• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Rap1 signaling in tumor cell migration and invasion

    2017-02-27 05:54:21YiLeiZhangRuoChenWangKenChengBrianRingLiSuKeyLaboratoryofMolecularBiophysicsofMinistryofEducationSchoolofLifeScienceandTechnologyHuazhongUniversityofScienceandTechnologyWuhan40074ChinaSunYatsenUniversityGuangzhou50
    Cancer Biology & Medicine 2017年1期

    Yi-Lei Zhang, Ruo-Chen Wang, Ken Cheng, Brian Z. Ring, Li Su,Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 40074, China;Sun Yat-sen University, Guangzhou 5075, China;Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 5806, China

    Roles of Rap1 signaling in tumor cell migration and invasion

    Yi-Lei Zhang1, Ruo-Chen Wang1, Ken Cheng2, Brian Z. Ring1, Li Su1,31Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;2Sun Yat-sen University, Guangzhou 510275, China;3Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China

    Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.

    Tumor; metastasis; Rap1; RapGEFs; RapGAPs

    Introduction

    Cell migration and tumor metastasis are responsible for up to 90% of cancer-associated mortality1. Ras-associated protein-1 (Rap1) plays important roles in the regulation of multiple key events in tumor cell migration, invasion, and metastasis. Rap1, a member of the 21-kilodalton Ras-like small GTPase family, can bind to either guanosine triphosphate (GDP) or guanosine diphosphate (GDP) and is modulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)2,3. Rap1 shares a high degree of sequence identity (53%) with Ras protein4and can revert the phenotype of K-Ras-transformed cells5. Consistent with this observation, overexpressed Rap1V12, a constitutively active form of Rap1 (Rap1GTP), inhibits lysophosphatidic acid (LPA)-induced Ras-dependent ERK activation6. However, Rap1 can also activate B-Raf and ERKs in a manner independent and distinct of Ras7. The many roles of Rap1 include its participation in regulation of integrin- and cadherin-mediated cell adhesion in response to various membrane receptors8and regulation of both the recycling,avidity, and affinity of integrins by modulating an inside-out activation process9-11. Rap1 activation may promote the formation of cadherin-mediated cell-cell contacts through inside-out regulation12or cell-cell contact-induced E-cadherin-mediated outside-in signaling13.

    Regulation of Rap1 activity is primarily controlled by RapGEFs and GAPs (Figure 1). The dissociation rate of nucleotides from Rap1 is slow; however, GEFs accelerate this exchange reaction by several orders of magnitude14. Given that GEFs weaken the association between Rap1 and nucleotides, increases in GTP-bound forms over GDP-bound forms are caused by the higher intracellular concentration of GTP than GDP by approximately ten times15. GEFs contain a catalytic CDC25 homology domain and show selective activity for Rap1, although some GEFs can interact with other small G proteins16. This modulation of nucleotide binding of GEFs allows GEFs to respond to diverse stimuli, resulting in spatiotemporal regulation of Rap1. For example, RapGEFs, such as Epac1 and Epac2, are directly regulated by the secondary messenger cAMP, which controls local Epac-Rap1 signaling through its cellular distribution. Epac1 activation triggers the relocalization of Epac1 to the plasma membrane, activating membrane-localized Rap1 and enhancing integrin-mediated cell adhesion17. Another RapGEF, C3G, is regulated through post-translational modifications by Src and interacts with adaptor proteins of the Crk family upon activation of several receptors, includingplatelet-derived growth factor receptor and insulin receptor18-20. Rap1-bound GTP is efficiently hydrolyzed into GDP in the presence of RapGAPs, which accelerate the GTP hydrolysis reaction by several orders of magnitude.

    Figure 1 Mechanisms by which Rap1 signaling controls tumor cell invasion and metastasis. Rap1 signaling regulates integrin- or cadherinmediated cell adhesion, expression levels of proteases (e.g., matrix metalloproteinase), and cytoskeletal changes, which are linked to tumor cell proliferation, invasion, and metastasis.

    Two families of Rap1-specific GAPs exist: the Rap1GAP and SIPA1 families21. The mechanism through which all GAPs catalyze GTP hydrolysis primarily depends on the stabilization of the catalytic machinery of G protein through insertion of a catalytic side chain into the nucleotide-binding pocket, an arginine side chain for RasGAPs and asparagine side chain for RapGAPs22. Through differentially distributed subcellular features, such as protein-protein interactions and epigenetic modifications, RapGAPs target different Rap1-dependent signaling complexes and consequently perform distinct cellular functions. For example, Rap1GAP is recruited from the cytosol to the plasma membrane by its interaction with Gαz, which is activated by G protein coupled receptors23. E6 oncoprotein binds to SIPA1L1 (E6TP1) and targets it for degradation, resulting in deregulation of Rap1 activity24. In melanoma cells, Rap1GAP is downregulated via promoter methylation, promoting Rap1 activation, ERK phosphorylation, and cell proliferation and survival25.

    Moreover, the diversity of cellular functions regulated by small G proteins is determined by the distinct downstream effectors of these proteins. The effectors of Rap1 include the adaptor proteins AF-6, RAPL, Ezrin, Rasip1, Radil, Krit1, RacGEFs (e. g. , Tiam1 and Vav2), and RhoGAPs, including RA-RhoGAP and Arap326-31, which contribute to the regulation of Rap1-dependent cellular functions, such as cell adhesion, junction, migration, and polarization. RAPL deficiency has been speculated to significantly reduce the ability of chemokine-stimulated lymphocytes to adhere to ICAM and migrate into peripheral lymph nodes and spleen26. AF-6 interacts with p120 catenin and inhibits E-cadherin endocytosis in a Rap1-dependent manner27, affecting E-cadherin-mediated cell-cell adhesion. Rasip1 mediates Rap1-induced cell spreading without affecting adhesion; it induces junctional tightening via interaction with Radil28. Concomitantly, Rap1 promotes translocation of Radil from cytoplasm to plasma membrane, and Radil overexpression increases cell adhesion29. Rap1 interacts with Tiam1 and Vav2 without affecting their catalytic activity but in turn activates Rac and CDC42, regulating cell polarization and movement30,31. Furthermore, the Rap1 effector B-Raf can mediate ERK activation, and regulation of PI3K/Akt by Rap1 is an important mechanism in the control of cell survival and proliferation32(Figure 1).

    Tumor cell migration, invasion, and metastasis: roles of Rap1 signaling and its regulators

    The diverse roles of Rap1 in the regulation of normal cell growth are translated into several distinct activities in tumorcell development. Rap1 demonstrates distinct actions during metastasis depending on the assay employed and cancer type studied (Table 1) based on standard assays used to determine the roles of Rap1 include overexpression of wild-type Rap1 or its active mutants (Rap1V12 or Rap1E63), the use of extracellular stimuli, such as HGF, TGFβ, EGF, or cAMP analogs, and the use of siRNAs and the pharmacological inhibitor GGTI-298, followed by assessment of the invasive capacity of tumor cells by means of scratch and Transwell assays in vitro or xenograft models in vivo. Active Rap1 inhibits tumor invasion and metastasis in bladder, lung, and brain33,34, whereas it has the opposite effect in melanoma, leukemia, breast cancer, esophageal squamous cell carcinoma, head and neck squamous cell carcinoma (HNSCC), pancreatic carcinoma, and non-small cell lung carcinoma35-40. Rap1 activation promotes the adhesion of lymphoma cells to endothelial cells and its subsequent transmigration into the hematopoietic system, through which lymphoma cells spread to distant organs39. Moreover, Rap1E63 contributes to the invasive ability of prostate cancer cells41, whereas Rap1V12 suppresses prostate cancer metastasis42. Additionally, both Rap1V12 and Rap1GAP impair the migratory and invasive abilities of melanoma cells39, whereas the two isoforms of Rap1, Rap1A, and Rap1B exert the opposite effect on cell motility in glioma43,44. These manifold phenotypes reflect the multiple signaling pathways that exist downstream of Rap1.

    Similar to Rap1, which plays diverse roles in tumor metastasis, Rap1 regulators are pleiotropic (Table 2). Overexpression of the Rap1 activator DOCK4 suppresses invasion of mouse osteosarcoma cells45. Targeted shRNA-mediated EPAC1 inhibition reduces pancreatic cancer cell migration and invasion46. Stable expression of a nondegradable mutant of RAPGEF2 in breast cancer cells blocks tumor invasion and metastasis47. Rap1GAP inhibits tumor cell invasion in pancreatic carcinoma, thyroid carcinoma, melanoma, renal carcinoma, and colon cancer48-50; however, increased expression of Rap1GAP induces cell invasion in leukemia51. High expression of SIPA1 promotes tumor invasion and metastasis in prostate cancer, melanoma, and breast cancer52,53In colon cancer, downregulation of endogenous SIPA1 increases the invasive ability of cells54. This finding is inconsistent with the result for ovarian cancer, wherein C3G/Rap1 signaling promotes cell invasion, whereas Rap1GAP does not affect cell mobility55,56. Most of the studies included in Table 2 also assessed the role of Rap1 and the effect of GEFs and GAPs on tumor invasion and metastasis. Exceptions are the study on Rap1GAP in pancreatic carcinoma49and SIPA1 in melanoma and colorectal carcinoma52,54; these studies did not assess whether Rap1 is involved in the observed cellular changes.

    Other potential functions of Rap1 GEFs and GAPs in addition to their regulatory role on Rap1 activity cannot be ruled out. A recent study demonstrated that nuclear SIPA1 could activate integrin β1 promoter and promote breast cancer cell invasion in a Rap1-independent manner53. Moreover, the opposite influences of Rap1GAP and SIPA1 on regulation of melanoma cell invasion imply that there exist multiple mechanisms through which Rap1GAPs can affect cell migration and invasion. Several independent investigations have shown that the Rap1 GEF PDZ-GEF2 promotes tumor cell invasion in colon cancer, whereas Rap1GAP and SIPA1 suppresses cancer cell invasion54,57. This finding suggests a potential central role of Rap1 signaling and Rap1 signaling partners in colorectal carcinoma metastasis, and that the function of the Rap1 signaling proteins in tumor metastasis is very complex and mediates the effect of a host of other cellular and tissue-specific factors. Dissemination of tumor cells from the original tumor mass involves a breakdown of cell-cell adhesion. Tumor cell migration is promoted by disruption of the extracellular matrix to form a proteolytic microtrack. Rap1 signaling participates in several processes that contribute to these events (Figure 2), as outlined below.

    Rap1 signaling regulates cell adhesion

    Rap1 signaling regulates integrins and cadherins, which play important roles in cell adhesion to ECM and in cell-cell adhesion58. In lung cancer, cAMP-induced Epac-Rap activation suppresses TGFβ- and HGF-stimulated cell migration by enhancing cell-cell adhesion34. JAM-A drives breast cancer cell migration and adhesion through activation of Rap1 and integrin β1 and formation of a complex between JAM-A, AF-6, and PDZ-GEF236. Disrupting the balance in Rap1 activity in melanoma cells via expression of Rap1V12 or Rap1GAP impairs cell adhesion and migration via the FAK-and integrin-dependent pathways39. Given that both Rap1-specific GAPs Rap1GAP and SIPA1 inhibit cell adhesion to ECM, concluding that Rap1 plays a role in the regulation of cell adhesion is reasonable25,52. In prostate cancer cells, SIPA1 promotes tumor cell invasion and metastasis at least partially by inhibiting Rap1-mediated cell adhesion to ECM42. Reduced cell-cell adhesion is required for individual cell dissemination and invasion at the leading edge of the tumor mass during epithelial mesenchymal transition (EMT), and mesenchymal-migrating tumor cells require strong cell-to-ECM adhesion, whereas amoeboid movement does not58. In terms of the specific role of Rap1 in regulating integrin activation and integrin-mediated cell adhesion, Rap1 forms a complex containing talin combined with RIAM, which

    Table 1 Rap1 in tumor cell invasion and metastasis

    Table 2 Role of Rap1 GEFs and GAPs in tumor cell invasion and metastasis

    Figure 2 Dynamic change in Rap1 signaling during tumor cell invasion and metastasis. Dynamic change or cycling of Rap1 activity is required for invasive and metastatic behavior of tumor cells. For instance, while inactivation of Rap1-cadherin or integrin signaling is associated with reduced cell-cell adhesion or cell adhesion to extracellular matrix in one stage (steps 1 and 3), a separate step might entail increased Rap1 activity and cell adhesion (steps 2, 4, 5, and 6).

    targets talin to integrin59. However, a complete description of the roles of Rap1 in mediating cell adhesion in tumor cell invasion and metastasis requires further clarification.

    Rap1 signaling modulates expression of matrix metalloproteinases (MMPs)

    During tumor invasion and metastasis, MMPs degrade ECM barriers, cleave and activate target proteins, and regulate cell adhesion. In HNSCCs, Rap1 promotes nuclear localization of β-catenin, which induces TCF-dependent MMP7 transcription, thereby contributing to tumor cell invasion37. Knockdown of C3G in ovarian cancer cells reduces MMP2 and MMP9 production and Rap1-GTP level56. However, in HNSCCs, overexpression of Rap1GAP increases the expression levels of MMP2 and MMP9 and the invasive capacity of cells, although the role of Rap1 in this process is unclear62. Overexpression of SIPA1 in prostate cancer cells reduces MMP12 expression42. By contrast, SIPA1 knockdown in breast cancer cells reduces MMP9 expression through the FAK/Akt pathway53.

    Rap1 signaling controls Rho GTPase-mediated regulation of cytoskeletal dynamics

    Several Rho family members function in actin cytoskeleton rearrangement and consequently in modulation of cell motility. Rap1 signaling can participate in motility regulation involving Rho family proteins, particularly Cdc42, Rac1, and RhoA. Rap1 associates with RacGEFs, such as Vav2 and Tiam1, to induce translocation of Vav2 and activates Rac1 to promote cell spreading30. Cdc42 activation by Rap1 increases the activity of cell polarization-related protein complex, which in turn activates Rac1 through Tiam1 and subsequently enhances cell polarization31. Moreover, Rap1 can interact with and activates Arap3, a RhoA GAP. During tumor metastasis, Rap1 increases the ability of melanoma cell to migrate via Vav2-dependent activation of the RhoA/ ROCK/MLC pathway60. In vitro overexpressed Rap1GAP inhibits Rap1, Rac1 activation, and thyroid tumor cell migration61. Additionally, Rap1's inhibitory effects on bladder cancer and glioma cell migration are intensified by reduced Rac1 activity33,43. Rap1 signaling can regulate Rhofamily protein activities either positively or negatively, causing a wide range of effects on tumor cell invasion and metastasis.

    Rap1 signaling controls cell proliferation

    Tumor cell growth can increase tumor volume and mass, contributing to invasion via physical pushing63. An inhibitory effect of Rap1 signaling-related molecules on cell proliferation and invasion has been repeatedly observed; for instance, DOCK4 inhibits osteosarcoma and Rap1GAP inhibits pancreatic cancer, thyroid carcinoma, and melanoma cells25,45,48,49. Additionally, SIPA1 drives both cell proliferation and invasion in melanoma cells52. SIPA1-induced expression exerts little effect on primary tumor mass in prostate cancer but significantly increases both tumor cell invasion and metastasis, suggesting that SIPA1 promotes metastasis through mechanisms other than proliferation42. SIPA1 knockdown impairs the invasive capacity of breast cancer cells while it enhances their proliferation53. Similarly, overexpression of Rap1V12 in melanoma cells increases tumor mass but inhibits tumor metastasis in vivo39. Moreover, Rap1GAP overexpression inhibits cell growth but induces MMP2- and MMP9-mediated oropharyngeal squamous carcinomas cell invasion51.

    Regulation of Rap1 is dependent on tissue and subcellular-specific factors

    Rap1 signaling can affect metastasis in different manners depending on tumor types (Table 3). Tissue-specific protein expression in different tumor types likely contributes to theregulation of Rap1 signaling, similar to the spatiotemporally regulated patterns of gene expression during tumor development64. Indeed, Rap1 has been implicated in the activation and inhibition of ERK pathway in different cell types21; cAMP-induced activation of Rap1 inhibits C-Rafinduced ERK activation65. However, in neuronal cells expressing B-Raf, activated Rap1 can directly bind to B-Raf and induces downstream ERK activation7,66. Additionally, over-activation or inactivation of Rap1 inhibits melanoma cell motility, suggesting that change in Rap1 activity is critical for the metastatic dissemination of melanoma cells39. The interaction of Rap1 signaling with tissue-specific factors may explain this considerably diverse functions of Rap1. For example, while basal level of Rap1-GTP maintains cell adhesion, insulin-like growth factor type I receptor transiently regulates Rap1 activity through C3G and Rap1GAP to promote cell movement67.

    Table 3 Bidirectional effects of Rap1 signaling in different tumor types

    Protein subcellular localization of Rap1 is vital to the specificity and diversity of its function68. Relatedly, tumor cell dissemination and invasion depends on the stability and activity of Rap1 (Figure 2). Rap1 phosphorylation prevents the membrane association of Rap1, resulting in cytosolic and nuclear accumulation and in subsequent decrease in Rap1-dependent cell adhesion69,70. In addition, Rap1 stabilizes βcatenin in the nucleus and enhances β-catenin-dependent transcription and invasion in HNSCC37,51. SIPA1, recruited by AF6 and co-localized with Rap1 at cell adhesion sites, inhibits endogenous Rap1GTP and integrin β1-mediated cell adhesion to fibronectin71. However, nuclear-localized SIPA1 activates the integrin β1 gene promoter and promotes cell invasion and adhesion (Figure 3)53.

    Novel targets for the prevention of metastasis: insights from related studies on Rap1 signaling

    Prevention or early detection of the initial dissemination of tumor cells and secondary spread of tumor is an important goal in research aiming to find better clinical therapies72. In a melanoma metastasis model, six distinct Rap1-regulating molecules were used to predict the aggressive capability of melanoma cells52. Several inhibitors of cell motility, such as metalloproteinase inhibitor73and the fascin inhibitor Migrastatin74, have been suggested to demonstrate clinical utility in preventing tumor cell dissemination and subsequent invasion and metastasis. However, formation of metastases often occurs prior to the diagnosis of cancer. The Rap1 signaling pathway offers many targets for novel clinical tools given that Rap1 affects not only cell polarity and cell adhesion but also cell proliferation and invasion. Treatmentwith the demethylating agent 5-aza-2'-deoxycytidine induces Rap1GAP expression and reduces melanoma cell proliferation and survival25. In addition, treatment with 5-aza-deoxycytidine and/or the histone deacetylation inhibitor trichostatin A induces Rap1GAP expression in thyroid tumor cells, reducing cell invasion and proliferation48,75. Additional studies on these and other novel reagents targeting Rap1 signaling molecules are called for.

    Figure 3 Subcellular localization of Rap1 and SIPA1 during tumor cell invasion and metastasis. Subcellular localization of Rap1 (A) and SIPA1 (B) contributes to their distinct functions within a cell.

    Conclusions

    Rap1 signaling plays several important roles in tumor cell invasion and metastasis. The full scope of its functions remains unknown; Rap1 can induce very distinct effects depending on the tissue in which Rap1 is expressed. Therefore, the specific functions and effects of Rap1 signaling on metastasis in different tumor types remains a subject of continuing research. Additionally, many proteins contribute to the diversity in the control of tumor invasion and metastasis by Rap1 signaling, and the full panoply of factors that work with Rap1 resulting in diverse control mechanisms is not yet fully elucidated. Future works employing high throughput screening strategies to identify new molecules contributing to Rap1 signaling and real-time monitoring of Rap1 signaling during tumor invasion and metastasis are needed to further define the roles of Rap1.

    Acknowledgements

    This study is supported by grants from the National Natural Science Foundation of China (Grant No. 31271504 and 31471310) and the Shenzhen Science and Technology Innovation Committee, China (Grant No. JCYJ2013040 1144744187).

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011; 147: 275–92.

    2.Gloerich M, Bos JL. Regulating rap small G-proteins in time and space. Trends Cell Biol. 2011; 21: 615–23.

    3.Hattori M, Minato N. Rap1 GTPase: functions, regulation, and malignancy. J Biochem. 2003; 134: 479–84.

    4.Caron E. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci. 2003; 116: 435–40.

    5.Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A rasrelated gene with transformation suppressor activity. Cell. 1989; 56: 77–84.

    6.Cook SJ, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 1993; 12: 3475–85.

    7.Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJS. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997; 89: 73–82.

    8.Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol. 2006; 85: 283–93.

    9.Bos JL, de Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, et al. The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans. 2003; 31: 83–6.

    10.Dustin ML, Bivona TG, Philips MR. Membranes as messengers in T cell adhesion signaling. Nat Immunol. 2004; 5: 363–72.

    11.Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004; 7: 585–95.

    12.Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 2009; 1788: 790–6.

    13.Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 2005; 118: 4765–83.

    14.Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294: 1299–304.

    15.Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998; 394: 337–43.

    16.Rebhun JF, Castro AF, Quilliam LA. Identification of Guanine Nucleotide Exchange Factors (GEFs) for the Rap1 GTPase: regulation of MR-GEF by M-RAS-GTP interaction. J Biol Chem. 2000; 275: 34901-8.

    17.Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K. Direct spatial control of Epac1 by cyclic AMP. Mol Cell Biol. 2009; 29: 2521–31.

    18.Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata K, et al. Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 2008; 13: 549–69.

    19.Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001; 20: 3333–41.

    20.Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001; 410: 944–8.

    21.Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol. 2001; 2: 369–77.

    22.Raaijmakers JH, Bos JL. Specificity in Ras and Rap signaling. J Biol Chem. 2009; 284: 10995–9.

    23.Meng JW, Glick JL, Polakis P, Casey PJ. Functional interaction between Gαzand Rap1GAP suggests a novel form of cellular crosstalk. J Biol Chem. 1999; 274: 36663–9.

    24.Gao QS, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol. 1999; 19: 733–44.

    25.Zheng H, Gao L, Feng YF, Yuan LY, Zhao HB, Cornelius LA. Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer Res. 2009; 69: 449–57.

    26.Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004; 5: 1045–51.

    27.Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y. Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem. 2005; 280: 24095–103.

    28.Post A, Pannekoek WJ, Ross SH, Verlaan I, Brouwer PM, Bos JL. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci U S A. 2013; 110: 11427–32.

    29.Liu LH, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA. Radil controls neutrophil adhesion and motility through β2-integrin activation. Mol Biol Cell. 2012; 23: 4751–65.

    30.Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J Cell Biol. 2004; 167: 111–22.

    31.Gérard A, Mertens AEE, van der Kammen RA, Collard JG. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol. 2007; 176: 863–75.

    32.Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, et al. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem. 2003; 278: 41756–67.

    33.Vallés AM, Beuvin M, Boyer B. Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT- cells. J Biol Chem. 2004; 279: 44490–6.

    34.Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, de Rooij J. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal. 2008; 20: 1104–16.

    35.Gao L, Feng YF, Bowers R, Becker-Hapak M, Gardner J, Council L, et al. Ras-associated protein-1 regulates extracellular signalregulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 2006; 66: 7880–8.

    36.McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 2011; 13: R31.

    37.Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, et al. Rap1 stabilizes β-catenin and enhances β-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010; 16: 65–76.

    38.Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, et al. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene. 2012; 31: 2783–93.

    39.Lin KBL, Tan P, Freeman SA, Lam M, McNagny KM, Gold MR. The Rap GTPases regulate the migration, invasiveness and in vivo dissemination of B-cell lymphomas. Oncogene. 2010; 29: 608–15.

    40.Infante E, Heasman SJ, Ridley AJ. Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol. 2011; 89: 577–86.

    41.Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009; 69: 4962–8.

    42.Shimizu Y, Hamazaki Y, Hattori M, DoiK, Terada N, Kobayashi T, et al. SPA-1 controls the invasion and metastasis of human prostate cancer. Cancer Sci. 2011; 102: 828–36.

    43.Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell. 2009; 20: 5156–65.

    44.Barrett A, Evans IM, Frolov A, Britton G, Pellet-Many C, Yamaji M, et al. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling. J Cell Sci. 2014; 127: 2647–58.

    45.Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DCR, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003; 112: 673–84.

    46.Almahariq M, Tsalkova T, Mei FC, Chen HJ, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013; 83: 122–8.

    47.Magliozzi R, Low TY, Weijts BGMW, Cheng TH, Spanjaard E, Mohammed S, et al. Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013; 27: 574–85.

    48.Zuo H, Gandhi M, Edreira MM, Hochbaum D, Nimgaonkar VL, Zhang P, et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 2010; 70: 1389–97.

    49.Zhang LZ, Chenwei L, Mahmood R, van Golen K, Greenson J, Li GY, et al. Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res. 2006; 66: 898–906.

    50.Kim WJ, Gersey Z, Daaka Y. Rap1GAP regulates renal cell carcinoma invasion. Cancer Lett. 2012; 320: 65–71.

    51.Mitra RS, Goto M, Lee JS, Maldonado D, Taylor JMG, Pan QT, et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage squamous cell carcinoma. Cancer Res. 2008; 68: 3959–69.

    52.Mathieu V, Pirker C, Schmidt WM, Spiegl-Kreinecker S, L?tsch D, Heffeter P, et al. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget. 2012; 3: 399–413.

    53.Zhang Y, Gong Y, Hu D, Zhu P, Wang N, Zhang Q, et al. Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells. Oncogene. 2015; 34: 1451–62.

    54.Ji K, Ye L, Toms AM, Hargest R, Martin TA, Ruge F, et al. Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells. Cancer Genomics Proteomics. 2012; 9: 321–7.

    55.Ho SM, Lau KM, Mok SC, Syed V. Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene. 2003; 22: 4243–56.

    56.Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, et al. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett. 2015; 359: 241–9.

    57.Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cellmatrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr. 2011; 5: 323–31.

    58.Kooistra MRH, Dubé N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007; 120: 17–22.

    59.Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonistinduced activation of integrin αbβ3. Curr Biol. 2006; 16: 1796–806.

    60.Hernández-Varas P, Coló GP, Bartolomé RA, Paterson A, Medra?o-Fernández I, Arellano-Sánchez N, et al. Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells. J Biol Chem. 2011; 286: 18492–504.

    61.Tsygankova OM, Prendergast GV, Puttaswamy K, Wang Y, Feldman MD, Wang HB, et al. Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol. 2007; 27: 6647–58.

    62.Mitra RS, Zhang ZC, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003; 22: 6243–56.

    63.Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147: 992–1009.

    64.Levine M. Transcriptional enhancers in animal development and evolution. Curr Biol. 2010; 20: R754–63.

    65.Zwartkruis FJT, Wolthuis RMF, Nabben NMJM, Franke B, Bos JL. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 1998; 17: 5905–12.

    66.Grewal SS, Horgan AM, York RD, Withers GS, Banker GA, Stork PJS. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J Biol Chem. 2000; 275: 3722–8.

    67.Guvakova MA, Lee WSY, Furstenau DK, Prabakaran I, Li DC, Hung R, et al. The small GTPase Rap1 promotes cell movement rather than stabilizes adhesion in epithelial cells responding to insulin-like growth factor I. Biochem J. 2014; 463: 257–70.

    68.Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009; 8: 935–48.

    69.Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang ZP, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem. 2013; 288: 27712–23.

    70.Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal. 2013; 6: ra39.

    71.Su L, Hattori M, Moriyama M, Murata N, Harazaki M, Kaibuchi K, et al. AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J Biol Chem. 2003; 278: 15232–8.

    72.Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013; 34: 283–9.

    73.Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141: 52–67.

    74.Chen L, Yang SY, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010; 464: 1062–6.

    75.Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer. 2011; 18: 301-10.

    76.Wang K, Li J, Guo H, Xu XQ, Xiong G, Guan XY, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012; 33: 2147–54.

    77.Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. β-Arrestin2 regulates lysophosphatidic acidinduced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PloS One. 2013; 8: e56174.

    78.Tsygankova OM, Wang HB, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem. 2013; 288: 24636–46.

    79.Wu JJ, Zhang YS, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem. 2011; 286: 33954–62.

    80.Qiu TT, Qi XF, Cen JN, Chen ZX. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep. 2012; 28: 622–8.

    81.Dong XY, Tang WX, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer. 2012; 19: 575–88.

    82.Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA. Junctional adhesion molecule A interacts with Afadin and PDZGEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol Biol Cell. 2009; 20: 1916–25.

    Cite this article as:Zhang Y, Wang R, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017; 14: 90-9. doi: 10.20892/j.issn.2095-3941.2016.0086

    Brian Z. Ring and Li Su

    E-mail: bzring@gmail.com and lisu@hust.edu.cn

    Received October 24, 2016; accepted December 7, 2016. Available at www.cancerbiomed.org

    Copyright ? 2017 by Cancer Biology & Medicine

    黑人操中国人逼视频| 国产亚洲欧美98| 亚洲成av人片免费观看| 正在播放国产对白刺激| 欧美精品啪啪一区二区三区| 2021天堂中文幕一二区在线观 | 91老司机精品| 少妇 在线观看| 一a级毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久久亚洲av鲁大| 国产黄a三级三级三级人| 日韩高清综合在线| 久久久久久久久免费视频了| 亚洲精品在线美女| 1024香蕉在线观看| 好男人在线观看高清免费视频 | 国产精品爽爽va在线观看网站 | 午夜两性在线视频| 在线免费观看的www视频| 中亚洲国语对白在线视频| 少妇的丰满在线观看| 日日摸夜夜添夜夜添小说| 欧美日韩黄片免| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 精品久久蜜臀av无| 老司机深夜福利视频在线观看| 欧美日韩黄片免| 久久精品人妻少妇| 女人高潮潮喷娇喘18禁视频| 日韩精品免费视频一区二区三区| 天堂动漫精品| 精品国产乱码久久久久久男人| 亚洲精品粉嫩美女一区| 久久精品影院6| 国产精品日韩av在线免费观看| 99精品欧美一区二区三区四区| АⅤ资源中文在线天堂| 日本精品一区二区三区蜜桃| 国产精品日韩av在线免费观看| 黄频高清免费视频| a级毛片在线看网站| 久久九九热精品免费| 三级毛片av免费| 国产精品亚洲av一区麻豆| 国产片内射在线| 热re99久久国产66热| 亚洲最大成人中文| 国产成人欧美| www日本黄色视频网| 亚洲成av片中文字幕在线观看| 国产三级黄色录像| 叶爱在线成人免费视频播放| 桃红色精品国产亚洲av| 日本在线视频免费播放| 精品不卡国产一区二区三区| 他把我摸到了高潮在线观看| 狠狠狠狠99中文字幕| 黑丝袜美女国产一区| 无限看片的www在线观看| 亚洲 欧美一区二区三区| 91在线观看av| 久久精品亚洲精品国产色婷小说| 精品国产亚洲在线| 最好的美女福利视频网| 一进一出好大好爽视频| 老汉色∧v一级毛片| 久久精品国产清高在天天线| 青草久久国产| 热re99久久国产66热| 午夜福利在线在线| 亚洲av熟女| 欧美成人免费av一区二区三区| 中文字幕精品免费在线观看视频| 两个人免费观看高清视频| 在线观看午夜福利视频| 国产99久久九九免费精品| 成人av一区二区三区在线看| 欧美日韩亚洲综合一区二区三区_| e午夜精品久久久久久久| 国产成+人综合+亚洲专区| 亚洲欧美日韩无卡精品| 99久久无色码亚洲精品果冻| www.精华液| 变态另类成人亚洲欧美熟女| 亚洲熟妇熟女久久| 久久久久久亚洲精品国产蜜桃av| 欧美不卡视频在线免费观看 | 亚洲熟妇熟女久久| 可以在线观看的亚洲视频| 国产1区2区3区精品| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 国产激情久久老熟女| 婷婷精品国产亚洲av| 他把我摸到了高潮在线观看| 日韩大码丰满熟妇| 久久久久久亚洲精品国产蜜桃av| 丝袜人妻中文字幕| 99精品久久久久人妻精品| 欧美一级毛片孕妇| 欧美一级a爱片免费观看看 | 国产成年人精品一区二区| 国产区一区二久久| 欧美乱码精品一区二区三区| avwww免费| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| 久久久久久九九精品二区国产 | 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区 | 黄色片一级片一级黄色片| 精品久久久久久久人妻蜜臀av| 久久精品人妻少妇| 亚洲五月天丁香| 久久久久精品国产欧美久久久| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 婷婷亚洲欧美| 亚洲激情在线av| 给我免费播放毛片高清在线观看| 91在线观看av| 国产真人三级小视频在线观看| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲三区欧美一区| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播 | 亚洲成av人片免费观看| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 女性生殖器流出的白浆| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久 | 亚洲成人免费电影在线观看| 88av欧美| www.www免费av| 久久伊人香网站| 精品一区二区三区视频在线观看免费| 亚洲无线在线观看| 亚洲国产中文字幕在线视频| 亚洲国产高清在线一区二区三 | 日本在线视频免费播放| 欧美精品亚洲一区二区| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 极品教师在线免费播放| 成人国语在线视频| 亚洲色图av天堂| 久久精品国产清高在天天线| 亚洲精品久久国产高清桃花| 青草久久国产| 午夜a级毛片| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 国产成人av教育| 国产精品久久电影中文字幕| 黄色毛片三级朝国网站| 久久婷婷成人综合色麻豆| 日韩精品青青久久久久久| 午夜免费成人在线视频| 男女做爰动态图高潮gif福利片| 91成年电影在线观看| 午夜免费激情av| 欧美中文综合在线视频| 欧美性长视频在线观看| 欧美日韩黄片免| 久久精品aⅴ一区二区三区四区| 国产三级黄色录像| 久久久久九九精品影院| 亚洲avbb在线观看| 美国免费a级毛片| 久久久久精品国产欧美久久久| 美女高潮到喷水免费观看| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 亚洲av成人一区二区三| 神马国产精品三级电影在线观看 | 女生性感内裤真人,穿戴方法视频| 麻豆成人午夜福利视频| 最近最新中文字幕大全电影3 | 免费看a级黄色片| 国产午夜精品久久久久久| a在线观看视频网站| 亚洲国产精品久久男人天堂| 亚洲国产高清在线一区二区三 | 欧美久久黑人一区二区| 欧美av亚洲av综合av国产av| 可以在线观看的亚洲视频| 又黄又粗又硬又大视频| 长腿黑丝高跟| √禁漫天堂资源中文www| 不卡一级毛片| 欧美zozozo另类| 国内精品久久久久精免费| 国产精品久久久久久亚洲av鲁大| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 宅男免费午夜| 国产成人欧美在线观看| 动漫黄色视频在线观看| 黑丝袜美女国产一区| www.精华液| 午夜视频精品福利| 亚洲国产精品成人综合色| 久久热在线av| 在线观看一区二区三区| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 精品日产1卡2卡| 国产爱豆传媒在线观看 | 久久草成人影院| 国产乱人伦免费视频| 免费高清视频大片| 性欧美人与动物交配| 日本成人三级电影网站| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 国产精品九九99| 国产极品粉嫩免费观看在线| 少妇 在线观看| a级毛片a级免费在线| 亚洲第一电影网av| 久久国产精品男人的天堂亚洲| 国产精华一区二区三区| 无限看片的www在线观看| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 日本成人三级电影网站| 久久香蕉国产精品| 制服丝袜大香蕉在线| 一级a爱片免费观看的视频| 少妇裸体淫交视频免费看高清 | 亚洲精品在线观看二区| 久久精品aⅴ一区二区三区四区| 黄色视频,在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美大码av| 亚洲电影在线观看av| 在线免费观看的www视频| 日韩大码丰满熟妇| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 一本一本综合久久| 成人国产综合亚洲| 91av网站免费观看| 午夜免费鲁丝| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 国产伦人伦偷精品视频| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 制服诱惑二区| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 久久狼人影院| 免费在线观看亚洲国产| 国产精品一区二区精品视频观看| 国产精品精品国产色婷婷| 日本一本二区三区精品| 白带黄色成豆腐渣| 黄色女人牲交| 亚洲免费av在线视频| 国产一区二区三区视频了| 两个人视频免费观看高清| 国产精品野战在线观看| 亚洲精品色激情综合| 成人三级做爰电影| 人人妻人人澡欧美一区二区| 三级毛片av免费| 亚洲国产高清在线一区二区三 | 中文字幕av电影在线播放| 国产精品久久久人人做人人爽| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 大型av网站在线播放| 99久久99久久久精品蜜桃| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 亚洲,欧美精品.| 亚洲av电影不卡..在线观看| 亚洲av成人不卡在线观看播放网| 麻豆成人午夜福利视频| 欧美日韩黄片免| 亚洲国产欧美一区二区综合| 久久久久国产精品人妻aⅴ院| 91成年电影在线观看| 怎么达到女性高潮| 国产高清激情床上av| 成人国语在线视频| 久久国产乱子伦精品免费另类| 好男人在线观看高清免费视频 | 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| cao死你这个sao货| 日本熟妇午夜| 免费看美女性在线毛片视频| 色老头精品视频在线观看| 亚洲人成77777在线视频| 国产在线精品亚洲第一网站| 国产免费av片在线观看野外av| 成年女人毛片免费观看观看9| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人精品巨大| 精品久久久久久成人av| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 亚洲全国av大片| 一本一本综合久久| 动漫黄色视频在线观看| 成人手机av| 老熟妇乱子伦视频在线观看| 久久亚洲真实| 午夜激情av网站| 久久中文字幕人妻熟女| 韩国av一区二区三区四区| 十八禁网站免费在线| 九色国产91popny在线| 久热这里只有精品99| 久久久久九九精品影院| 国产成+人综合+亚洲专区| or卡值多少钱| 一本精品99久久精品77| 亚洲真实伦在线观看| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 香蕉国产在线看| 天天一区二区日本电影三级| 一夜夜www| 精品国产国语对白av| 久久久久久久午夜电影| 亚洲精品av麻豆狂野| 天堂动漫精品| 中文字幕av电影在线播放| 亚洲久久久国产精品| 国产aⅴ精品一区二区三区波| av欧美777| 免费看日本二区| 日本五十路高清| 中文字幕人妻熟女乱码| 久久久久久九九精品二区国产 | 在线播放国产精品三级| 黄色女人牲交| 九色国产91popny在线| 国产精品久久久久久精品电影 | 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 免费高清视频大片| 真人做人爱边吃奶动态| 国产精品爽爽va在线观看网站 | 亚洲熟妇中文字幕五十中出| 高潮久久久久久久久久久不卡| 99精品欧美一区二区三区四区| 91大片在线观看| 一进一出好大好爽视频| 亚洲在线自拍视频| 国产av不卡久久| 成人18禁高潮啪啪吃奶动态图| 丰满的人妻完整版| 天堂影院成人在线观看| www.999成人在线观看| 最新美女视频免费是黄的| 99热只有精品国产| 国产精品一区二区免费欧美| 欧美黄色片欧美黄色片| 午夜免费鲁丝| 国产一区二区激情短视频| 久久国产亚洲av麻豆专区| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 啦啦啦 在线观看视频| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 窝窝影院91人妻| 久久香蕉国产精品| 久久久久久久久中文| 90打野战视频偷拍视频| 91在线观看av| 搡老妇女老女人老熟妇| 国语自产精品视频在线第100页| 69av精品久久久久久| 岛国在线观看网站| 亚洲国产欧美一区二区综合| 国产精品亚洲一级av第二区| 1024手机看黄色片| 一进一出抽搐gif免费好疼| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产区一区二| 精品熟女少妇八av免费久了| 日本免费一区二区三区高清不卡| bbb黄色大片| 日韩欧美 国产精品| 中文字幕另类日韩欧美亚洲嫩草| 精品国产乱子伦一区二区三区| 美女大奶头视频| 国产成人影院久久av| 精品一区二区三区av网在线观看| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 亚洲天堂国产精品一区在线| 丁香欧美五月| 麻豆成人午夜福利视频| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 日本在线视频免费播放| 无遮挡黄片免费观看| 日韩有码中文字幕| 久久精品国产综合久久久| 午夜免费观看网址| 欧美中文日本在线观看视频| 久久婷婷成人综合色麻豆| 欧美成人一区二区免费高清观看 | 欧美色视频一区免费| 成人一区二区视频在线观看| 婷婷六月久久综合丁香| 99久久精品国产亚洲精品| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 久久久久免费精品人妻一区二区 | 久久 成人 亚洲| 90打野战视频偷拍视频| 女性被躁到高潮视频| 国产精品 国内视频| 国产精品亚洲一级av第二区| 亚洲成av人片免费观看| 久久精品人妻少妇| 欧美成人免费av一区二区三区| 日本 av在线| 最近最新中文字幕大全电影3 | 校园春色视频在线观看| 午夜福利一区二区在线看| 国产av一区在线观看免费| 亚洲久久久国产精品| 看片在线看免费视频| av在线天堂中文字幕| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 91老司机精品| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 午夜福利一区二区在线看| 精品第一国产精品| 亚洲中文av在线| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片| 白带黄色成豆腐渣| 亚洲色图 男人天堂 中文字幕| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 日本 av在线| 久久人妻av系列| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 亚洲专区中文字幕在线| 成熟少妇高潮喷水视频| 日韩欧美三级三区| 亚洲国产日韩欧美精品在线观看 | 一级黄色大片毛片| 制服诱惑二区| 亚洲真实伦在线观看| 精品欧美一区二区三区在线| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 99久久久亚洲精品蜜臀av| 亚洲七黄色美女视频| 亚洲在线自拍视频| 日本精品一区二区三区蜜桃| svipshipincom国产片| 亚洲国产毛片av蜜桃av| 非洲黑人性xxxx精品又粗又长| 亚洲全国av大片| 麻豆成人午夜福利视频| 一区二区三区激情视频| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 亚洲欧美一区二区三区黑人| 91九色精品人成在线观看| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 天堂√8在线中文| 黄片播放在线免费| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久av美女十八| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 亚洲国产日韩欧美精品在线观看 | 在线十欧美十亚洲十日本专区| 国产成人影院久久av| 好男人电影高清在线观看| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 欧美乱码精品一区二区三区| 18美女黄网站色大片免费观看| 成人av一区二区三区在线看| 一本综合久久免费| 十八禁人妻一区二区| 亚洲全国av大片| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 欧美激情久久久久久爽电影| 两性夫妻黄色片| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 色综合站精品国产| 国产精品1区2区在线观看.| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 中文在线观看免费www的网站 | 欧美人与性动交α欧美精品济南到| 免费看a级黄色片| 国产片内射在线| 成人亚洲精品一区在线观看| 9191精品国产免费久久| 亚洲精品久久国产高清桃花| 亚洲 国产 在线| svipshipincom国产片| av有码第一页| 国语自产精品视频在线第100页| 最近在线观看免费完整版| 亚洲自拍偷在线| 久久人妻av系列| 亚洲av电影在线进入| 亚洲一区中文字幕在线| 在线观看免费午夜福利视频| 99re在线观看精品视频| 国产激情偷乱视频一区二区| av视频在线观看入口| 久久久久久人人人人人| 亚洲精品国产一区二区精华液| 少妇 在线观看| 热99re8久久精品国产| 少妇被粗大的猛进出69影院| 日日爽夜夜爽网站| 一个人观看的视频www高清免费观看 | 制服人妻中文乱码| av在线天堂中文字幕| 久久香蕉精品热| av片东京热男人的天堂| 欧美激情 高清一区二区三区| 亚洲专区字幕在线| 国产亚洲av嫩草精品影院| 一级a爱片免费观看的视频| 国内精品久久久久精免费| 香蕉丝袜av| 国产午夜福利久久久久久| 老汉色∧v一级毛片| 精品国内亚洲2022精品成人| 亚洲av熟女| 亚洲 国产 在线| 色尼玛亚洲综合影院| 国产精品精品国产色婷婷| 亚洲成人免费电影在线观看| 可以免费在线观看a视频的电影网站| 亚洲成av片中文字幕在线观看| 女性被躁到高潮视频| 在线观看免费午夜福利视频| 这个男人来自地球电影免费观看| 女人高潮潮喷娇喘18禁视频| 我的亚洲天堂| 日日干狠狠操夜夜爽| 亚洲av成人一区二区三| 桃红色精品国产亚洲av| 国产真人三级小视频在线观看| 国产人伦9x9x在线观看| 国产精品一区二区三区四区久久 | 制服诱惑二区| 女同久久另类99精品国产91| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久| 午夜福利视频1000在线观看| 一进一出抽搐gif免费好疼| 在线观看免费日韩欧美大片| 亚洲人成网站在线播放欧美日韩| 给我免费播放毛片高清在线观看| 成人国产一区最新在线观看| 日韩欧美国产在线观看| 黄频高清免费视频| 99久久久亚洲精品蜜臀av| 国内久久婷婷六月综合欲色啪| 极品教师在线免费播放| 中文字幕另类日韩欧美亚洲嫩草| 国产午夜福利久久久久久| 精品久久久久久成人av| 欧美日韩中文字幕国产精品一区二区三区| 一二三四在线观看免费中文在| 一级作爱视频免费观看| 嫩草影视91久久| 老司机午夜十八禁免费视频| 校园春色视频在线观看| 亚洲精品久久成人aⅴ小说| 精品久久久久久久久久免费视频| 亚洲熟妇中文字幕五十中出| 国产成人av激情在线播放| 日韩欧美免费精品| 麻豆成人av在线观看|