孟 凡 裴 吉 李彥軍 袁壽其 陳 佳
(江蘇大學(xué)國(guó)家水泵及系統(tǒng)工程技術(shù)研究中心, 鎮(zhèn)江 212013)
導(dǎo)葉位置對(duì)雙向豎井貫流泵裝置水力性能的影響
孟 凡 裴 吉 李彥軍 袁壽其 陳 佳
(江蘇大學(xué)國(guó)家水泵及系統(tǒng)工程技術(shù)研究中心, 鎮(zhèn)江 212013)
為了研究導(dǎo)葉位置對(duì)雙向豎井貫流泵水力性能與流態(tài)的影響,利用CFX14.5對(duì)6種導(dǎo)葉位置方案的雙向豎井貫流泵在正向運(yùn)轉(zhuǎn)與反向運(yùn)轉(zhuǎn)時(shí)分別進(jìn)行小流量工況(0.8Qdes)、設(shè)計(jì)流量工況與大流量工況(1.1Qdes)的定常計(jì)算,總計(jì)共36個(gè)工況。將數(shù)值模擬結(jié)果與泵裝置外特性試驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證對(duì)比,并對(duì)計(jì)算結(jié)果進(jìn)行水力性能與流態(tài)分析。研究結(jié)果表明:泵裝置數(shù)值模擬結(jié)果與試驗(yàn)數(shù)據(jù)吻合度良好,最大相對(duì)誤差小于5%。泵裝置正向運(yùn)轉(zhuǎn)時(shí),在小流量下,泵裝置效率隨導(dǎo)葉位置S增加而下降,S=40 mm時(shí)的導(dǎo)葉水力損失最大;但是在設(shè)計(jì)流量與大流量下,泵裝置效率隨導(dǎo)葉位置S增加而上升,S=100 mm時(shí)的導(dǎo)葉水力損失最小。泵裝置反向運(yùn)轉(zhuǎn)時(shí),導(dǎo)葉位置對(duì)泵裝置水力性能與流態(tài)沒(méi)有顯著影響,綜合考慮,選擇導(dǎo)葉位置S=100 mm作為最終方案。
雙向豎井貫流泵; 導(dǎo)葉位置; 水力性能; 流態(tài)分析
豎井貫流式機(jī)組由于發(fā)電機(jī)裝置布置在開(kāi)敞的豎井內(nèi),防潮、通風(fēng)條件好,運(yùn)行以及維護(hù)方便,機(jī)組結(jié)構(gòu)簡(jiǎn)易,造價(jià)較低,廣泛應(yīng)用于平原地區(qū)的排灌工程[1],也逐漸成為學(xué)者們的研究對(duì)象。不少學(xué)者采用外特性試驗(yàn)方法,得到了模型泵在不同葉片角度下運(yùn)行的能量特性、汽蝕性能和飛逸轉(zhuǎn)速特性,在此基礎(chǔ)上換算得出原型泵的水力特性[2-3]。隨著CFD技術(shù)的發(fā)展,數(shù)值模擬技術(shù)逐漸應(yīng)用到軸流泵的水力性能預(yù)測(cè)、壓力脈動(dòng)分析以及優(yōu)化設(shè)計(jì)方面等[4-14],因此學(xué)者們也開(kāi)始采用數(shù)值模擬為主、試驗(yàn)測(cè)試為輔的方法研究泵裝置。劉君等[15]將前、后置豎井泵裝置的流態(tài)進(jìn)行分析對(duì)比,研究了產(chǎn)生水力損失的機(jī)理。徐磊等[16]利用數(shù)值模擬與試驗(yàn)的方法詳細(xì)分析了豎井貫流泵裝置進(jìn)、出水流道的內(nèi)部流動(dòng)機(jī)理。楊帆等[17]研究分析了S形貫流泵裝置過(guò)流部件的壓力分布與水力性能。隨著豎井貫流泵設(shè)計(jì)理論趨于成熟,朱紅耕等[18]設(shè)計(jì)出一種采用虹吸管作為出水流道的新型豎井貫流泵裝置,并對(duì)進(jìn)出水流道進(jìn)行了流態(tài)分析。
然而泵站大多需要兼顧排澇和調(diào)水,普通豎井貫流泵裝置已經(jīng)不能滿(mǎn)足需求。雙向豎井貫流泵中采用直導(dǎo)葉葉片,雙向?qū)ΨQ(chēng)形葉輪葉片使其可以兼顧正向與反向運(yùn)行效率,配以合理的進(jìn)出水流道,可使雙向豎井貫流泵獲得較高的正反運(yùn)行效率。目前對(duì)雙向豎井貫流泵的研究不多,主要是采用CFD軟件對(duì)不同葉片角度情況下雙向豎井貫流泵的水力性能進(jìn)行預(yù)測(cè)以及針對(duì)進(jìn)出水流道在正反向運(yùn)行工況下進(jìn)行優(yōu)化設(shè)計(jì)[19-21],但是針對(duì)導(dǎo)葉位置對(duì)水力性能影響的研究極少。一般情況下,導(dǎo)葉進(jìn)口邊和葉片出口邊平行,其間距S=(0.1~0.15)D,D表示葉輪直徑。然而在雙向豎井貫流泵裝置中,葉輪為雙向?qū)ΨQ(chēng)形葉輪,導(dǎo)葉為直導(dǎo)葉葉片,有別于一般情況,最佳葉輪-導(dǎo)葉間距很難通過(guò)該公式確定。因此本文利用CFX14.5軟件對(duì)6種不同導(dǎo)葉位置方案下的雙向豎井貫流泵進(jìn)行定常計(jì)算,分析導(dǎo)葉位置對(duì)正、反運(yùn)轉(zhuǎn)下泵裝置水力性能的影響。
1.1 計(jì)算模型
如圖1所示,雙向豎井貫流泵裝置由豎井流道、雙向葉輪、直葉片導(dǎo)葉以及直管擴(kuò)散流道組成;葉輪葉片數(shù)與導(dǎo)葉葉片數(shù)均為3,葉輪直徑為300 mm,葉頂間隙為0.5 mm。主要設(shè)計(jì)參數(shù)為:設(shè)計(jì)流量Qdes=0.28 m3/s,額定轉(zhuǎn)速n=1 109 r/min。圖2為葉輪與導(dǎo)葉間距S示意圖,如圖所示本文共研究了6種導(dǎo)葉位置,每種導(dǎo)葉位置間隔30 mm。
圖1 雙向豎井貫流泵裝置3D模型Fig.1 3D model for two-direction tubular pump device1.豎井流道 2.直管擴(kuò)散流道 3.導(dǎo)葉 4.葉輪
圖2 導(dǎo)葉位置示意圖(單位:mm)Fig.2 Sketch of guide vane position
1.2 網(wǎng)格劃分及邊界設(shè)置
如圖3所示,利用ICEM對(duì)流體域進(jìn)行網(wǎng)格劃分,為了保證計(jì)算精度,所有區(qū)域均采用結(jié)構(gòu)網(wǎng)格劃分,其中,葉輪網(wǎng)格數(shù)為1 983 129,豎井流道網(wǎng)格數(shù)為389 954,直管擴(kuò)散流道網(wǎng)格數(shù)為142 272,由于導(dǎo)葉位置不同導(dǎo)葉網(wǎng)格不完全相同,保持在1 500 000左右。
圖3 雙向豎井貫流泵裝置結(jié)構(gòu)網(wǎng)格Fig.3 Structure meshes of two-direction tubular pump device
邊界條件設(shè)置中,進(jìn)水池與出水池的表面設(shè)置為自由水面,自由水面對(duì)速度和湍動(dòng)能均采用對(duì)稱(chēng)平面處理,進(jìn)水流道進(jìn)口采用質(zhì)量流量,出水流道出口采用固定總壓,總壓設(shè)定為101 325 Pa,采用自由出流邊界條件。所有壁面為光滑壁面,采用無(wú)滑移邊界條件。將葉輪與進(jìn)水流道,葉輪與導(dǎo)葉的交界面設(shè)置為Frozen Rotor;將導(dǎo)葉與出水流道的交界面設(shè)置為None。采用SST湍流模型,收斂精度設(shè)置為1.0×104。
本試驗(yàn)采用閉式試驗(yàn)臺(tái)結(jié)構(gòu),如圖4所示,總?cè)萘繛?0 m3,主要由真空壓力箱、壓力箱、電動(dòng)閥門(mén)、蝶閥、電磁流量計(jì)、壓差變送計(jì)、扭矩儀組成。流量計(jì)為智能電磁流量計(jì),測(cè)量精度在±0.2%范圍內(nèi),采用水平布置,位于-3 m層面,其前后直管段長(zhǎng)度滿(mǎn)足大于5倍管路直徑要求,以保證各種工況下流量測(cè)量的準(zhǔn)確性。揚(yáng)程測(cè)量采用WT2000DP5S型智能差壓變送器,測(cè)量范圍為0~10 m,經(jīng)原位率定揚(yáng)程傳感器測(cè)量,不確定度在±0.1%范圍內(nèi)。轉(zhuǎn)矩轉(zhuǎn)速采用ZJYW1/ZJ 200N·m智能型轉(zhuǎn)矩轉(zhuǎn)速傳感器測(cè)量,精度在±0.1%范圍內(nèi),傳感器在使用時(shí)只承受扭矩,不承受其他外力作用。
圖4 雙向豎井貫流泵裝置試驗(yàn)Fig.4 Test on two-direction tubular pump device
如圖5所示,在2種運(yùn)轉(zhuǎn)方向下,試驗(yàn)值與數(shù)值模擬值的變化趨勢(shì)均相同。泵裝置正向運(yùn)轉(zhuǎn)時(shí),在小流量工況下,數(shù)值模擬效率略小于試驗(yàn)效率,而在設(shè)計(jì)流量(Qdes=0.28 m3/s)與大流量工況下,數(shù)值模擬效率曲線(xiàn)與試驗(yàn)效率曲線(xiàn)吻合度很好。泵裝置反向運(yùn)轉(zhuǎn)時(shí),數(shù)值模擬外特性曲線(xiàn)與試驗(yàn)外特性曲線(xiàn)吻合度略低于泵裝置正向運(yùn)轉(zhuǎn)時(shí),但最大相對(duì)誤差仍然小于5%。
圖5 導(dǎo)葉位置S=100 mm的外特性曲線(xiàn)Fig.5 Characteristic curves for pump device with straight guide vane (S=100 mm)
3.1 正向運(yùn)轉(zhuǎn)下導(dǎo)葉位置對(duì)泵裝置外特性的影響
如圖6所示,正向運(yùn)轉(zhuǎn)下,在小流量工況(Q=0.8Qdes)下,隨著導(dǎo)葉位置S逐步增大,揚(yáng)程呈微弱的下降趨勢(shì)。在設(shè)計(jì)流量(Q=Qdes)和大流量 (Q=1.1Qdes)工況下,隨著導(dǎo)葉位置S逐步增大,揚(yáng)程呈緩慢上升趨勢(shì)。由此可知,豎井貫流泵裝置揚(yáng)程不隨導(dǎo)葉位置發(fā)生明顯變化。
圖6 正向運(yùn)轉(zhuǎn)下泵裝置外特性曲線(xiàn)Fig.6 Characteristic curves for pump device under positive rotation
如圖6所示,正向運(yùn)轉(zhuǎn)下,在小流量工況(Q=0.8Qdes)下,豎井貫流泵裝置效率隨著導(dǎo)葉位置S增加呈現(xiàn)先上升后下降的趨勢(shì)。在設(shè)計(jì)流量(Q=Qdes)和大流量(Q=1.1Qdes)工況下,導(dǎo)葉位置由S=10 mm增加到S=100 mm的過(guò)程中,泵裝置效率呈現(xiàn)上升趨勢(shì);但是導(dǎo)葉位置由S=100 mm增加到S=160 mm的過(guò)程中,泵裝置效率已不受導(dǎo)葉位置S明顯影響。
3.2 正向運(yùn)轉(zhuǎn)下導(dǎo)葉位置對(duì)泵裝置內(nèi)流場(chǎng)的影響
葉輪正向旋轉(zhuǎn)時(shí),直葉片導(dǎo)葉為后導(dǎo)葉,主要起支撐與分流作用。由于葉輪與導(dǎo)葉之間存在強(qiáng)烈的動(dòng)靜干涉現(xiàn)象,而葉輪-導(dǎo)葉間距對(duì)葉輪-導(dǎo)葉的動(dòng)靜干涉強(qiáng)度有直接影響,所以葉輪-導(dǎo)葉間距對(duì)泵段內(nèi)部流態(tài)有明顯影響。此外,葉輪-導(dǎo)葉間距間接影響了導(dǎo)水錐長(zhǎng)度,從而導(dǎo)致進(jìn)入出水流道的流體流態(tài)也受到葉輪-導(dǎo)葉間距的影響。
(1)導(dǎo)葉位置對(duì)泵段內(nèi)流場(chǎng)的影響
如圖3所示,設(shè)定與導(dǎo)葉進(jìn)口軸向461 mm處的截面為導(dǎo)葉出口處,計(jì)算由進(jìn)口到出口區(qū)域內(nèi)的導(dǎo)葉水力損失。圖7為導(dǎo)葉水力損失隨導(dǎo)葉位置S變化曲線(xiàn)。如圖所示,導(dǎo)葉位置S相同時(shí),導(dǎo)葉水力損失隨流量增加逐漸降低。在小流量工況下,導(dǎo)葉水力損失曲線(xiàn)呈現(xiàn)先下降后上升的趨勢(shì),當(dāng)S=40 mm時(shí),導(dǎo)葉水力損失最小。在設(shè)計(jì)流量和大流量工況下,導(dǎo)葉水力損失隨導(dǎo)葉位置S呈現(xiàn)微弱的波動(dòng),在S=100 mm時(shí),導(dǎo)葉水力損失最小。
以水力損失曲線(xiàn)波動(dòng)最明顯的小流量工況為例,對(duì)導(dǎo)葉內(nèi)部流動(dòng)進(jìn)行分析。圖8為小流量工況下泵段部分的豎直截面流線(xiàn)圖。如圖所示,小流量工況下,當(dāng)導(dǎo)葉位置S=10 mm時(shí),回流現(xiàn)象主要發(fā)生在導(dǎo)葉葉片附近,回流面積較大,當(dāng)導(dǎo)葉位置S=40 mm時(shí),導(dǎo)葉內(nèi)部流態(tài)平穩(wěn)無(wú)明顯回流現(xiàn)象,當(dāng)導(dǎo)葉位置處于70~160 mm范圍內(nèi)時(shí),隨著導(dǎo)葉位置S逐漸增大,導(dǎo)水錐長(zhǎng)度逐漸減小,流體在導(dǎo)水錐尾部收縮過(guò)快,導(dǎo)致直到導(dǎo)葉段出口流體仍有速度環(huán)量殘余,導(dǎo)水錐尾部有明顯漩渦出現(xiàn),且漩渦隨著導(dǎo)葉位置S增加逐漸增大。
圖7 正向運(yùn)轉(zhuǎn)下導(dǎo)葉水力損失Fig.7 Hydraulic loss for guide vane under positive rotation
圖8 正向運(yùn)轉(zhuǎn)下泵段內(nèi)部流場(chǎng)Fig.8 Internal flow field for pump under positive rotation
(2)導(dǎo)葉位置對(duì)出水流道的影響
圖9為正向運(yùn)轉(zhuǎn)下出水流道水力損失曲線(xiàn)。如圖所示,導(dǎo)葉位置S為10~100 mm時(shí),出水流道水力損失不隨流量增加出現(xiàn)規(guī)律性變化,導(dǎo)葉位置S為100~160 mm時(shí),小流量工況水力損失最大,設(shè)計(jì)流量工況水力損失最小。在小流量工況下,隨著導(dǎo)葉位置S增加,水力損失出現(xiàn)先快速上升后趨于穩(wěn)定,導(dǎo)葉位置S=10 mm時(shí),水力損失最小。在設(shè)計(jì)流量工況下,水力損失隨著導(dǎo)葉位置S增加呈現(xiàn)先下降后趨于平穩(wěn)的趨勢(shì),導(dǎo)葉位置S=100 mm時(shí),水力損失最低。在大流量工況下,水力損失曲線(xiàn)隨導(dǎo)葉位置S變化呈現(xiàn)波動(dòng),在導(dǎo)葉位置S=100 mm時(shí),水力損失最小。由于出水流道內(nèi)部流態(tài)不穩(wěn)定,而設(shè)計(jì)流量工況下的流態(tài)變化最有規(guī)律,因此以設(shè)計(jì)流量工況為例,如圖10所示,當(dāng)導(dǎo)葉位置S=40 mm時(shí),出水流道內(nèi)部回流面積最大,漩渦數(shù)量最多,當(dāng)導(dǎo)葉位置S=70 mm與S=100 mm時(shí),出水流道內(nèi)部流態(tài)平穩(wěn),無(wú)明顯漩渦。
圖9 正向運(yùn)轉(zhuǎn)下出水流道水力損失Fig.9 Hydraulic loss for outflow runner under positive rotation
3.3 反向運(yùn)轉(zhuǎn)下導(dǎo)葉位置對(duì)泵裝置外特性的影響
如圖11所示,泵裝置反向運(yùn)轉(zhuǎn)時(shí),揚(yáng)程流量增加逐漸下降,且隨著導(dǎo)葉位置S增加,基本保持不變。泵裝置效率在小流量工況下,基本不隨導(dǎo)葉位置發(fā)生變化。在設(shè)計(jì)流量工況和大流量工況下,泵裝置效率曲線(xiàn)呈現(xiàn)先下降后上升最后保持平穩(wěn)的趨勢(shì)。
圖10 正向運(yùn)轉(zhuǎn)下出水流道豎直截面流線(xiàn)分布Fig.10 Streamline distributions in section of outflow runner under positive rotation
圖11 反向運(yùn)轉(zhuǎn)下泵裝置外特性曲線(xiàn)Fig.11 Characteristic curves of pump device under negative rotation
3.4 反向運(yùn)轉(zhuǎn)下導(dǎo)葉位置對(duì)泵裝置內(nèi)流場(chǎng)的影響
葉輪反向運(yùn)轉(zhuǎn)時(shí),直葉片導(dǎo)葉為前導(dǎo)葉,主要起防止預(yù)漩和支撐作用,導(dǎo)葉位置S會(huì)對(duì)泵段內(nèi)流動(dòng)產(chǎn)生一定影響,但對(duì)出水流道與進(jìn)水流道影響較小。因此,葉輪反向運(yùn)轉(zhuǎn)時(shí),只分析導(dǎo)葉位置S對(duì)泵段內(nèi)流場(chǎng)的影響。
如圖12所示,與泵裝置正向運(yùn)轉(zhuǎn)時(shí)相比,泵裝置反向運(yùn)轉(zhuǎn)下的導(dǎo)葉水力損失較小,且隨流量增大而增加。在3種流量工況下,導(dǎo)葉水力損失曲線(xiàn)的變化趨勢(shì)基本相同,在導(dǎo)葉位置S=40 mm與S=130 mm處,存在峰值,在導(dǎo)葉位置S=100 mm處,存在谷值。
由于3種流量工況下的水力損失曲線(xiàn)變化相同,本文選取設(shè)計(jì)流量為例進(jìn)行研究分析。如圖13所示,導(dǎo)葉由導(dǎo)水錐和導(dǎo)葉葉片組成,導(dǎo)葉的高壓區(qū)主要分布在導(dǎo)水錐頂部,導(dǎo)葉低壓區(qū)主要分布在導(dǎo)葉葉片前緣與尾緣。隨著導(dǎo)葉位置S增加,導(dǎo)葉葉片低壓區(qū)面積不斷減小,所受壓力逐漸增大,當(dāng)導(dǎo)葉位置S=100 mm時(shí),導(dǎo)葉葉片壓力分布最均勻。
圖12 反向運(yùn)轉(zhuǎn)下導(dǎo)葉水力損失Fig.12 Hydraulic loss for guide vane under negative rotation
在設(shè)計(jì)流量與大流量工況下,導(dǎo)葉位置S=100 mm時(shí),泵裝置正、反運(yùn)轉(zhuǎn)下的水力性能都保持較高水平,且由于結(jié)構(gòu)布置因素(導(dǎo)葉-葉輪間距過(guò)大會(huì)影響泵裝置的受力平衡情況),綜合考慮,該導(dǎo)葉位置選為最終方案。
圖13 反向運(yùn)轉(zhuǎn)下導(dǎo)葉壓力分布Fig.13 Pressure distributions for guide vane under negative rotation
(1)泵裝置正向運(yùn)轉(zhuǎn)時(shí),泵裝置揚(yáng)程不受導(dǎo)葉位置明顯影響。在小流量下,泵裝置效率隨導(dǎo)葉位置S增加而下降,但是在設(shè)計(jì)流量和大流量下泵裝置效率隨導(dǎo)葉位置S增加而上升。當(dāng)S增加到100 mm后,所有流量下的效率不再受到導(dǎo)葉位置的明顯影響。
(2)泵裝置正向運(yùn)轉(zhuǎn)時(shí),在小流量工況下,導(dǎo)葉位置S=40 mm時(shí),導(dǎo)葉水力損失最小,導(dǎo)葉段內(nèi)部流態(tài)最好;在設(shè)計(jì)流量與大流量工況下, 導(dǎo)葉位置S=100 mm時(shí),導(dǎo)葉水力損失最小。
(3)泵裝置正向運(yùn)轉(zhuǎn)時(shí),在大流量工況下,出水流道水力損失不受導(dǎo)葉位置明顯影響;在小流量與設(shè)計(jì)流量工況下,導(dǎo)葉位置S=40 mm時(shí),出水流道水力損失最大;S=100 mm時(shí),出水流道水力損失最小。
(4)泵裝置反向運(yùn)轉(zhuǎn)時(shí),泵裝置外特性性能受導(dǎo)葉位置影響很小。導(dǎo)葉位置S=100 mm時(shí),導(dǎo)葉水力損失最小。
1 鄭源,張德虎,廖銳,等. 豎井貫流泵能量特性試驗(yàn)研究[J]. 排灌機(jī)械,2003,21(3):31-34. ZHENG Yuan,ZHANG Dehu,LIAO Rui, et al. Experimental study on equipment energy characteristic for shaft tubular pump[J]. Drainage and Irrigation Machinery, 2003,21(3):31-34. (in Chinese)
2 徐磊,陸林廣,陳偉,等. 邳州站豎井式貫流泵裝置模型試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2012,31(2):120-123. XU Lei,LU Linguang,CHEN Wei, et al. Model test for pit tubular pump system of Pizhou of pumping station[J]. Journal of Irrigation and Drainage, 2012,31(2):120-123. (in Chinese)
3 陸偉剛,張旭. 特低揚(yáng)程豎井貫流泵裝置水力特性試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2012,31(6):103-106,125. LU Weigang,ZHANG Xu. Research on model test of hydraulic characteristics for super-low head shaft-well tubular pump unit[J]. Journal of Irrigation and Drainage, 2012,31(6):103-106,125. (in Chinese)
4 WANG Zhengwei,PENG Guangjie,ZHOU Lingjiu, et al. Hydraulic performance of a large slanted axial-flow pump[J]. Engineering Computations, 2010, 27(2): 243-256.
5 WU Yulin,LIU Shuhong,DOU Shuhua, et al. Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine[J]. Computers & Fluids, 2012, 56: 128 - 142.
6 KIM Jin Hyuk,AHN Hyung Jin,KIM Kwang Yong. High-efficiency design of a mixed-flow pump [J]. Science China Technological Sciences, 2010, 53(1): 24-27.
7 LIU Chao,JIN Yan,ZHOU Jiren, et al. Numerical simulation and experimental study of a two-floor structure pumping system[C]∥Proceedings of 2010 ASME 2010 Power Conference, 2010:777-784.
8 TANG Xuelin,WANG Fujun,LI Yaojun, et al. Numerical investigations of vortex flows and vortex suppression schemes in a large pumping station[J]. Journal of Mechanical Engineering Science, 2011, 225(6): 1459-1480.
9 TOKYAY T E, CONSTANTINESU S G. Validation of a large-eddy simulation model to simulate flow in pump intakes of realistic geometry[J]. Journal of Hydraulic Engineering, 2006, 132(12): 1303-1315.
10 ZHU H G,ZHANG R T,ZHOU J R. Optimal hydraulic design of new-type shaft tubular pumping system[C]∥IOP Conference Series: Earth and Environmental Science, 2012, 15(5): 2026.
11 HEO M W,KIM K Y,KIM J H, et al. High-efficiency design of a mixed-flow pump using a surrogate model[J]. Journal of Mechanical Science and Technology, 2016, 30(2): 541-547.
12 ZHANG D S,PAN D Z,XU Y, et al. Numerical investigation of blade dynamic characteristics in an axial flow pump[J]. Thermal Science, 2013, 17(5): 1511-1514.
13 LI Y J,WANG F J. Numerical investigation of performance of an axial-flow pump with inducer[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(6): 705-711.
14 ZHANG D S,SHI W D,CHEN B, et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydrodynamics, Ser. B, 2010, 22(1): 35-43.
15 劉君,鄭源,周大慶,等. 前、后置豎井貫流泵裝置基本流態(tài)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(增刊):32-38. LIU Jun,ZHENG Yuan,ZHOU Daqing, et al. Analysis of basic flow pattern in shaft front-positioned and shaft rear-positioned tubular pump systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp.): 32-38. (in Chinese)
16 徐磊,陸林廣,陳偉,等. 南水北調(diào)工程邳州站豎井貫流泵裝置進(jìn)出水流態(tài)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):50-56. XU Lei,LU Linguang,CHEN Wei, et al. Flow pattern analysis on inlet and outlet conduit of shaft tubular pump system of Pizhou pumping station in South-to-North Water Diversion Project[J]. Transactions of the CSAE,2012,28(6): 50-56. (in Chinese)
17 楊帆,劉超,湯方平,等. S形貫流泵裝置多工況過(guò)流部件水力性能分析[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):71-77. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20140511&flag=1. DOI: 10.6041/j.issn.1000-1298.2014.05.011. YANG Fan,LIU Chao,TANG Fangping, et al. Analysis on vibration characteristics of S-shaped shaft-extension tubular pumping system[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):71-77. (in Chinese)
18 朱紅耕,戴龍洋,張仁田,等. 新型豎井貫流泵裝置研發(fā)與數(shù)值分析[J]. 排灌機(jī)械工程學(xué)報(bào),2011,29(5):418-422. ZHU Honggeng, DAI Longyang, ZHANG Rentian, et al. Development and numerical analysis of new-type shaft tubular pumping system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011,29(5):418-422. (in Chinese)
19 成立,劉超,湯方平,等. 對(duì)稱(chēng)翼型轉(zhuǎn)輪雙向豎井貫流泵裝置[J]. 排灌機(jī)械,2008,26(5):50-54. CHENG Li,LIU Chao,TANG Fangping, et al. Shaft tubular pump system with symmetric aerofoil blade[J]. Drainage and Irrigation Machinery, 2008,26(5):50-54. (in Chinese)
20 楊帆,金燕,劉超,等. 雙向潛水貫流泵裝置性能試驗(yàn)與數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):60-67. YANG Fan,JIN Yan,LIU Chao, et al. Numerical analysis and performance test on diving tubular pumping system with symmetric aerofoil blade[J]. Transactions of the CSAE, 2012, 28(16):60-67. (in Chinese)
21 謝榮盛,吳忠,何勇,等. 雙向豎井貫流泵進(jìn)出水流道優(yōu)化研究[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(10):68-74. http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20151011&flag=1. DOI: 10.6041/j.issn.1000-1298.2015.10.011. XIE Rongsheng, WU Zhong, HE Yong, et al. Optimization research on passage of bidirectional shaft tubular pump[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10):68-74. (in Chinese)
Effect of Guide Vane Position on Hydraulic Performance of Two-direction Tubular Pump Device
MENG Fan PEI Ji LI Yanjun YUAN Shouqi CHEN Jia
(NationalResearchCenterofPumps,JiangsuUniversity,Zhenjiang212013,China)
Two-direction tubular pump device can be adopted to meet the drainage and water transfer, so it was often used along Yangtze River and sea area. The analysis of hydraulic performance and internal flow becomes research hotspot. The two-direction tubular pump device consists of inlet flow passage, two-direction impeller, straight blade guide vane and outlet flow passage. In order to analyze the effect of guide vane position on hydraulic performance and flow pattern, the CFX14.5 was used to obtain the steady flow field in pump device of six different guide vane positions under positive and reverse conditions. The SST model was chosen, and mass flow rate and total pressure were set at inlet and outlet, respectively. The interfaces between inlet flow passage and impeller, and between impeller and guide vane were set as “Frozen Rotor”. The interface between guide vane and outlet flow passage was set as “None”. In addition, a smooth wall condition was used for the wall function. The results showed that good agreements between simulated and experimental results can be obtained, and the maximum relative error was less than 5%. Under positive rotation, for part-load condition, the efficiency was declined with the increase of guide vane positionSand the maximum loss value in diffuser passage can be observed whenSwas 40 mm. However, for over-load condition and design condition, the efficiency was increased with the increase ofSand the minimum loss value in diffuser passage can be obtained whenSwas 100 mm. Under negative rotation, the effect of guide vane position on hydraulic performance was not obvious. In summary, the guide vane positionSwith value of 100 mm was optimal. The results can provide reference opinion for two-direction tubular pump device.
two-direction tubular pump device; guide vane position; hydraulic performance; flow pattern analysis
10.6041/j.issn.1000-1298.2017.02.018
2016-05-30
2016-07-20
“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD20B01)、國(guó)家自然科學(xué)基金項(xiàng)目(51409123)和江蘇省自然科學(xué)基金青年基金項(xiàng)目(BK20140554)
孟凡(1988—),男,博士生,主要從事流體機(jī)械研究,E-mail: 15862987401@163.com
裴吉(1984—),男,副研究員,主要從事流體機(jī)械研究,E-mail: jpei@ujs.edu.cn
TH312
A
1000-1298(2017)01-0135-06