付興蘭,張兆國,安曉飛,趙春江,李晨源,于佳楊
?
光電漫反射式聯(lián)合收割機谷物產(chǎn)量計量系統(tǒng)研發(fā)與性能試驗
付興蘭1,3,張兆國1※,安曉飛2,3,4,趙春江2,3,5,李晨源1,于佳楊1,3
(1. 昆明理工大學現(xiàn)代農(nóng)業(yè)工程學院,昆明650000;2. 國家農(nóng)業(yè)智能裝備工程技術(shù)研究中心,北京 100097; 3. 北京農(nóng)業(yè)智能裝備技術(shù)研究中心,北京 100097;4. 農(nóng)業(yè)智能裝備技術(shù)北京市重點實驗室,北京,100097; 5. 農(nóng)業(yè)部農(nóng)業(yè)信息技術(shù)重點實驗室,北京,100097)
為了進一步提高聯(lián)合收割機谷物產(chǎn)量計量系統(tǒng)的精度,自主研發(fā)了基于光電漫反射原理的谷物產(chǎn)量計量系統(tǒng)。系統(tǒng)主要由傳感器模塊、數(shù)據(jù)處理模塊、GPS模塊和谷物產(chǎn)量計量顯示終端組成。光電式谷物產(chǎn)量計量系統(tǒng)計量作業(yè)時,當聯(lián)合收割機籽粒升運器刮板輸送谷物經(jīng)過漫反射型谷物體積傳感器時,會間歇性的阻斷光路,從而產(chǎn)生脈寬信號,脈寬信號大小與刮板上谷物厚度成正比,同時升運器轉(zhuǎn)速傳感器輸出轉(zhuǎn)速信號,谷物產(chǎn)量計量數(shù)據(jù)處理模塊將采集到的2路傳感器信號進行放大、濾波和A/D轉(zhuǎn)換后與GPS模塊采集的聯(lián)合收割機行進速度、經(jīng)緯度信息由RS485總線傳輸至光電谷物產(chǎn)量計量軟件系統(tǒng),經(jīng)光電式谷物產(chǎn)量模型處理后,將產(chǎn)量信息、速度信息、位置信息等實時顯示在終端上。為了驗證光電式谷物產(chǎn)量計量系統(tǒng)的性能,分別開展了室內(nèi)主要傳感器性能臺架試驗和系統(tǒng)田間動態(tài)性能驗證試驗,試驗中谷物喂入量在0.1~6 kg/s范圍內(nèi),臺架試驗表明升運器轉(zhuǎn)速傳感器測量誤差小于2.00%,漫反射型谷物體積傳感器測量誤差小于3.50%。田間動態(tài)性能驗證試驗結(jié)果表明光電式谷物產(chǎn)量計量系統(tǒng)運行穩(wěn)定,系統(tǒng)檢測結(jié)果與實際測量結(jié)果決定系數(shù)R達到0.848 4,測產(chǎn)誤差最大為3.51%,滿足田間實際測產(chǎn)需要,為精準農(nóng)業(yè)變量作業(yè)提供了科學依據(jù)。
谷物;光電裝置;傳感器;聯(lián)合收割機;產(chǎn)量計量系統(tǒng)
獲取谷物作業(yè)區(qū)域準確的產(chǎn)量信息是評價谷物產(chǎn)量及作業(yè)效果的重要指標,產(chǎn)量信息的空間變異性是來年精準變量作業(yè)的科學依據(jù)[1]。
谷物產(chǎn)量計量在當前精準農(nóng)業(yè)的研究和實踐中,是一個必不可少的環(huán)節(jié)[2]。國外的谷物產(chǎn)量計量相關(guān)研究起步較早,谷物產(chǎn)量計量系統(tǒng)已成為聯(lián)合收割機的標準配件,研究者們也提出了多種谷物計量模型,谷物產(chǎn)量計量系統(tǒng)的測量誤差為4.4%[3-6]。研究者對主要產(chǎn)品如John Deere公司開發(fā)的Green Star谷物測產(chǎn)系統(tǒng),Ag Leader公司研制的沖擊式PF3000谷物產(chǎn)量監(jiān)測系統(tǒng),Raven公司研發(fā)的光電對射式Smart Yield Pro系統(tǒng)等進行了試驗 研究,結(jié)果表明測產(chǎn)系統(tǒng)誤差約為5%[7-10]。國內(nèi)的谷物產(chǎn)量計量研究相較于國外仍處于探索研發(fā)階段。一些大學和研究機構(gòu)在谷物流量傳感器設(shè)計方面取得了一些進展[11-13]。張惠莉[14]采用射線的原理設(shè)計了一種射線傳感器用于谷物流量的實時檢測,該方法測試誤差在2%以內(nèi),但是射線的使用有嚴格標準且對人體有害。張小超等[15-18]基于稱重式的原理設(shè)計了一種螺旋輸送稱重傳感裝置用于谷物流量檢測,臺架試驗誤差小于2%,提高了測產(chǎn)精度,但傳感器裝置結(jié)構(gòu)復雜。叢秉華等[19-22]對沖量式的谷物流量傳感器做出了進一步的優(yōu)化,提出使用平行梁的方式代替單板沖擊式,研制出平行梁谷物流量監(jiān)測傳感器,結(jié)果顯示傳感器的誤差小于4%。李新成等[23-27]提出優(yōu)化采樣頻率、雙閾值濾波等方法消除噪聲和機器振動誤差的影響,使得測產(chǎn)平均誤差為3.27%。在產(chǎn)量計量的研究中,崔笛等[28]提出光電對射式的傳感器用于監(jiān)測谷物流量的方法,小麥流量范圍在0.1~1.2 kg/s之間時,測量誤差小于3%。有學者將此方法引入到棉花計量系統(tǒng)中[29-32],但到目前為止,還未見采用光電漫反射原理進行谷物產(chǎn)量計量的研究。
本研究的目的是基于光電漫反射原理,研發(fā)一種光電式谷物產(chǎn)量計量系統(tǒng),建立谷物產(chǎn)量光電檢測模型,分別開展室內(nèi)主要傳感器臺架試驗和系統(tǒng)田間動態(tài)試驗,對系統(tǒng)的穩(wěn)定性和準確性進行測試,實現(xiàn)谷物產(chǎn)量的快速準確測量。
1.1 光電式谷物產(chǎn)量計量系統(tǒng)總體設(shè)計
圖1是光電式谷物產(chǎn)量計量系統(tǒng)總體結(jié)構(gòu)圖。系統(tǒng)主要由傳感器模塊、數(shù)據(jù)采集模塊、GPS模塊和谷物產(chǎn)量計量顯示終端組成。傳感器模塊包括上海邁得豪實業(yè)有限公司生產(chǎn)的CHE18-30PA-B710型漫反射型谷物體積傳感器,測量精度99%和上海朗鴻自動化工程有限公司生產(chǎn)的JK8002C/PNP型升運器轉(zhuǎn)速傳感器,測量精度99%。谷物產(chǎn)量計量顯示終端內(nèi)嵌光電式谷物產(chǎn)量計量軟件系統(tǒng)和光電式谷物產(chǎn)量模型。
1. GPS模塊2. 谷物產(chǎn)量計量顯示終端3. 谷物產(chǎn)量計量數(shù)據(jù)采集模塊 4. 升運器轉(zhuǎn)速傳感器5. 漫反射型谷物體積傳感器
該系統(tǒng)通過傳感器模塊獲取谷物體積、升運器轉(zhuǎn)速、收割機速度、位置坐標等產(chǎn)量信息,再由數(shù)據(jù)采集模塊將采集到的傳感器信息通過解析、處理后由RS485總線傳輸?shù)接嬃肯到y(tǒng),經(jīng)過系統(tǒng)和產(chǎn)量模型的處理和計算后將谷物測產(chǎn)作業(yè)中的產(chǎn)量、速度、位置等信息實時顯示在計量終端上。
1.2 光電式谷物產(chǎn)量計量系統(tǒng)硬件設(shè)計
光電式谷物產(chǎn)量計量系統(tǒng)硬件組成如圖2a所示。系統(tǒng)主要由多路信息采集單元、數(shù)據(jù)處理單元、數(shù)據(jù)顯示單元三部分組成??梢詫崿F(xiàn)多路谷物測產(chǎn)信息的采集,數(shù)據(jù)的A/D轉(zhuǎn)換、濾波等處理,最終在數(shù)據(jù)顯示單元將數(shù)據(jù)實時顯示并存儲等功能。其中,信息采集單元的漫反射型谷物體積傳感器是測產(chǎn)系統(tǒng)的核心部件。
如圖2b所示為漫反射型谷物體積傳感器的工作原理。漫反射式谷物體積傳感器安裝在聯(lián)合收割機籽粒升運器的側(cè)壁上,傳感器光源發(fā)射出調(diào)制紅外光束,當籽粒升運器輸送谷物經(jīng)過漫反射型谷物體積傳感器時,紅外光束被升運器刮板輸送的谷物反射回傳感器的光電探測器,經(jīng)傳感器驅(qū)動電路處理后輸出脈寬電壓信號,傳感器輸出脈寬電壓信號大小與刮板谷物厚度成正比,結(jié)合刮板的底面積和升運器速度得到谷物的體積,谷物體積與谷物密度計算可得到谷物的質(zhì)量。
漫反射型谷物體積傳感器工作電壓為6~36 V,工作電流300 mA,響應時間0.1 ms,檢測距離5~30 cm。國內(nèi)主流的聯(lián)合收割的刮板側(cè)壁間距為140~200 mm,1/2的側(cè)壁間距大于傳感器最小檢測距離5 cm,傳感器設(shè)置有調(diào)節(jié)旋鈕,距離可調(diào),可以有效避免由于升運器側(cè)壁間距太近造成的發(fā)射光被側(cè)壁反射回來造成的誤差。漫反射型谷物體積傳感器設(shè)計有保護罩,密封防護等級為IP66,并對安裝角度和安裝位置進行校正,利用重力原理和刮板橡膠摩擦降低灰塵和谷物漿汁的覆蓋,可有效避免灰塵、漿汁等因素干擾。
1. 籽粒升運器 2. 谷物 3. 升運器刮板 4. 傳動鏈條 5. 光源 6. 光電探測器7. 驅(qū)動電路 8. 脈寬信號
1. Elevator 2. Grain 3. Scraper of elevator 4. Driving chain 5. Light source 6. Photoelectric detector 7. Driving circuit 8. Pulse signal
注:為刮板上的谷物厚度
Note:: the thickness of grain on scraper
圖2 光電漫反射式谷物產(chǎn)量計量系統(tǒng)硬件設(shè)計
Fig.2 Hardware design of grain yield monitor based on photoelectric diffuse reflectance
系統(tǒng)中測量升運器轉(zhuǎn)速的傳感器選用三線式JK8002C/PNP型霍爾元件,安裝在收割機籽粒升運器底部傳動軸外側(cè),并自主研發(fā)測速碼盤和安裝支架,測速碼盤設(shè)計有2路感應磁鐵,以減少系統(tǒng)誤差,提高測量精度。數(shù)據(jù)處理單元選用具有4路計數(shù)、測頻通道的IPAM7404數(shù)據(jù)采集模塊,最大計數(shù)值為32 bits,采樣頻率為10 Hz,無奇偶校驗。谷物產(chǎn)量計量顯示終端選用VMC1000嵌入式終端,該終端具有GPS、RS232、RS485、CAN等通訊接口,實現(xiàn)各節(jié)點間數(shù)據(jù)通訊,能運行嵌入式操作系統(tǒng)XPE,完成谷物信號的輸入、輸出等功能。
1.3 光電式谷物產(chǎn)量計量系統(tǒng)軟件設(shè)計
光電式谷物產(chǎn)量計量軟件系統(tǒng)基于Microsoft Visual Studio 2010平臺開發(fā),采用C++語言進行程序編寫,實現(xiàn)谷物收獲作業(yè)時的谷物產(chǎn)量、GPS信息及升運器轉(zhuǎn)速等信息的接收、解析、顯示、存儲和查看等功能。圖3所示為的光電式谷物產(chǎn)量計量軟件系統(tǒng)主界面,系統(tǒng)采用RS485總線通訊,采樣間隔時間為100 ms,設(shè)備地址為1,能夠?qū)崟r顯示谷物產(chǎn)量、升運器轉(zhuǎn)速、經(jīng)緯度和時間等信息,主要由系統(tǒng)設(shè)置模塊、數(shù)據(jù)處理模塊、數(shù)據(jù)存儲模塊、實時顯示模塊組成。
軟件系統(tǒng)各部分的功能如下:1)基本參數(shù)設(shè)置功能。輸入谷物種類、谷物水分、谷物密度、收割區(qū)域和收割人等基本信息,實現(xiàn)谷物基本參數(shù)設(shè)置功能。2)數(shù)據(jù)處理功能。數(shù)據(jù)處理功能包括對2路傳感器信號和GPS信號的接收與解析,以及光電漫反射谷物產(chǎn)量模型的數(shù)據(jù)處理與計算。3)數(shù)據(jù)實時顯示功能。實現(xiàn)谷物產(chǎn)量信息、速度信息、基本設(shè)置信息實時顯示與儀表指示。4)數(shù)據(jù)存儲功能。實現(xiàn)谷物聯(lián)合收割機谷物田間作業(yè)過程中收割時間、谷物流量、升運器轉(zhuǎn)速、收割機行走速度、經(jīng)度、緯度、收割面積、谷物產(chǎn)量等數(shù)據(jù)的保存與查看。
圖3 光電式漫反射谷物產(chǎn)量計量軟件系統(tǒng)
1.4 光電式谷物產(chǎn)量計量模型
在研究了谷物對光電漫反射作用的光學原理和谷物的運動學原理的基礎(chǔ)上,建立了刮板所載谷物近似幾何模型。圖4是刮板所載谷物近似幾何模型圖。如圖所示谷物堆積形狀近似模擬為4個部分,包括下部刮板體積、中部規(guī)則長方體體積、上部鍥體體積和升運器鏈條體積。收割機升運器與水平地面的傾角為21o,傳感器中心線到刮板前沿的垂直距離為,mm。收割機升運器刮板的長度、寬度和高度,mm。升運器鏈條的長度和寬度分別為和,mm。對應本研究中的TB60型聯(lián)合收割機來說都是常量。
a. 傳感器安裝示意圖
a. Diagram for sensor installation
b. 谷堆近似幾何模型
b. Approximate geometric model of grain
1. 籽粒升運器 2. 谷物 3. 漫反射型谷物體積傳感器 4. 升運器刮板5. 傳動鏈條
1. Elevator of grain 2. Grain 3. Diffuse reflectance grain volume sensor 4. Scraper of elevator 5. Driving chain
注:為刮板間距,mm;為收割機與地面傾角,(°);為傳感器中心線到刮板前沿的垂直距離,mm;為刮板長度,mm;為刮板寬度,mm;為刮板高度,mm;x為刮板所載谷物層厚度,mm;ctg為上部鍥體中心高度,mm;為鏈條長度,單位mm;為鏈條寬度,mm。
Note:: the distance of scraper, mm;: the obliquity of combine harvester and ground, (o);: vertical distance between the sensor centerline and the scraper leading edge, mm;: the length of scraper, mm;: the width of scraper, mm;: the height of scraper mm; x: the thickness of grain on scraper, mm;ctg: the center height of wedge, mm;: the length of chain, mm;: the width of chain, mm.
圖4 刮板所載谷物近似幾何模型圖
Fig.4 Approximation geometric model of grain
根據(jù)式(4)將所有的瞬時產(chǎn)量求和,可以求出對應區(qū)域的谷物總產(chǎn)量
為了得到更準確的光電式谷物產(chǎn)量模型計算公式,需在收割機田間作業(yè)時,通過田間標定試驗來獲得實際的與的關(guān)系式,以進行分析和校正。
2.1 系統(tǒng)主要傳感器性能測試試驗
試驗采用自主研發(fā)設(shè)計的谷物測產(chǎn)實驗臺模擬聯(lián)合收割機正常工作狀況,以三相變頻電動機為動力源,測試臺架條件下漫反射型谷物體積傳感器和升運器轉(zhuǎn)速傳感器的準確性和穩(wěn)定性。圖5是谷物測產(chǎn)實驗臺結(jié)構(gòu)示意圖。實驗臺包括顯示器、漫反射型谷物體積傳感器、入糧裝置、籽粒升運器、升運器轉(zhuǎn)速傳感器和調(diào)速電動機。
為檢驗系統(tǒng)主要傳感器的準確性和穩(wěn)定性,通過人工調(diào)節(jié)自主研發(fā)的實驗臺升運器刮板不輸送谷物,以刮板實際厚度12 mm空載運轉(zhuǎn)的條件下,調(diào)節(jié)電動機速度使升運器轉(zhuǎn)速與田間作業(yè)工況相當[25],選定650、750、850、950和1 050 r/min 5個轉(zhuǎn)速水平。記錄升運器轉(zhuǎn)速和刮板厚度測量數(shù)據(jù)。表1為系統(tǒng)主要傳感器臺架試驗數(shù)據(jù)。
1. 顯示器2. 漫反射型谷物體積傳感器 3. 入糧裝置4. 籽粒升運器 5. 升運器轉(zhuǎn)速傳感器 6. 調(diào)速電動機
從表1試驗數(shù)據(jù)可以看出升運器轉(zhuǎn)速傳感器測量最大誤差為1.87%,低于2.00%,具有較好的準確性,各轉(zhuǎn)速水平下,標準差最大為2.33 r/min,離散程度小,具有較好的穩(wěn)定性。
在升運器轉(zhuǎn)速具有較好的準確性和穩(wěn)定性的基礎(chǔ)上,對表1試驗數(shù)據(jù)進行處理得到刮板空載時在各轉(zhuǎn)速水平下的厚度測量平均值為11.65 mm,與刮板實際厚度12.00 mm最大誤差為3.41%,小于3.50%,最大測量值與最小測量值只相差0.18 mm,具有較好的穩(wěn)定性。
通過調(diào)節(jié)試驗臺調(diào)速電動機保持升運器轉(zhuǎn)速恒定的條件下,使用與刮板材質(zhì)相同的黑色橡膠加工制作成若干個長度、寬度相同高度的不同的谷堆模型,通過3 M雙面泡棉膠帶固定在升運器刮板上運轉(zhuǎn),用于模擬不同的谷物厚度,分別為23、40、80、120和150 mm,記錄刮板谷物厚度測量值。表1數(shù)據(jù)表明刮板谷物厚度測量值與刮板谷物厚度真實值最大測量誤差為2.17%,低于3.00%具有較好的準確性。
表1 系統(tǒng)主要傳感器臺架試驗數(shù)據(jù)表
注:刮板空載厚度測量值*:在試驗臺刮板空載時,調(diào)節(jié)升運器轉(zhuǎn)速,根據(jù)脈寬信號計算空載刮板厚度值,與刮板實際厚度12 mm進行誤差分析。
Note: Predict without load thickness:Keeping platform work without load, adjusting the elevator speed, according to the pulse width signal without load scraper thickness value is calculated, and the scraper actual thickness is 12 mm for error analysis.
2.2 系統(tǒng)田間動態(tài)性能驗證試驗
光電式谷物產(chǎn)量計量系統(tǒng)田間動態(tài)性能驗證試驗于2016年6月小麥收獲季節(jié)在北京市小湯山國家精準農(nóng)業(yè)研究示范基地進行,試驗地地處116.265 466°~116.270 241°E,40.111 550°~40.111 161°N,小麥種植品種為京冬22,小麥面積為70 hm2。試驗現(xiàn)場氣象條件良好:晴,氣溫22~32 ℃。聯(lián)合收割機試驗機型為中國中聯(lián)重科農(nóng)業(yè)機械責任有限公司設(shè)計生產(chǎn)的自走輪式TB60谷物聯(lián)合收割機,收割機喂入量6 kg/s,割幅寬度2.51 m,發(fā)動機功率86.4 kW,收割機行走速度2~4 km/h,外形尺寸6 600 mm×3 000 mm×3 420 mm。田間性能試驗分為系統(tǒng)田間空載試驗,系統(tǒng)模型標定試驗和小麥收割測產(chǎn)試驗3個階段。通過空載試驗,對刮板厚度的脈寬信號進行差分濾波,以降低干擾;通過模型標定試驗得到標定系數(shù)和谷物產(chǎn)量計算模型;通過小麥田間收割測產(chǎn)試驗,對光電式谷物產(chǎn)量計量系統(tǒng)測量精度和性能進行 驗證。
2.2.1 系統(tǒng)田間空載試驗
空載試驗在小麥實驗田相鄰空置實驗田進行,實驗田地形特征和土壤性能與小麥種植田均相似。在空載試驗中,調(diào)節(jié)收割機的升運器轉(zhuǎn)速在200~1 500 r/min空載運行,對升運器刮板厚度輸出脈寬信號進行測試。圖6是刮板空載數(shù)據(jù)輸出特性曲線。
從圖6可見,隨著升運器速度增加,空載刮板脈寬時間逐漸降低??蛰d特性擬合曲線決定系數(shù)2達到0.941 1。根據(jù)試驗數(shù)據(jù)處理得到升運器轉(zhuǎn)速為田間工況水平750 r/min和850 r/min時,谷物計量系統(tǒng)測得升運器轉(zhuǎn)速平均值分別為734 r/min和836 r/min,測量誤差為2.13%和1.65%,此時升運器刮板厚度測量值分別為11.74 mm和11.65 mm,與刮板實際厚度比較,誤差為2.16%和2.91%,光電式谷物產(chǎn)量計量系統(tǒng)在田間動態(tài)空載運行時穩(wěn)定性,測量精度在4.00%以內(nèi),滿足系統(tǒng)田間測產(chǎn)要求。
圖6 系統(tǒng)空載試驗輸出特性曲線
2.2.2 系統(tǒng)田間標定試驗
在谷物實際收獲作業(yè)中不同型號的谷物聯(lián)合收割機刮板的厚度及尺寸存在差異,當籽粒升運器刮板轉(zhuǎn)動時,谷物的堆積幾何形狀和理論形狀存在差異,為校正光電式谷物產(chǎn)量計量系統(tǒng)產(chǎn)量模型計算公式,對系統(tǒng)進行了標定試驗,得到標定系數(shù),標定不同機型刮板所載谷堆厚度的變化信息,從而得到實際的谷物質(zhì)量與谷堆厚度的關(guān)系式。如圖4所示的谷物堆積幾何模型,在標定試驗中測得試驗機型TB60谷物聯(lián)合收割機的傳感器中心線到刮板前沿的垂直距離為為25 mm,,,分別為收割機升運器刮板的長度、寬度和高度,值為 136、65和12 mm。和分別為升運器鏈條的長度和寬度,值為40和30 mm。根據(jù)公式(2)可得到谷物體積公式為:
由式(6)計算得到谷物實時體積,再結(jié)合式(7)中谷物密度和標定系數(shù)即可計算得到區(qū)域面積內(nèi)的谷物總產(chǎn)量,本次試驗中測得的谷物密度為730.5 kg/m3。
2.2.3 系統(tǒng)小麥收割測產(chǎn)試驗
標定試驗之后進行田間驗證試驗,驗證試驗共進行6個車次,試驗中每個車次谷物喂入量在0.1~6 kg/s之間,每個車次分別代表不同面積的小麥收割區(qū)域,由谷物產(chǎn)量計算模型公式(6)和公式(7)計算獲得谷物瞬時體積和質(zhì)量,將各車次區(qū)域面積的體積和質(zhì)量累加得到谷物總產(chǎn)量值,通過人工采樣稱量獲得谷物實際產(chǎn)量。表2是田間驗證試驗數(shù)據(jù)。
表2 田間驗證試驗數(shù)據(jù)表
系統(tǒng)獲得的谷物產(chǎn)量和實際測得的谷物產(chǎn)量決定系數(shù)R達到0.848 4,誤差范圍在-3.51%~3.36%,整體小于4.00%,且誤差波動較小,說明系統(tǒng)具有較好的準確性和魯棒性,完全滿足田間實際測產(chǎn)需要。試驗中最大誤差為-3.51%,對收割機田間工作狀況和系統(tǒng)實際運行情況分析主要是由于收獲區(qū)域地面起伏不平、地塊不規(guī)則導致收割機行走路線變化,割幅未達到2.51 m的正常工作幅寬等所造成的。此外,由于田間試驗時谷物水分、溫度等參數(shù)也存在差異,也會造成誤差的產(chǎn)生。
1)基于光電漫反射原理研發(fā)設(shè)計了谷物產(chǎn)量計量系統(tǒng),內(nèi)嵌光電漫反射谷物產(chǎn)量計量模型,可以實現(xiàn)谷物產(chǎn)量、行進速度、位置等信息的實時測量與顯示,對谷物喂入量在0.1~6 kg/s范圍內(nèi)均滿足要求。
2)系統(tǒng)性能驗證試驗結(jié)果表明,漫反射型谷物體積傳感器和升運器轉(zhuǎn)速傳感器穩(wěn)定性和準確性均滿足系統(tǒng)要求,田間動態(tài)試驗表明系統(tǒng)預測值與實測值決定系數(shù)2達到0.848 4,系統(tǒng)動態(tài)測量誤差最大為3.51%,滿足田間測產(chǎn)的實際需要。
為了進一步提高光電式谷物產(chǎn)量計量系統(tǒng)的預測模型精度,下一步將考慮谷物水分和溫度對模型的影響,仍需開展大量的田間動態(tài)試驗。
[1] 汪懋華. 精細農(nóng)業(yè)[M]. 北京:中國農(nóng)業(yè)大學出版社, 2011:1-6.
[2] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機械化水平促進農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學報,2016,32(1):1—11. Luo Xiwen, Liao Juan, Hu Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[3] Loghavi M, Ehsani R, Reeder R. Development of a portable grain mass flow sensor test rig[J]. Computers and Electronics in Agriculture, 2008, 61(2): 160-168.
[4] Maertens K, Reyns P, De Baerdemaeker J. Double adaptive notch filter for mechanical grain flow sensors[J]. Journal of Sound and Vibration, 2003, 266 (3): 645-654.
[5] Reinke R, Dankowicz H, Phelan J, et al. A dynamic grain flow model for a mass flow yield sensor on a combine[J]. Precision Agriculture, 2011, 12(5): 732-749.
[6] Shoji K, Itoh H, Kawamura T. In-situ non-linear calibration of grain-yield sensor–optimization of parameters for flow rate of grain vs. force on the sensor[J]. Engineering in Agriculture, Environment and Food, 2009, 2(3): 78-82.
[7] Shoji K, Miyamoto M. Improving the accuracy of estimating grain weight by discriminating each grain impact on the yield sensor[J]. Precision Agriculture, 2014, 15(1): 31-43.
[8] Burks T F, Shearer S A, Fulton J P, et al. Effects of time- varying inflow rates on combine yield monitor accuracy[J]. Applied Engineering in Agriculture, 2004, 20(3): 269-275.
[9] Fulton P, Sobolik J, Shearer A, et al. Grain yield monitor flow sensor accuracy for simulated varying field slopes[J]. Applied Engineering in Agriculture, 2009, 25(1): 44-48.
[10] An Xiaofei, Meng Zhijun, Wu Guangwei, et al. Development of grain yield monitoring system based on CAN bus technology[J]. Transactions of the Chinese Society of Agriculture Engineering(Transactions of the CSAE), 2015, 31(Supp.2): 262-266. (in English with Chinese abstract)
[11] 劉碧貞,黃華,祝詩平,等. 基于北斗/GPS的谷物收割機作業(yè)綜合管理系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2015,31(10): 204-210. Liu Bizhen, Huang Hua, Zhu Shiping, et al. Integrated management system of grain combine harvester based on Beidou& GPS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 204-210. (in Chinese with English abstract)
[12] 武佳,李民贊,鄭立華,等. 谷物聯(lián)合收獲機測產(chǎn)系統(tǒng)性能試驗[J]. 農(nóng)業(yè)機械學報,2012,43(增刊1):108-113. Wu Jia, Li Minzan, Zheng Lihua, et, al. Performance test of yield monitor system for grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.1): 108-113. (in Chinese with English abstract)
[13] 陳樹人,仇華錚,李耀明,等. 谷物流量傳感器試驗臺的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(16):41-46. Chen Shuren, Qiu Huazheng, Li Yaoming, et al. Design and experiment of test-bed for grain flow sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 41-46. (in Chinese with English abstract)
[14] 張惠莉. 面向康拜因收獲過程的谷物流量在線實時測量方法的研究[D]. 北京:中國農(nóng)業(yè)大學,2002. Zhang Huili. The Research of the Methods of Measuring Grain Flow on Real Time for Combines[D]. Beijing: China Agricultural University, 2002.
[15] 周俊,苗玉彬,張鳳傳,等. 平行梁沖量式谷物質(zhì)量流量傳感器田間實驗[J]. 農(nóng)業(yè)機械學報,2006,37(6):102-105. Zhou Jun, Miao Yubin, Zhang Fengchuan, et al. Field testing of parallel beam impact-based yield monitor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 102-105. (in Chinese with English abstract)
[16] 張小超,胡小安,苑嚴偉,等. 精準農(nóng)業(yè)智能變量作業(yè)裝備研究開發(fā)[J]. 農(nóng)業(yè)工程,2011,1(3):26-32. Zhang Xiaochao, Hu Xiaoan, Yuan Yanwei, et al. Research and development of intelligent agricultural machinery on precision agriculture[J]. Agricultural Engineering. 2011, 1(3): 26-32. (in Chinese with English abstract)
[17] 張小超,胡小安,張愛國,等. 基于稱重法的聯(lián)合收獲機測產(chǎn)方法[J]. 農(nóng)業(yè)工程學報,2010,26(3):125-129. Zhang Xiaochao, Hu Xiaoan, Zhang Aiguo, et al. Method of measuring grain-flow of combine harvester based on weighing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 125-129. (in Chinese with English abstract)
[18] 李偉,張小超,胡小安,等. 聯(lián)合收獲機稱量式測產(chǎn)系統(tǒng)軟件設(shè)計[J]. 農(nóng)業(yè)機械學報,2011,42(增刊1):94-99. Li Wei, Zhang Xiaochao, Hu Xiaoan, et al. Design of intelligent yield monitoring software for combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(Supp.1): 94-99. (in Chinese with English abstract)
[19] 叢秉華,周俊. 雙平行梁谷物流量傳感器振動噪聲消除方法[J]. 傳感器技術(shù)學報,2013,26(3):377-381. Cong Binghua, Zhou Jun. Vibration noise elimination for a grain flow sensor of dual parallel beam load cells[J]. Chinese Journal of Sensors and Actuators, 2013, 26(3): 377-381. (in Chinese with English abstract)
[20] 李向東,呂風榮,張德奇,等. 小麥田間測產(chǎn)和實際產(chǎn)量轉(zhuǎn)換系數(shù)實證研究[J]. 麥類作物學報,2016,36(1):69-76. Li Xiangdong, LüFengrong, Zhang Deqi, et al. Empirical study on conversion factors between yield monitoring and actual yield of winter wheat[J]. Journal of Triticeae Crops. 2016, 36(1): 69-76. (in Chinese with English abstract)
[21] 魏新華,張進敏,但志敏,等. 沖量式谷物流量傳感器測產(chǎn)信號處理方法[J]. 農(nóng)業(yè)工程學報,2014,30(15):222-228. Wei Xinhua, Zhang Jinmin, Dan Zhimin, et al. Signal processing method of impact-based grain flow sensor for predicted yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 222-228.(in Chinese with English abstract)
[22] 鄭立華,郭享,李民贊,等. 面向異構(gòu)平臺的谷物測產(chǎn)數(shù)據(jù)采集及實現(xiàn)[J]. 農(nóng)業(yè)工程學報,2016,32(9):142-149. Zheng Lihua, Guo Xiang, Li Minzan, et al. Grain yield data collection and service for heterogeneous platforms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 142-149. (in Chinese with English abstract)
[23] 李新成,李民贊,王錫九,等. 聯(lián)合收割機遠程測產(chǎn)系統(tǒng)開發(fā)及降噪試驗[J]. 農(nóng)業(yè)工程學報,2014,30(2):1-8. Li Xincheng, Li Minzan, Wang Xijiu, et al. Development and denoising test of grain combine with remote yield monitoring system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 1-8. (in Chinese with English abstract)
[24] 李新成,李民贊,鄭立華,等. 谷物聯(lián)合收獲機測產(chǎn)系統(tǒng)采樣頻率優(yōu)化與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(增刊):74-78. Li Xincheng, Li Minzan, Zheng Lihua, et al. Test and optimization of sampling frequency for yield monitor system of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(supp): 74-78.(in Chinese with English abstract)
[25] 李新成,孫茂真,李民贊,等. 谷物聯(lián)合收獲機自動測產(chǎn)系統(tǒng)產(chǎn)量模型[J]. 農(nóng)業(yè)機械學報,2015,46(7):91-96. Li Xincheng, Sun Maozhen, Li Minzan, et al. Modeling algorithm for yield monitor system of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 91-96. (in Chinese with English abstract)
[26] 陳進,寧小波,李耀明,等. 聯(lián)合收獲機前進速度的模型參考模糊自適應控制系統(tǒng)[J]. 農(nóng)業(yè)機械學報,2014,45(10):87-91. Chen Jin, Ning Xiaobo, Li Yaoming, et al. Fuzzy adaptive control system of forward speed for combine harvester based on model reference[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 87-91. (in Chinese with English abstract)
[27] 梁學修,陳志,張小超,等. 聯(lián)合收獲機喂入量在線監(jiān)測系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機械學報,2013,44(增刊):1-6.Liang Xuexiu, Chen Zhi, Zhang Xiaochao, et al. Design and experiment of on-line monitoring system for feed quantity of combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp): 1-6. (in Chinese with English abstract)
[28] 崔笛,李民贊,張俊寧,等. 基于光電原理的容積式谷物流量傳感器試驗研究[C]//廣州:中國農(nóng)業(yè)工程學會2005年學術(shù)年會論文集. 2005. Cui Di, Li Minzan, Zhang Junning, et al. Development of a grain volumetric-flow sensor based on photoelectrical principle[C]//GuangZhou: Proceedings of Chinese Society of Agricultural Engineering Conference 2005. 2005.
[29] 沈雷. 輸棉管籽棉流量光電檢測模型建立與優(yōu)化[D]. 石河子:石河子大學,2014.Shen Lei. The Establishment and Optimization of Photoelectric Detection Model for Seed Cotton Mass Flow in Pipe[D]. Shihezi: Shihezi University. 2014.
[30] 林昌建. 基于光電傳感器的棉花產(chǎn)量在線監(jiān)測系統(tǒng)研究[D]. 上海:上海交通大學,2013. Lin Changjian. Study on Cotton Yield Online Monitoring System Based on Photoelectric Sensing[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[31] 安光輝,馬蓉,蘆帥,等. 棉纖維質(zhì)量密度光學檢測模型的優(yōu)化[J]. 農(nóng)業(yè)工程學報,2012,28(10):253-258. An Guanghui, Ma Rong, Lu Shuai, et al. Optimization of optical measurement model for mass density of cotton fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 253-258. (in Chinese with English abstract)
[32] 周利明,李樹君,張小超,等. 基于電容法的棉管籽棉質(zhì)量流量檢測[J]. 農(nóng)業(yè)機械學報,2014,45(6):47-52. Zhou Liming, Li Shujun, Zhang Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance
Fu Xinglan1,3, Zhang Zhaoguo1※, An Xiaofei2,3,4, Zhao Chunjiang2,3,5, Li Chenyuan1, Yu Jiayang1,3
(1.650000; 2.100097; 3.100097;4.100097; 5.100097)
Development of remote sensing (RS), geographical information system (GIS) and global positioning system (GPS) has provided new methods for obtaining field grain yield information, which allows better description of spatial variability for grain yield. Monitoring grain yield has become an essential component in precision agriculture, which provides better guidance for grain growth and management such as variable fertilizing, irrigating and spraying. In order to further improve the monitoring accuracy of grain combine harvester, a new real-time grain yield monitoring system based on photoelectric principle was developed in this study. The system was composed of sensor module, grain yield data acquisition module, GPS module and grain yield display terminal. The sensor module included diffuse reflectance grain volume senor as key component of the system and rotating speed sensor of elevator. A model of grain mass on the scraper was established based on optical principle of photoelectric diffuse reflection effect and grain kinematic principle. Prediction model and diffuse reflectance grain yield monitoring software were embedded in the grain yield display terminal. When the elevator scraper of the combine harvester with the grain passed the diffuse reflectance grain volume sensor, the light path would be blocked intermittently. As a result, the corresponding pulse signal would be generated and meanwhile the elevator’s rotating speed sensor would output the rotating speed signal. According to photoelectric principle, the size of pulse signal was proportional to the thickness of grain on the scraper. Subsequently the grain yield data acquisition module converted sensor signals into standard signals, and grain yield information including real-time grain yield and total yield, elevator rotating speed, combine harvester speed, harvest area, and longitude and latitude would be obtained and displayed on the terminal. In order to evaluate the performance of the grain yield monitoring system, both laboratory platform experiment and field dynamic experiment were conducted. For the platform experiment, an experiment platform was designed, which was composed of LED (light-emitting diode) terminal, diffuse reflectance grain volume sensor, grain inlet, elevator, elevator’s rotating speed sensor and motor. The result of platform experiment showed that the rotating speed sensor of elevator had the maximum error of 1.87%, which was less than 2.00%, and the maximum standard deviation of 2.33 r/min, which indicated the sensor had a small discrete degree; the diffuse reflectance grain volume sensor had the maximum error of 3.14%, which was less than 3.50%, and both the accuracy and the stability satisfied the requirements. Field dynamic experiment included 3 parts: field experiment without loading, model calibration experiment and field experiment of wheat yield. The field experiment without loading showed that the pulse signal intensity of diffuse reflectance grain volume sensor decreased with the elevator’s rotating speed increasing, the determination coefficient (2) of output curve was 0.941 1, and the measurement error was within 4.00%. For the model calibration experiment, domestic TB60 type combine harvester was calibrated to obtain the calibration factor of 0.071, and the relationship between grain mass and thickness was gotten. The field wheat yield experiment showed that the grain yield monitoring system based on photoelectric principle was maximum error of 3.51%, which was smaller than the double-plate differential method. The system offered a wide range of grain feeding quantity and satisfied the need of field grain yield monitoring. The research provides a new method to monitor real-time grain yield, and the system is applicable to domestic mainstream models of combine harvester in China.
grain; photoelectric devices; sensors; combine harvester; yield monitor system
10.11975/j.issn.1002-6819.2017.03.004
S126
A
1002-6819(2017)-03-0024-07
2016-08-29
2016-12-19
北京市農(nóng)林科學院青年基金(QNJJ201529);國家重點研發(fā)計劃種行肥行精準擬合與判斷關(guān)鍵技術(shù)與裝備(2016YFD0200605);國家高技術(shù)研究發(fā)展計劃(863計劃)農(nóng)機精準作業(yè)協(xié)同支撐技術(shù)與平臺(2013AA102308)
付興蘭,女,云南大理人,主要從事農(nóng)業(yè)信息化技術(shù)研究。昆明昆明理工大學現(xiàn)代農(nóng)業(yè)工程學院 650000 Email:1581433861@qq.com
張兆國,男,山東單縣人,教授,博士生導師,主要從事農(nóng)業(yè)裝備設(shè)計與制造研究。昆明昆明理工大學現(xiàn)代農(nóng)業(yè)工程學院 650000。E-mail:zhaoguozhang@163.com
付興蘭,張兆國,安曉飛,趙春江,李晨源,于佳楊.光電漫反射式聯(lián)合收割機谷物產(chǎn)量計量系統(tǒng)研發(fā)與性能試驗[J]. 農(nóng)業(yè)工程學報,2017,33(3):24-30. doi:10.11975/j.issn.1002-6819.2017.03.004 http://www.tcsae.org
Fu Xinglan, Zhang zhaoguo, An Xiaofei, Zhao Chunjiang, Li Chenyuan, Yu Jiayang. Development and performance experiment on grain yield monitoring system of combine harvester based on photoelectric diffuse reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 24-30. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.004 http://www.tcsae.org