗粒數(shù)和千粒質(zhì)量的共同減少可能是孕穗期和灌漿期淺地下水埋深導(dǎo)致小麥減產(chǎn)的主要因素。
2.2 適宜淺地下水埋深
基于淺地下水埋深資料計(jì)算50與相對(duì)產(chǎn)量的關(guān)系(圖1)。小麥相對(duì)產(chǎn)量與孕穗期、灌漿期50呈極顯著正相關(guān),可用一元二次方程擬合二者的關(guān)系。通過計(jì)算可知:孕穗期、灌漿期地下水位維持在40~50 cm時(shí)小麥產(chǎn)量將達(dá)到對(duì)照的95.1%~99.8%、89.8%~96.9%;當(dāng)?shù)叵滤痪S持在50.7、57.1 cm時(shí)小麥產(chǎn)量將達(dá)到對(duì)照的100%;當(dāng)?shù)叵滤痪S持在60~80 cm時(shí)小麥產(chǎn)量增加幅度不顯著(>0.05)。綜合考慮田間排水溝的深度以及配套排水溝渠的相應(yīng)規(guī)格,建議小麥孕穗期和灌漿期可將地下水位控制在50 cm左右。
表1 淺地下水埋深對(duì)小麥產(chǎn)量因素的影響
注:地下水維持在各自深度18 d;CK,土壤水分為70%~80%的田持;小寫字母不同表示處理差異顯著(<0.05),下同。
Note: Shallow groundwater table kept at each depth for 18 d; In CK, soil moisture was kept at 70%-80% of the field water holding capacity; Lowercase letters are significant difference among treatments (<0.05=, same as below.
Note: ** P<0.01.
2.3 先澇后漬脅迫對(duì)小麥產(chǎn)量的影響
先澇后漬脅迫小麥減產(chǎn)嚴(yán)重(表2)。漬害為2 d時(shí),澇害6、9、12 d 4個(gè)處理2 a小麥平均分別減產(chǎn)14.41%、30.09%、34.44%(<0.05);漬害為5 d時(shí),澇害3、6、9、12 d 4個(gè)處理小麥分別減產(chǎn)10.92%、22.40%、37.07%、42.29%(<0.05),除澇害9、12 d 2處理間差異不顯著外(>0.05),其余處理間差異顯著;漬害為8 d時(shí),澇害3、6、9、12 d 4個(gè)處理小麥分別減產(chǎn)16.79%、37.66%、42.76%、48.13%(<0.05),除澇害6、9 d 2處理間差異不顯著外(>0.05),其余處理間差異顯著(<0.05)。由此表明,漬害相同時(shí),澇害歷時(shí)越長,小麥減產(chǎn)幅度越大。漬害相同時(shí),如總澇害天數(shù)小于9 d時(shí),澇害天數(shù)每增加3 d小麥減產(chǎn)幅度約增加1倍;如總澇害天數(shù)超過9 d,澇害天數(shù)每增加3 d小麥約多減產(chǎn)5.0%。澇害為3、6、9、12 d時(shí),漬害每增加3 d,小麥分別多減產(chǎn)5.39%、11.63%、6.34%、6.84%(2 a平均值),表明澇水排除后的漬害對(duì)小麥產(chǎn)量的影響程度沒有澇害大。
表2 先澇后漬對(duì)小麥產(chǎn)量因素的影響
注:表中括號(hào)中的2個(gè)數(shù)值分別表示受單澇天數(shù)和地下水位降到50 cm所需天數(shù)。
Note: Two numbers in brackets are surface waterlogging days and days that underground water level drops to 50 cm, respectively.
產(chǎn)量要素總體上隨受澇歷時(shí)的增加和降漬時(shí)間的延長而減少。受澇時(shí)間和降漬天數(shù)對(duì)有效穗數(shù)無顯著影響(>0.05)。2014年受澇時(shí)間和降漬天數(shù)對(duì)穗粒數(shù)無顯著影響(>0.05),而2015年除(3,2)處理穗粒數(shù)與對(duì)照差異不顯著(>0.05)外,其余先澇后漬處理與對(duì)照差異均顯著(<0.05),其原因可能是2015年受澇過程正值小麥?zhǔn)⒒ㄆ?,澇害使小麥花粉活力降低,花粉管伸長受限,子房受精能力減弱,而2014年受澇正值小麥初花期,澇害對(duì)子房受精過程影響相對(duì)較小。2014年受澇3 d的處理千粒質(zhì)量與對(duì)照差異不顯著(>0.05),2015年除(3,2)處理千粒質(zhì)量與對(duì)照差異不顯著(>0.05)外,其余處理與對(duì)照差異均顯著(<0.05)。總結(jié)得出,灌漿期先澇后漬導(dǎo)致小麥產(chǎn)量下降的主要原因可能是穗粒數(shù)和千粒質(zhì)量降低。
2.4 先澇后漬脅迫下的排水指標(biāo)
表3給出了4種方法的排水指標(biāo)結(jié)果。相對(duì)產(chǎn)量與淹水歷時(shí)T和降漬歷時(shí)50之間、與和50之間、與和50、與F50和E50之間均存在極顯著的二元一次相關(guān)關(guān)系、與50之間均存在極顯著的線性相關(guān)性。因此,這4個(gè)模型均可作為小麥排澇降漬模型。從標(biāo)準(zhǔn)化回歸系數(shù)絕對(duì)值來看,T的系數(shù)大于50的系數(shù),表明作物受澇對(duì)產(chǎn)量的影響大于受漬;50的系數(shù)數(shù)倍大于的系數(shù),表明按空間劃分澇害和漬害時(shí)漬害比例大于澇害,這正是按空間劃分澇害和漬害的弊端;F50的系數(shù)大于E50的系數(shù),也表明作物受澇對(duì)產(chǎn)量的影響大于受漬。總結(jié)得出,小麥?zhǔn)軡硨?duì)產(chǎn)量的影響大于漬,可以考慮以受澇歷時(shí)和降漬歷時(shí)為控制指標(biāo)的排水模型(方法1)、按時(shí)間劃分澇害和漬害的排水模型(方法3)和澇漬綜合水深指標(biāo)(方法4)作為江漢平原小麥花后排除澇漬的排水 模型。
在總結(jié)以往經(jīng)驗(yàn)的基礎(chǔ)上假定減產(chǎn)15%作為小麥排水標(biāo)準(zhǔn)認(rèn)為比較合理[14]。若以小麥減產(chǎn)15%(即R為85%)作為排水標(biāo)準(zhǔn),小麥花后的澇漬綜合水深指標(biāo)50應(yīng)取275.6 cm·d(2015年)~283.6 cm·d(2014年)。
表3 先澇后漬脅迫時(shí)排水指標(biāo)與小麥相對(duì)產(chǎn)量線性回歸
注:T、50、、50、F50、E50、50分別表示受澇歷時(shí)、受漬歷時(shí)、地面累計(jì)淹水深度、累計(jì)超標(biāo)準(zhǔn)地下水深、淹水期間地表及地下超標(biāo)準(zhǔn)累計(jì)水位、澇去漬存期間地下水動(dòng)態(tài)、澇漬綜合水深指標(biāo)。
Note:Tis surface waterlogging days;50is subsurface waterlogging days within 50 cm of soil surface;is sum of flood depth;50is sum of water table within 50 cm of soil surface;F50is sum of both flood depth and water table within 50 cm of soil surface under surface waterlogging;E50is sum of water table within 50 cm of soil surface after draining surface waterlogging;50is comprehensive water depth of waterlogging.
本團(tuán)隊(duì)研究結(jié)果表明,小麥孕穗期、灌漿期單澇持續(xù)20 d時(shí)分別減產(chǎn)85.54%、70.24%[14],而孕穗期、灌漿期充分受漬(地下水埋深0 cm)18 d小麥分別減產(chǎn)44.78%、67.72%,說明澇的減產(chǎn)作用大于漬。出現(xiàn)這種現(xiàn)象的可能原因是,澇害期間土壤孔隙充滿水分,加上地表淹水層的靜水壓力壓實(shí)土壤,使得澇害期間土壤通氣性很差[19];而漬水期間只是土表低洼處可見明水,其所產(chǎn)生的靜水壓力小于澇害處理,致使受漬期間土壤的通氣狀況比受澇期間好。這在其他研究中也得到了體現(xiàn)[20-24]。
本文結(jié)果表明,小麥孕穗期和灌漿期最優(yōu)地下水埋深為50.7、57.1 cm,Kahlown等[25]研究認(rèn)為地下水埋深為50 cm時(shí)其生長所需水分可全部來源于地下水。由此可看出50 cm地下水埋深是江漢平原小麥生長適宜的地下水位。這與朱建強(qiáng)等[15]的研究結(jié)果一致,和日本農(nóng)田排漬地下水埋深標(biāo)準(zhǔn)基本一致[26]。但Houshang等[27]研究認(rèn)為具有最高產(chǎn)量和最高水分利用系數(shù)的小麥最適宜地下水埋深為0.8 m,而Asad推薦的小麥和棉花最佳地下水埋深為1~1.5 m[28],這些研究得出的小麥生長最佳地下水埋深比本研究得出的50 cm左右要深,這可能是由于研究區(qū)域不同造成的,亦可能與小麥品種有關(guān)。
本文結(jié)果認(rèn)為可以考慮以時(shí)間為尺度的受澇和受漬統(tǒng)一于共同影響作物產(chǎn)量的模型(方法1)、按時(shí)間劃分澇害和漬害的排水模型(方法3)和澇漬綜合水深指標(biāo)(方法4)作為江漢平原小麥花后排除澇漬的排水模型,這與朱建強(qiáng)等[18]的研究結(jié)果一致。但不同研究認(rèn)為不同的排水模型適用性不同,朱建強(qiáng)等[20]認(rèn)為建立的按時(shí)間劃分澇害和漬害的排水模型,可明確反映先澇后漬連續(xù)過程的排澇、排漬控制時(shí)間,方便排水管理;Wang等[29]認(rèn)為統(tǒng)一考慮澇、漬影響的澇漬兼治排水模型50有助于淮北平原排水系統(tǒng)的設(shè)計(jì)、建設(shè)和維護(hù)。同時(shí)若都以減產(chǎn)15%(即R為85%)作為排水標(biāo)準(zhǔn),朱建強(qiáng)等[18]研究得出棉花花鈴期的50應(yīng)取200 cm·d左右,本研究認(rèn)為小麥花后的50應(yīng)取275.6~283.6 cm·d。
澇害對(duì)小麥產(chǎn)量的影響不僅與澇害天數(shù)有關(guān),而且與受澇時(shí)的氣象因素有關(guān)。吳進(jìn)東等[30-31]研究認(rèn)為漬水高溫交互效應(yīng)對(duì)小麥產(chǎn)量影響顯著,高溫加重了漬水脅迫,逆境脅迫的不良效應(yīng)表現(xiàn)為漬水+高溫>漬水>高溫。同時(shí),花后漬水、高溫及其復(fù)合脅迫亦會(huì)影響小麥品質(zhì)[32-33]。因此,在江漢平原小麥生長后期,考慮澇害與高溫危害的復(fù)合脅迫及交互效應(yīng)對(duì)小麥產(chǎn)量的影響,并在此基礎(chǔ)上提出針對(duì)這種特定氣象災(zāi)害的排水指標(biāo),是后續(xù)需要重點(diǎn)關(guān)注的內(nèi)容。
1)孕穗期、灌漿期0、20和40 cm地下水位分別持續(xù)18 d時(shí)產(chǎn)量亦顯著降低,分別減產(chǎn)44.78%、67.72%,17.31%、33.70%和10.44%、10.34%,建議小麥孕穗期和灌漿期地下水位維持在50 cm左右。
2)先澇后漬脅迫中澇害使小麥減產(chǎn)幅度大于漬害,可以考慮以受澇歷時(shí)和降漬歷時(shí)為控制指標(biāo)的排水模型(T,T)、按時(shí)間劃分澇害和漬害的排水模型(E, F)和澇漬綜合水深指標(biāo)(50)作為江漢平原小麥花后排除澇漬的排水模型。若以小麥減產(chǎn)15%(即R為85%)作為排水標(biāo)準(zhǔn),小麥花后的50為275.6~283.6 cm·d。
[1] Shao G C, Lan J J, Yu S E, et al. Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages[J]. Photosynthetica, 2013, 51(3): 429-437
[2] 余松烈. 中國小麥栽培理論與實(shí)踐[M]. 上海: 上??茖W(xué)技術(shù)出版社,2006.
[3] 敖立萬,朱旭彤,高廣金.湖北小麥[M]. 武漢:湖北科學(xué)技術(shù)出版社,2002.
[4] 王小燕,高春保,盧碧林,等. 江漢平原小麥開花前降水分布特點(diǎn)及同期漬害的產(chǎn)量效應(yīng)[J]. 長江流域資源與環(huán)境,2013,22(12):1642-1647. Wang Xiaoyan, Gao Chunbao, Lu Bilin, et al. Characteristics of rainfall before anthesis and corresponding effects of waterlogging on grain yield in Jiang Plain[J]. Resources and Environment in the Yangtze Basin, 2013, 22(12): 1642-1647. (in Chinese with English abstract)
[5] 李金才,董琦,余松烈. 不同生育期根際土壤淹水對(duì)小麥品種光合作用和產(chǎn)量的影響[J].作物學(xué)報(bào),2001,27(4):434-441. Li Jincai, Dong Qi, Yu Songlie. Effect of waterlogging at different growth stages on photosynthesis and yield of different wheat cultivars[J]. Acta Agron Sinica, 2001, 27(4): 434-441. (in Chinese with English abstract)
[6] Setter T L, Waters I. Review of prospects for germplasmimprovement for waterlogging tolerance in wheat, barley and oats[J]. Plant and Soil, 2003, 253(1): 1-34.
[7] Celedonio R P D S, Abeledo L G, Miralles D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley[J]. Plant and Soil, 2014, 378(1/2): 265-277.
[8] Wu Xiaoli, Tang Yonglu, Li Chaosu, et al. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages[J]. Plant Production Science, 2015, 18(3): 284-294.
[9] 吳元奇,李朝蘇,樊高瓊,等. 漬水對(duì)四川小麥生理性狀及產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(4):1162-1170. Wu Yuanqi, Li Chaosu, Fan Gaoqiong, et al. Effect of waterlogging on physical traits and yield of wheat in Sichuan, China[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1162-1170. (in Chinese with English abstract)
[10] 魏鳳珍,李金才,尹鈞,等. 孕穗期漬水逆境對(duì)冬小麥氮素營養(yǎng)及產(chǎn)量的影響[J]. 中國農(nóng)學(xué)通報(bào),2006,22(9): 127-129Wei Fengzhen, Li Jincai, Yin Jun, et al. Effects of water logging stress on nitrogen nutrition and yield in winter wheat at booting stage[J]. Chinese Agricultural Science Bulletin, 2006, 22(9): 127-129. (in Chinese with English abstract)
[11] 周廣生,梅方竹,周竹青,等. 小麥孕穗期濕害對(duì)產(chǎn)量性狀的影響[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,19(2):95-98. Zhou Guangsheng, Mei Fangzhu, Zhou Zhuqing, et al. Analysis of the effects of waterlogging at bootting stage on wheat yield characters[J]. Journal of Huazhong Agricultural University, 2000, 19(2): 95-98. (in Chinese with English abstract)
[12] 邵光成,俞雙恩,劉娜,等. 以澇漬連續(xù)抑制天數(shù)為冬小麥排水指標(biāo)的試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(8):56-60. Shao Guangcheng, Yu Shuang’en, Liu Na, et al. Study on continuous days of water logging and excessive soil water as drainage index of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 56-60.(in Chinese with English abstract)
[13] 王礦,潘強(qiáng),湯廣民,等. 灌漿期小麥排水指標(biāo)的試驗(yàn)研究[J]. 水利水電技術(shù),2011,42(8):59-62.Wang Kuang, Pan Qiang, Tang Guangmin, et al. Experimental study on drainage index during wheat filling period[J]. Water Resources and Hydropower Engineering, 2011, 42(8): 59-62. (in Chinese with English abstract)
[14] 吳啟俠,朱建強(qiáng),楊威,等. 小麥對(duì)漬澇的響應(yīng)及排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):91-98.Wu Qixia, Zhu Jianqiang, Yang Wei, et al. Response of wheat to waterlogging and determination of drainage index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 91-98. (in Chinese with English abstract)
[15] 朱建強(qiáng). 基于作物的農(nóng)田排水指標(biāo)及排水調(diào)控研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2006. Zhu Jiangqiang. Study on Farmland Drainage Indices and Drainage Control Based Upon Crop[D]. Yangling: Northwest A&F University, 2006. (in Chinese with English abstract)
[16] 吳啟俠,朱建強(qiáng),楊威,等. 花鈴期高溫受澇對(duì)棉花的交互效應(yīng)及排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):98-104.Wu Qixia, Zhu Jianqiang, Yang Wei, et al. Response of cotton to interaction of waterlogging and high temperature during flowering and boll-forming stage and determination of drainage index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 98-104. (in Chinese with English abstract)
[17] 錢龍,王修貴,羅文兵,等. 澇漬脅迫條件下Morgan模型的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):92-101. Qian Long, Wang Xiugui, Luo Wenbing, et al.Experimental study on Morgan model under waterlogging stress[J] Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 92-101. (in Chinese with English abstract)
[18] 朱建強(qiáng),歐光華,張文英,等. 棉花花鈴期澇漬相隨對(duì)棉花產(chǎn)量的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(4):80-83. Zhu Jiangqiang, Ou Guanghua, Zhang Wenying, et al. Experimental research on effect of surface and subsurface waterlogging in stage of cotton flowering and boll set on yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 80-83. (in Chinese with English abstract)
[19] Pivot J M, Martin P. Farms adaptation to changes in flood risk: a management approach[J]. Journal of Hydrology, 2002, 267(1): 12-25.
[20] 朱建強(qiáng),歐光華,張文英,等. 澇漬相隨對(duì)棉花產(chǎn)量與品質(zhì)的影響[J]. 中國農(nóng)業(yè)科學(xué),2003,36(9):1050-1056. Zhu Jiangqiang, Ou Guanghua, Zhang Wenying, et al. Influence of subsurface waterlogging followed by surface waterlogging on yield and quality of cotton[J]. Scientia Agricultura Sinica, 2003, 36(9): 1050-1056. (in Chinese with English abstract)
[21] 湯廣民.以澇漬連續(xù)抑制天數(shù)為指標(biāo)的排水標(biāo)準(zhǔn)試驗(yàn)研究[J]. 水利學(xué)報(bào),1999(4):25-30. Tang Guangmin. Experimental study on drainage standard[J]. Journal of Hydraulic Engineering, 1999(4): 26-30. (in Chinese with English abstract)
[22] 朱建強(qiáng),喬文軍. 澇漬連續(xù)過程以時(shí)間為尺度的作物排水控制指標(biāo)研究[J]. 灌溉排水學(xué)報(bào),2003,22(5):67-71.Zhu Jianqiang, Qiao Wenjun, et al. Research upon dominated quota of crop land drainage with time-scaled under continuous water-logging [J]. Journal of Irrigation and Drainage, 2003, 22(5): 67-71. (in Chinese with English abstract)
[23] Schat H. A comparative ecophysiological study on the effects of waterlogging and submergence on dune slack plants: growth, survival and mineral nutrition in sand culture experiments[J]. Oecologia, 1984, 62(2): 279-286.
[24] 錢龍,王修貴,羅文兵,等. 棉花先澇后漬減產(chǎn)規(guī)律分析及排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):89-97. Qian Long, Wang Xiugui, Luo Wenbing, et al.Yield reduction analysis and determination of drainage index in cotton under waterlogging followed by submergence[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 89-97. (in Chinese with English abstract)
[25] Kahlown M A, Ashraf M, Zia-ul-Haq. Effect of shallow groundwater table oncrop water requirements and crop yields [J]. Agricultural Water Management, 2005, 76(1): 24-35.
[26] 日本農(nóng)林水產(chǎn)省構(gòu)造改善局. 12構(gòu)改C第517—平成12年?土地改良事業(yè)計(jì)劃設(shè)計(jì)基準(zhǔn)書,計(jì)劃(暗管排水),基準(zhǔn)書/技術(shù)書[M]. 東京:社團(tuán)法人農(nóng)業(yè)土木學(xué)會(huì),平成12年.
[27] Houshang Ghamarnia, Milad Farmanifard. Yield production and water-use efficiency of wheat cultivars under shallow groundwater use in semi-arid region[J]. Archives of Agronomy and Soil Science, 2014(12), 1677-1700.
[28] Asad S Q. Irrigation requirements of wheat and cotton under different water-table conditions[J]. Sarhad J Agric, 2001, 17: 7-13.
[29] Wang Kuang, Yuan Xianjiang, Cao Xiuqing, et al. Experimental study on water production function for waterlogging stress on corn[J]. Procedia Engineering 2012, 28: 598 – 603
[30] 吳進(jìn)東,李金才,魏鳳珍,等. 花后漬水高溫交互效應(yīng)對(duì)冬小麥旗葉光合特性及產(chǎn)量的影響[J]. 作物學(xué)報(bào),2012,38(6):1071-1079.Wu Jindong, Li Jincai, Wei Fengzhen, et al.Effect of interaction of waterlogging and high temperature after anthesis on photosynthetic characteristics of flag leaf and yield in winter Wheat[J]. Acta Agronomica Sinica, 2012, 38(6): 1071-1079. (in Chinese with English abstract)
[31] 張艷菲. 花后漬水、高溫及其復(fù)合脅迫對(duì)小麥品質(zhì)及產(chǎn)量的影響[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2014.Zhang Yanfei. Effects of Waterlogging, High Temperature and Their Combination After Anthesis On Grain Quality Traits and Yield In Winter Wheat[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese with English abstract)
[32] 王晨陽,張艷菲,盧紅芳,等. 花后漬水、高溫及其復(fù)合脅迫對(duì)小麥籽粒淀粉組成與糊化特性的影響[J]. 中國農(nóng)業(yè)科學(xué),2015,48(4):813-820. Wang Chenyang, Zhang Yanfei, Lu Hongfang, et al.Effects of post-anthesis waterlogging, high temperature and their combination on starch compositions and pasting properties in wheat grains[J]. Scientia Agricultura Sinica, 2015, 48(4): 813-820. (in Chinese with English abstract)
[33] 張艷菲,王晨陽,馬冬云,等. 花后漬水、高溫及其復(fù)合脅迫對(duì)小麥籽粒蛋白質(zhì)含量和面粉白度的影響[J]. 作物學(xué)報(bào),2014,40(6):1102-1108. Zhang Yanfei, Wang Chenyang, Ma Dongyun, et al.Effects of waterlogging, high temperature and their interaction after anthesis on grain protein components and flour color in Wheat[J]. Acta Agronomica Sinica, 2014, 40(6): 1102-1108. (in Chinese with English abstract)
Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain
Wu Qixia1, Zhu Jianqiang1,2※, Chen Lunguo3, Yan Jun1, Xu Xiaoxiao1
(1.434025,; 2.434025,; 3.434125,)
Jianghanplain area is characterized by plenty of rainfall in spring, which results in frequent occurrence of waterlogging of wheat field. Subsurface waterlogging is often found in these fields. It is necessary to investigate the influence of shallow groundwater table and waterlogging followed by submergence on the growth and yield and develop a suitable groundwater depth drainage index for the waterlogged fields. In order to achieve the objectives, tube-shaped concrete facilities were used for the irrigation and drainage adjustment experiment in 2014 and 2015. Wheat was planted in the facility. The treatment of shallow groundwater table at 0, 20, 40 and 60 cm sustained 18 d and different degrees of waterlogging followed by submergence were designed. The treatments were conducted in the booting and filling stages of wheat. The flooding depth in the waterlogging treatment was kept at 5 cm. Meanwhile, the facility for wheat cultivation in soil with moisture kept at 70%-80% of water holding capacity was used as a control. The results showed when the 0-cm groundwater table sustaining 18 d at booting and filling stage could reduce wheat yield by 44.78% and 67.72%, the 20-cm groundwater table sustaining 18 d could reduce the yield by 17.31% and 33.70%, the 40-cm groundwater table sustaining 18 d decreased the yield by 10.44% and 10.34% and the 60-cm groundwater table sustaining 18 d could had higher yield than the that under 100 cm, suggesting that the groundwater table kept at 50 cm at booting and filling stage of winter wheat was suitable. The yield reduction might be due to the decrease of kernels per and thousand seed weight. The regression showed that the yield could reach 95.1%-99.8% and 89.8%-96.9% of the control when the underground water depth was 40- 50 cm, it could reach 100% of the control when the underground water depth was 50.7 and 57.1 cm and it may slightly increase when the underground water depth was 60-80 cm. The wheat suffering from the damage of waterlogging followed by submergence after anthesis caused a severe reduction in wheat yield, and the surface waterlogging had the larger influence than subsurface waterlogging on yield of winter wheat. Different types of drainage indexes including surface and subsurface waterlogging duration days, sum of waterlogging or water table within 50 cm of soil surface, sum of both flood depth and water table within 50 cm of soil surface under surface waterlogging, sum of water table within 50 cm of soil surface after draining surface water logging, and comprehensive water depth of waterlogging were evaluated. The regression between relative yield and these indexes showed that the indexes with surface and subsurface waterlogging duration days, drainage model based on time classification and comprehensive water depth of waterlogging were reliable. If the wheat yield decrease by 15% was allowed, the comprehensive water depth of waterlogging should be 275.6-283.6 cm·d after anthesis. The research may provide support for wheat drainage management in booting and filling stage in the middle and lower reaches of the Yangtze River.
drainage; groundwater; stresses; waterlogging followed by submergence; multi-growth stage; winter wheat
10.11975/j.issn.1002-6819.2017.03.016
S276
A
1002-6819(2017)-03-0121-07
2016-03-24
2016-09-17
農(nóng)業(yè)部公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203032)
吳啟俠,男,湖北人,博士,主要從事作物生產(chǎn)的水土環(huán)境調(diào)控研究。荊州長江大學(xué)農(nóng)學(xué)院,434025。Email:wqx1144@163.com
朱建強(qiáng),男,陜西周至人,教授,博導(dǎo),主要從事農(nóng)業(yè)澇漬災(zāi)害基礎(chǔ)理論與技術(shù)研究。荊州長江大學(xué)農(nóng)學(xué)院,434025。 E-mail:zyjb@sina.com
吳啟俠,朱建強(qiáng),程倫國,晏 軍,徐笑笑. 基于地下水埋深的江漢平原冬小麥防澇漬排水指標(biāo)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):121-127. doi:10.11975/j.issn.1002-6819.2017.03.016 http://www.tcsae.org
Wu Qixia, Zhu Jianqiang, Chen Lunguo, Yan Jun, Xu Xiaoxiao. Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 121-127. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.016 http://www.tcsae.org