趙 秋 吳 迪 錢 姍 高賢彪 孫向陽
(1.北京林業(yè)大學(xué)林學(xué)院, 北京 100083; 2.天津市農(nóng)業(yè)資源與環(huán)境研究所, 天津 300192)
局部循環(huán)供氧生物膜技術(shù)處理分散污水脫氮除磷分析
趙 秋1,2吳 迪2錢 姍2高賢彪2孫向陽1
(1.北京林業(yè)大學(xué)林學(xué)院, 北京 100083; 2.天津市農(nóng)業(yè)資源與環(huán)境研究所, 天津 300192)
針對現(xiàn)代農(nóng)業(yè)科技示范區(qū)污水特點,在處理農(nóng)村生活污水的“兩級回流連續(xù)供氧生物膜”工藝基礎(chǔ)上設(shè)計“兩級交替回流局部循環(huán)供氧生物膜”工藝,并對該工藝處理分散污水的脫氮除磷效能進行了實際應(yīng)用研究。系統(tǒng)采用沉淀池和循環(huán)池交替回流技術(shù),簡化調(diào)節(jié)池為集水池,改造水解酸化池為水解酸化調(diào)節(jié)池,在平均處理量100 t/d,水力停留時間(HRT)為2 d的情況下,穩(wěn)定運行2 a結(jié)果表明:工藝對有機污染物、NH3-N、總氮和總磷的去除率分別為71.6%、64.4%、45.5%和72.0%;出水有機污染物、NH3-N、總氮和總磷的平均質(zhì)量濃度分別為15.3、9.2、17.2、0.8 mg/L,出水符合城鎮(zhèn)污水處理廠污染物排放(GB 18918—2002)一級B標準。進水有機污染物與總氮比值、有機污染物與總磷比值與總磷、有機污染物和NH3-N去除率呈正相關(guān)關(guān)系,與總氮去除率呈負相關(guān)關(guān)系。實踐證實,該工藝對波動較大的冬季低溫期及復(fù)雜水質(zhì)期高沖擊、高負荷的特殊分散污水具有較好的脫氮除磷和有機物去除能力。
分散污水; 局部循環(huán)供氧; 生物膜; 兩級交替回流; 脫氮除磷
分散污水(新農(nóng)村、旅游景區(qū)、觀光園區(qū)、農(nóng)業(yè)示范區(qū)等地的污水)具有高氮磷的特點,對河流湖泊等受納水體造成嚴重污染,使其成為我國現(xiàn)階段面源污染的主要污染源之一[1-4]。
目前,我國分散污水處理技術(shù)(如一體化脫氮除磷污水凈化裝置[5]、小型合并處理凈化槽[6]、“分散處理系統(tǒng)”、“菲爾托”技術(shù)、一體化集成凈化裝置等[7-10])在氮、磷去除方面很難達到排放標準。而人工濕地和人工復(fù)合生態(tài)床等處理技術(shù)也存在有機負荷低、處理效果受季節(jié)影響大和日常維護難等缺點[11-12]。
水資源供需矛盾在京津冀地區(qū)更加突出,因而再生水被廣泛用于農(nóng)業(yè)灌溉、景觀水體、綠化、養(yǎng)殖等領(lǐng)域,尤其是補充景觀水體和生態(tài)河道成為現(xiàn)階段利用的主要方面,這對出水的氮、磷提出了更高要求[13-14]。
本文所用工藝為自主開發(fā)的“兩級交替回流局部循環(huán)供氧生物膜”工藝,本工藝是在處理農(nóng)村生活污水的“兩級回流連續(xù)曝氣生物膜”工藝基礎(chǔ)上開發(fā)的新工藝[15]。本文以實際運行的污水處理站為研究對象,探討間歇進水條件下,新工藝對有機物和氮、磷的去除效果。
1.1 試驗裝置
天津現(xiàn)代農(nóng)業(yè)科技創(chuàng)新基地位于天津市武清開發(fā)區(qū)西側(cè),距離市區(qū)較遠,產(chǎn)生的污水無法納入市政管網(wǎng),屬于典型的分散污水。基地占地200 hm2,日常工作人員300余人,高峰期可達1 200人,污水主要由行政辦公、實驗室、專家樓、宿舍、餐廳和中試孵化6個區(qū)域產(chǎn)生。整個污水處理工程示意圖如圖1所示。
圖1 工藝流程圖Fig.1 Schematic diagram of combined process of experimental tanks1.泄洪管 2.格柵 3.布水板 4.生物填料 5.鼓風(fēng)機 6.環(huán)形導(dǎo)流板 7.水泵 8.污泥泵 9.曝氣系統(tǒng) 10.排泥口 11.污水泵
污水處理站總有效容積為234 m3,設(shè)計最大處理能力為150 m3/d,平均進水量為100 m3/d,水力停留時間約為2 d(HRT)。其中,集水池33.6 m3、水解酸化調(diào)節(jié)池120 m3、局部循環(huán)供氧池75 m3、沉淀池27 m3、循環(huán)池14.4 m3。污水泵、污泥泵為南方泵業(yè)有限公司生產(chǎn)的50WQ20-15-2.2型;水泵為50WQ15-15-1.5型;三葉羅茨鼓風(fēng)機為章晃鼓風(fēng)機有限公司生產(chǎn)的SSR-65-3型,其轉(zhuǎn)速為1 530 r/min;風(fēng)量2.0 m3/min,2臺羅茨鼓風(fēng)機交替工作。污泥泵每2 h工作10 min,水泵保證系統(tǒng)在無進水和污泥回流情況下的正常水力推流。全部操作均由S7-200型PLC控制中心(西門子電氣集團有限公司)進行控制。
1.2 試驗水質(zhì)指標
試驗進水時間2013年7月—2015年6月。進水水質(zhì)比農(nóng)村生活污水復(fù)雜[16],具體水質(zhì)指標為有機污染物質(zhì)量濃度33.2~166.7 mg/L、NH3-N質(zhì)量濃度14.2~50.4 mg/L、總氮質(zhì)量濃度22.6~62.2 mg/L、總磷質(zhì)量濃度1.835~6.96 mg/L、pH值為6.5~8.1。
1.3 試驗設(shè)計與運行管理
該項目于2013年4月建成后,于2013年6月完成設(shè)備運行工況的調(diào)試,在調(diào)試過程中一直以間歇進水、局部供氧、交替回流方式運行。試驗從7月開始分別在每月中旬采集一次出水樣和進水樣,分別為500 mL,連續(xù)采集24個月,樣品冷凍保存。
試驗設(shè)計最大處理量為150 m3/d,實際最大進水量為140 m3/d,最小進水量為80 m3/d,平均進水量為100 m3/d;系統(tǒng)采用沉淀池和循環(huán)池交替回流,PLC自動控制,調(diào)節(jié)回流比為2∶1;水解酸化調(diào)節(jié)池和局部循環(huán)供氧池組合填料填充深度均為2.0 m,填充率分別為60%和70%,水力負荷分別為1.25 m3/(m3·d)和2.0 m3/(m3·d)。進水方式為液位自動控制間歇進水,污水泵工作時間約6 h/d。曝氣方式為連續(xù)局部供氧,污泥泵工作頻率為每2 h工作10 min,水泵保證系統(tǒng)在無進水和污泥回流情況下的正常水力推流。
1.4 測定項目及方法
有機污染物質(zhì)量濃度采用稀釋與接種法測定;NH3-N質(zhì)量濃度利用流動分析儀測定;pH值利用pH-HJ90B型酸度劑測定;總磷質(zhì)量濃度采用鉬酸銨分光光度法測定;總氮質(zhì)量濃度測定參照文獻[17]。
1.5 數(shù)據(jù)分析
試驗數(shù)據(jù)采用Excel軟件進行統(tǒng)計分析和制圖,用SPSS 17.0軟件進行統(tǒng)計分析,LSD法作多重比較。
通過有機污染物質(zhì)量濃度、NH3-N質(zhì)量濃度、總氮質(zhì)量濃度和總磷質(zhì)量濃度4項指標的監(jiān)測數(shù)據(jù)總結(jié)其運行規(guī)律并對可能影響其運行效果的因素進行分析。
2.1 對有機污染物的去除效果
如圖2所示,局部循環(huán)供氧一體化生物膜工藝對進水波動較大的分散污水有機污染物有較好的去除效果,并具有良好的穩(wěn)定性。2 a運行期有機污染物去除率維持在47.6%~90.9%之間,平均去除率為71.6%,顯著高于兩級回流連續(xù)曝氣工藝的63.7%;出水有機污染物質(zhì)量濃度穩(wěn)定在6.5~23.6 mg/L之間,平均值為15.3 mg/L,優(yōu)于改造前的有機污染物20.8 mg/L。對于波動強、高有機物污水處理約18個月時間有機污染物去除率穩(wěn)定在75%以上,有機污染物質(zhì)量濃度穩(wěn)定在13.6 mg/L以下。該工藝的高度穩(wěn)定性和處理效果得益于兩方面:第一,水解酸化調(diào)節(jié)池和局部供氧池進水頻率改變,即污水泵啟停頻次由每天10次增加到20~25次,啟動時間由每次30 min縮短至10~12 min,進水量由每次15 m3降低到5 m3,緩解了瞬間大量進水對系統(tǒng)的沖擊,對系統(tǒng)工作的穩(wěn)定性起到關(guān)鍵性的作用;第二,水解酸化調(diào)節(jié)池組合填料腐解微生物與泥水循環(huán)系統(tǒng)回流污泥協(xié)同作用促進了有機物的截流與降解功能,同時加速了反硝化進程。史明明等[18]也認為腐解微生物是消耗碳源的重要條件。
圖2 有機污染物去除效果Fig.2 Monthly variation of BOD5 removal performance
運行期間,有2個特殊時期,分別為冬季低溫期(12月、1月、2月、3月)和水質(zhì)復(fù)雜期(10月和11月)。冬季低溫期(進水量和有機物含量均為全年最低水平)有機物平均去除率為58.6%,低于全年平均值。分析原因,冬季進水溫度逐漸降低,微生物新陳代謝速率下降使系統(tǒng)對有機物去除率降低。HE等[19]研究認為低溫導(dǎo)致微生物功能下降。水質(zhì)復(fù)雜期有大量中試孵化區(qū)企業(yè)排放的廢水,雖然進水有機污染物平均質(zhì)量濃度(151.9 mg/L)遠高于整個監(jiān)測期平均值(65.9 mg/L),但出水有機污染物平均質(zhì)量濃度達到了城鎮(zhèn)污水處理廠排放一級B標準,為19.4 mg/L。說明現(xiàn)有工藝對可生化廢水具有較強的處理能力。
圖3 NH3-N去除效果Fig.3 Monthly variation of NH3-N removal performance
圖4 總氮去除效果Fig.4 Monthly variation of TN removal performance
2.2 對NH3-N、總氮的去除效果
由圖3、4可以看出,監(jiān)測期間進水NH3-N平均質(zhì)量濃度為28.0 mg/L,出水NH3-N平均質(zhì)量濃度為9.2 mg/L,NH3-N平均去除率為64.4%;進水總氮平均質(zhì)量濃度為39.4 mg/L,出水總氮平均質(zhì)量濃度為17.16 mg/L,總氮去除率為45.5%。雖然進水的NH3-N和總氮質(zhì)量濃度波動較大(進水NH3-N質(zhì)量濃度為14.2~50.4 mg/L,總氮質(zhì)量濃度為22.6~62.2 mg/L),但是出水NH3-N質(zhì)量濃度維持在15.0~17.0 mg/L之間、總氮質(zhì)量濃度維持在19.0~21.0 mg/L之間,保持相對穩(wěn)定的狀態(tài)。
分散污水中氮主要以有機氮的形式存在,水解酸化調(diào)節(jié)池內(nèi)的氨化菌以污水中有機物為碳源和能源,將有機氮分解為NH3-N;局部循環(huán)供氧池的好氧段(曝氣系統(tǒng)上方、局部循環(huán)供氧池中間區(qū)域)的硝化細菌和亞硝化細菌聯(lián)合作用將NH3-N氧化為亞硝態(tài)氮和硝態(tài)氮;局部循環(huán)供氧池的缺氧段(局部循環(huán)供氧池非曝氣區(qū)域)的反硝化細菌再以硝態(tài)氮和亞硝態(tài)氮為電子受體,利用水解酸化調(diào)節(jié)池分解后的有機物和進水直接分流到此區(qū)域的有機物(水解酸化調(diào)節(jié)池與局部循環(huán)供氧池缺氧段進水比例為1∶5)為碳源和能源將硝態(tài)氮和亞硝態(tài)氮還原為氣態(tài)氮(N2)排出系統(tǒng)實現(xiàn)氮的脫除[20]。使有機物在反硝化過程中被大量消耗,為硝化細菌的生長提供了條件[21-22]。該系統(tǒng)中的生物膜和污泥回流工藝聯(lián)合作用促進了碳源生成、無氧條件和硝酸鹽的積累,從而達到脫氮目的。
進水NH3-N、總氮最高峰和最低峰分別在水質(zhì)復(fù)雜期和冬季低溫期出現(xiàn),與有機物變化規(guī)律相同。
冬季低溫期NH3-N平均去除率51.9%,低于全年平均值(64.4%);出水NH3-N平均質(zhì)量濃度為10.1 mg/L,高于監(jiān)測期間出水平均值9.2 mg/L。NH3-N的去除是由硝化細菌(亞硝化細菌)作用完成的,硝化細菌和亞硝化細菌是一類化能無機微生物,系統(tǒng)中的有機物(碳源)對其有抑制作用。冬季低溫期,系統(tǒng)中大量以有機物為能源微生物活性降低,導(dǎo)致有機物在系統(tǒng)內(nèi)積累,部分有機物進入局部循環(huán)供氧池好氧區(qū),使硝化細菌和亞硝化細菌失去競爭優(yōu)勢,致使NH3-N去除能力降低。
冬季低溫期總氮平均去除率53.9%,高于全年平均值(45.5%);出水總氮質(zhì)量濃度平均值為15.9 mg/L,低于監(jiān)測期間出水平均值17.2 mg/L??偟娜コ罱K由反硝化細菌反硝化作用脫除,反硝化細菌是一類化能有機微生物,在將硝態(tài)氮、亞硝態(tài)氮反硝化為氮氣(N2)的過程中需要大量有機物作為碳源和能源。系統(tǒng)中存在大量生物膜和活性污泥,低溫期利用有機物的微生物(水解酸化調(diào)節(jié)池)活性降低,為反硝化細菌利用有機物提供了條件,同時,水解酸化調(diào)節(jié)池與局部循環(huán)供氧池缺氧區(qū)進水分配比例為5∶1,為局部循環(huán)供氧池缺氧區(qū)的反硝化細菌提供了較為充足的碳源,再加上進水總氮普遍偏低,使其去除率比整個監(jiān)測期間平均去除率高。
水質(zhì)復(fù)雜期由于有大量中試孵化區(qū)企業(yè)排放的有機廢水,其進水總氮平均質(zhì)量濃度為55.7 mg/L,比整個監(jiān)測期間進水總氮平均值(39.4 mg/L)高41.3%,NH3-N平均質(zhì)量濃度為43.3 mg/L,比整個監(jiān)測期間進水NH3-N平均值(28.0 mg/L)高55.0%。而經(jīng)過本工藝處理后,水質(zhì)復(fù)雜期的出水總氮質(zhì)量濃度平均值為20.0 mg/L,出水NH3-N質(zhì)量濃度平均值為10.0 mg/L,均達到了安全排放的指標。在此期間,雖然氨氮、總氮及有機物是整個監(jiān)測期間最高的,但有機物與氮的比值較低;環(huán)境溫度較高,系統(tǒng)微生物均在適宜環(huán)境中生長,有利于系統(tǒng)脫氮效能發(fā)揮。實踐證實,本工藝局部循環(huán)供氧池的好氧/缺氧環(huán)境提高了系統(tǒng)的脫氮能力。
2.3 對總磷的去除效果
圖5 總磷去除效果Fig.5 Monthly variation of TP removal performance
由圖5可知,整個運行過程中系統(tǒng)對總磷平均去除率為72.0%,進水總磷的平均質(zhì)量濃度為3.0 mg/L,出水總磷平均質(zhì)量濃度為0.8 mg/L,達到了城鎮(zhèn)污水處理廠污染物排放標準(GB 18918—2002)中一級B的規(guī)定。根據(jù)分析,整個系統(tǒng)以水解酸化-缺氧/好氧脫氮除磷為核心,將污泥的外排設(shè)置在水解酸化調(diào)節(jié)池末端,二次沉淀池的回流污泥需回流入水解酸化調(diào)節(jié)池,再進入水解酸化調(diào)節(jié)池末端的儲泥池后定期排出系統(tǒng),因而增加了水解酸化池污泥濃度,提高了聚磷菌生物總量[23-24]。同時,工藝設(shè)定排泥頻次(早、中、晚各1次),減少了外排污泥量,有效控制了厭氧水解對磷的釋放,提高了系統(tǒng)對磷的去除效果。
冬季低溫期總磷平均去除率為69.6%,低于整個監(jiān)測期間總磷去除平均值(72.0%)。進水中總磷平均質(zhì)量濃度為2.3 mg/L,出水總磷平均質(zhì)量濃度為0.7 mg/L,均低于整個監(jiān)測期間進水總磷質(zhì)量濃度平均值(3.0 mg/L)和出水總磷質(zhì)量濃度平均值(0.8 mg/L)。冬季低溫是影響聚磷菌活性的主要因素[25-26]。隨著進水溫度逐漸降低,此時進水總磷濃度降低,影響了聚磷菌對磷的攝入量,因此,出水總磷質(zhì)量濃度較低。
水質(zhì)復(fù)雜期總磷平均去除率為79.8%,高于整個監(jiān)測期間總磷去除率平均值(72.0%)。進水中總磷平均質(zhì)量濃度為5.8 mg/L,出水總磷平均質(zhì)量濃度為1.1 mg/L,均高于整個監(jiān)測期間進水總磷質(zhì)量濃度平均值和出水總磷質(zhì)量濃度平均值。水質(zhì)復(fù)雜期雖然出水總磷質(zhì)量濃度高于全年平均值,但總磷去除率是全年最高的,比全年平均去除率提高10.8%。說明該時期是系統(tǒng)除磷能力最強時期。
2.4 進水指標與污染物去除率的關(guān)系
由表1可知,在該模式下處理農(nóng)業(yè)園區(qū)的分散污水2 a期間,進水各項指標與各污染物去除率之間的相互關(guān)系表現(xiàn)為:有機污染物、NH3-N和總磷去除率隨著有機污染物與總氮比值的升高而升高,總氮去除率隨著有機污染物與總氮比值和有機污染物與總磷比值的升高而降低;有機污染物、總氮、NH3-N和總磷去除率受進水的總氮與總磷比值變化影響較小。
表1 進水指標與去除率之間的相關(guān)系數(shù)Tab.1 Correlation between quality of influent sewage and pollutant removal efficiency
(1)根據(jù)實際分散污水(農(nóng)業(yè)示范園區(qū))水質(zhì)和排放特點對“局部循環(huán)供氧一體化生物膜”工藝進行改進設(shè)計和建設(shè),并跟蹤監(jiān)測2 a進水、出水有機物、氮、磷等指標。結(jié)果證實出水有機污染物、NH3-N、總氮和總磷的平均質(zhì)量濃度分別為15.3、9.2、17.2、0.8 mg/L,均符合GB 18918—2002中的一級B排放標準,改進工藝具有較強的脫氮除磷、去有機物能力,更適應(yīng)此類分散污水處理需求。
(2)通過長期的運行監(jiān)測分析,該系統(tǒng)實現(xiàn)了對波動性較大的農(nóng)業(yè)示范園區(qū)復(fù)雜污水的氮、磷和有機物脫除,主要在于現(xiàn)有工藝對于調(diào)節(jié)池與儲存池容積改進,排泥頻次、生物膜與回流污泥循環(huán)模式設(shè)計等,從而實現(xiàn)NH3-N、總氮、總磷和有機污染物平均去除率在64.4%、45.5%、72.0%和71.6%以上。
(3)該工藝解決了冬季低溫期因低溫微生物活性抑制造成的系統(tǒng)有機物、氮、磷去除率低的問題,提高了水質(zhì)復(fù)雜期污水有機物、磷的去除能力。
1 ATKINSON S,FERNANDES L,CAPRARA A,et al.Prevention and promotion in decentralized rural health systems: a comparative study from northeast Brazil[J].Health Policy and Planning,2005,20(2):69-79.
2 WANG M,WEBBER M,FINLAYSON B,et al.Rural industries and water pollution in China[J].Journal of Environmental Management, 2008, 86(4):648-659.
3 HELLSTROM D,JONSSON L.Evaluation of small wastewater treatment systems[J].Water Science and Technology,2003,48(11-12):61-68.
4 陳華永,方炎鑫. 諸I 型生活污水凈化沼氣池的試驗研究[J]. 環(huán)境與健康雜志,1999,16(3):145-146. CHEN Huayong, FANG Yanxin. Study on zhu-Ⅰmethane-generation pit for purifying domestic sewage[J].Journal of Environment and Health, 1999, 16(3): 145-146.(in Chinese)
5 陳呂軍,張玉魁,施漢昌,等. 一體化脫氮除磷污水凈化裝置的開發(fā)及處理效果研究[J]. 給水排水,2009,35(增刊):97-100. CHEN Lüjun,ZHANG Yukui,SHI Hanchang,et al. Research on an integrated equipment for removing organic pollutants,nitrogen and phosphorus[J]. Water and Wasterwater Engineering, 2009, 35(Supp.): 97-100. (in Chinese)
6 劉慶玉,王書文,焦銀珠. 小型生活污水處理工藝和設(shè)計[J]. 水處理技術(shù),2005,31(5):69-71. LIU Qingyu,WANG Shuwen,JIAO Yinzhu. Technological process and design for small scale domestic sewage treatment[J]. Technology of Water Treatment,2005,31(5):69-71. (in Chinese)
7 HAM J H,YOON C G, JEON J H, et al. Feasibility of a constructed wetland and wastewater stabilisation pond system as asewage reclamation system for agricultural reuse in a decentralised rural area[J]. Water Science & Technology, 2007, 55(1-2): 503-511.
8 SARI L,WENDY S,KATARZYNA K R,et al.Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems[J]. Bioresource Technology, 2007, 98(5): 980-986.
9 賀鋒,曹湛清,夏世斌,等.生物膜-人工濕地組合工藝處理城鎮(zhèn)生活污水的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(8):1655-1660. HE Feng,CAO Zhanqing,XIA Shibin, et al.studies on municipal wastewater treatment with acombination system of biofilm reactor and constructed wetland[J].Journal of Agro-Environment Science,2009,28(8):1655-1660. (in Chinese)
10 袁莉英,梁威,肖恩榮.膜生物反應(yīng)器-復(fù)合垂直流人工濕地(SMBR-IVCW)系統(tǒng)處理混合廢水的應(yīng)用研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(2):361-365. YUAN Liying,LIANG Wei,XIAO Enrong. Applications of membrane bioreactor-integrated verticalflow constructed wetland(SMBR-IVCW) system in comprehensive wastewater treatment[J].Journal of Agro-Environment Science, 2009,28(2):361-365. (in Chinese)
11 劉超翔,胡洪營,張建,等. 不同深度人工復(fù)合生態(tài)床處理農(nóng)村生活污水的比較[J]. 環(huán)境科學(xué),2003,24(4):92-96. LIU Chaoxiang, HU Hongying, ZHANG Jian, et al. Rural sewage treatment performance of constructed wetlands with different depths[J]. Chinese Journal of Environmental Science,2003,24(4): 92-96. (in Chinese)
12 SAKADEVAN K, BAVOR H.Phosphate adsorption characteristics of soils, slags and zeolite to be used at substrates in constructed wetland systems[J]. Water Research, 1998, 32(2): 393-399.
13 沈東升,賀永華,馮華軍.農(nóng)村生活污水地埋式無動力厭氧處理技術(shù)研究[J].農(nóng)業(yè)工程學(xué)報,2005,21(7):111-115. SHEN Dongsheng,HE Yonghua,FENG Huajun. Underground unpowered anaerobic reactor for rural domestic sewage treatment[J]. Transactions of the CSAE,2005,21(7):111-115.(in Chinese)
14 SHANNON M A, BOHN P W, ELIMELECH M,et al.Science and technology for water purification in the coming decades[J].Nature,2008,452:301-320.
15 吳迪,高賢彪,李玉華,等.一體化生物膜技術(shù)處理濱海農(nóng)村污水[J].環(huán)境工程學(xué)報,2012,6(8):2539-2543. WU Di,GAO Xianbiao,LI Yuhua, et al.Integrated biofilm technology for treating rural domestic sewage in coastal areas[J].Chinese Journal of Environmental Engineering,2013,6(8):2539-2543.(in Chinese)
16 吳迪,高賢彪,李玉華,等.兩級回流生物膜工藝處理農(nóng)村生活污水效果[J].農(nóng)業(yè)工程學(xué)報,2013,29(1):218-224. WU Di,GAO Xianbiao,LI Yuhua, et al.Treatment effect of rural domestic sewage in rural area using biofilm with two-stage reflux[J].Transactions of the CSAE,2013,29(1):218-224. (in Chinese)
17 國家環(huán)境保護總局.水與廢水監(jiān)測分析方法[M]. 4版.北京:中國環(huán)境科學(xué)出版社,2002.
18 史明明,劉晃,龍麗娜,等.碳源供給策略對水產(chǎn)養(yǎng)殖廢水生物絮團處理效果的影響[J/OL]. 農(nóng)業(yè)機械學(xué)報,2016,47(6):317-323. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20160506&journal_id=jcsam. DOI:10.6041/j.issn.1000-1298.2016.06.042. SHI Mingming, LIU Huang, LONG Li’na, et al. Effect of carbon source supply tactics on treatment of aquaculture wastewater with biofloc technology[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(6):317-323.(in Chinese)
19 HE S B, XUE G, KONG H N. The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load[J]. Journal of Hazardous Materials,2007, 143(1-2): 291-295.
20 WU C Y, CHEN Z Q, LI X H, et al. Nitrification-denitrification via nitrite in SBR using real-time control strategy when treating domestic wastewater[J].Biochemical Engineering Journal,2007,36(2):87-92.
21 吳昌永,彭永臻,彭軼.A2O工藝處理低C/N比生活污水的試驗研究[J].化工學(xué)報,2008,59(12):3126-3131. WU Changyong, PENG Yongzhen, PENG Yi.Biological nutrient removal in A2O process when treating low C/N ratio domestic wastewater[J]. CIESC Journal,2008,59(12):3126-3131.(in Chinese)
22 潘碌亭,王文蕾,余波.接觸氧化-強化混凝工藝處理崇明農(nóng)村生活污水特性[J].農(nóng)業(yè)工程學(xué)報,2011,27(9):242-247. PAN Luting,WANG Wenlei,YU Bo.Characteristics of rural domestic sewage processed with contact oxidation-enhanced coagulation in Chongming island[J]. Transactions of the CSAE,2011,27(9):242-247.(in Chinese)
23 周健,肖龍,何強,等.連續(xù)流長泥齡生物膜反應(yīng)器除磷技術(shù)研究[J].中國給水排水,2010,26(13):29-33. ZHOU Jian, XIAO Long, HE Qiang,et al.Research on continuous-flow biofilm reactor with long sludge age for phosphorus removal[J]. China Water & Wastewater,2010,26(13):29-33.(in Chinese)
24 葛士建,王淑瑩,曹旭,等.分段進水脫氮除磷工藝中反硝化除磷的實現(xiàn)與維持[J].化工學(xué)報,2011,62(9):2615-2622. GE Shijian,WANG Shuying,CAO Xu,et al.Achievement and maintenance of denitrifying phosphorus removal in step feed nutrient removal process[J]. CIESC Journal, 2011,62(9):2615-2622.(in Chinese)
25 王霞芳,紀榮平.厭氧懸浮填料床預(yù)處理農(nóng)村生活污水的試驗研究[J]. 中國農(nóng)村水利水電,2010(7):61-63. WANG Xiafang, JI Rongping.Research on pretreatment of rural sewage with anaerobic suspending media beds[J].Rural Water and Hydropower, 2010(7):61-63.(inChinese)
26 李亞峰,李大起,張曉寧.水解酸化-二段生物接觸氧化工藝處理城市生活污水[J]. 沈陽建筑大學(xué)學(xué)報:自然科學(xué)版,2009,25(6):1131-1135. LI Yafeng, LI Daqi,ZHANG Xiaoning. Study on domestic sewage disposal by hydrolyzation acidification and two-stage bio-contact oxidation process[J].Journal of Shenyang Jianzhu University: Natural Science, 2009,25(6):1131-1135.(in Chinese)
Nitrogen and Phosphorus Removal Effect of Decentralized Sewage Treatment Using Biofilm Technology with Integration of Local Circulating and Oxygen-supply
ZHAO Qiu1,2WU Di2QIAN Shan2GAO Xianbiao2SUN Xiangyang1
(1.CollegeofForestry,BeijingForestryUniversity,Beijing100083,China2.TianjinInstituteofAgriculturalResourcesandEnvironment,Tianjin300192,China)
Simultaneous nitrogen and phosphorus removal performance of a kind of biomembrane process integrated with partial circulatory aeration and two-stage treated water returning alternately was studied by utilizing the technology to treat typical decentralized wastewater from Modern Agricultural Science and Technology Innovation Base in Tianjin. The system with a total effective volume of 234 m3was composed of collecting tank, hydrolysis acidification balance tank, partial aerobic tank, secondary sedimentation tank and circulation tank. Sewage pumps in collecting tank were controlled by PLC automatic control system. Sludge pumps in secondary sedimentation tank worked 10 min every 2 h controlled by PLC automatic control system. Circulating water pumps in circulation tank controlled by PLC automatic control system could maintain necessary water flowing when inflowing and sludge returning were simultaneously stopped. The nominal air delivery of clover roots blowers in equipment room was 2.0 m3/h. Hydrolysis acidification balance tank and partial aerobic tank were both filled with combined bio-carrier at a filling height of 2 m and the filling percentage and hydraulic load of the two tanks were 60%, 1.25 m3/(m3·d) and 70%, 2.0 m3/(m3·d), respectively. The operation of the whole system was controlled by PLC. Pumps for inflow worked intermittently and total time of it’s working was 6 h every day. Aeration was continuous and partial. Since June, 2013, the test running was completed, the system was always operating formally in the way of intermittent inflow, partial aeration and alternate wastewate return. The raw decentralized wastewater was discharged from office buiding, research activities building, expert floor, restaurant, guest house and industry incubator and except for those from restaurants and toilets, which were firstly discharged into oil separation tank and septic tank for pre-treating, the most was discharged directly into the system to treat. The designed treating capacity of this system was 150 m3/d and the maximum influent quantity, minimum influent quantity and average influent quantity in reality was 140 m3/d, 80 m3/d and 100 m3/d, respectively. The return ratio was controlled at 2∶1 by PLC. Through long tem operation of two years, the results showed that the average removal percentages for BOD5, NH3-N, TN and TP were 71.6%, 64.4%, 45.5% and 72.0%, respectively, and the average effluent concentrations of BOD5, NH3-N, TN and TP were 15.3 mg/L, 9.2 mg/L, 17.2 mg/L and 0.8 mg/L, respectively. It was indicated that the quality of treated effluent was up to “Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant” level 1B and treated water can be used as irrigation water. Nitrogen and phosphorus removal function was also well established when treating decentralized wastewater with high fluctuation and high loading. And it was further observed that removal percentages for BOD5, NH3-N and TP were increased with the increase of BOD5/TN and removal percentage for TN was decreased with the increase of BOD5/TN and BOD5/TP, while TN/TP was not one of main contributors to affecting removal percentage of BOD5,NH3-N, TN and TP.
decentralized sewage; partial circulating oxygen-supply; biofilm; two-stage alternate return; nitrogen and phosphorus removal
10.6041/j.issn.1000-1298.2017.02.039
2016-06-29
2016-08-08
天津市科技支撐項目(14ZCZDNC00019)和天津市農(nóng)轉(zhuǎn)資金項目(201101037)
趙秋(1977—),女,博士生,天津市農(nóng)業(yè)資源與環(huán)境研究所副研究員,主要從事廢棄物利用研究,E-mail: qiuzhao_2008@163.com
吳迪(1977—),男,副研究員,主要從事污水處理研究,E-mail: wudi_1008@163.com
X703.1
A
1000-1298(2017)02-0294-06