• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Rap1 signaling in tumor cell migration and invasion

    2017-02-27 05:54:21YiLeiZhangRuoChenWangKenChengBrianRingLiSuKeyLaboratoryofMolecularBiophysicsofMinistryofEducationSchoolofLifeScienceandTechnologyHuazhongUniversityofScienceandTechnologyWuhan40074ChinaSunYatsenUniversityGuangzhou50
    Cancer Biology & Medicine 2017年1期

    Yi-Lei Zhang, Ruo-Chen Wang, Ken Cheng, Brian Z. Ring, Li Su,Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 40074, China;Sun Yat-sen University, Guangzhou 5075, China;Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 5806, China

    Roles of Rap1 signaling in tumor cell migration and invasion

    Yi-Lei Zhang1, Ruo-Chen Wang1, Ken Cheng2, Brian Z. Ring1, Li Su1,31Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;2Sun Yat-sen University, Guangzhou 510275, China;3Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China

    Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.

    Tumor; metastasis; Rap1; RapGEFs; RapGAPs

    Introduction

    Cell migration and tumor metastasis are responsible for up to 90% of cancer-associated mortality1. Ras-associated protein-1 (Rap1) plays important roles in the regulation of multiple key events in tumor cell migration, invasion, and metastasis. Rap1, a member of the 21-kilodalton Ras-like small GTPase family, can bind to either guanosine triphosphate (GDP) or guanosine diphosphate (GDP) and is modulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)2,3. Rap1 shares a high degree of sequence identity (53%) with Ras protein4and can revert the phenotype of K-Ras-transformed cells5. Consistent with this observation, overexpressed Rap1V12, a constitutively active form of Rap1 (Rap1GTP), inhibits lysophosphatidic acid (LPA)-induced Ras-dependent ERK activation6. However, Rap1 can also activate B-Raf and ERKs in a manner independent and distinct of Ras7. The many roles of Rap1 include its participation in regulation of integrin- and cadherin-mediated cell adhesion in response to various membrane receptors8and regulation of both the recycling,avidity, and affinity of integrins by modulating an inside-out activation process9-11. Rap1 activation may promote the formation of cadherin-mediated cell-cell contacts through inside-out regulation12or cell-cell contact-induced E-cadherin-mediated outside-in signaling13.

    Regulation of Rap1 activity is primarily controlled by RapGEFs and GAPs (Figure 1). The dissociation rate of nucleotides from Rap1 is slow; however, GEFs accelerate this exchange reaction by several orders of magnitude14. Given that GEFs weaken the association between Rap1 and nucleotides, increases in GTP-bound forms over GDP-bound forms are caused by the higher intracellular concentration of GTP than GDP by approximately ten times15. GEFs contain a catalytic CDC25 homology domain and show selective activity for Rap1, although some GEFs can interact with other small G proteins16. This modulation of nucleotide binding of GEFs allows GEFs to respond to diverse stimuli, resulting in spatiotemporal regulation of Rap1. For example, RapGEFs, such as Epac1 and Epac2, are directly regulated by the secondary messenger cAMP, which controls local Epac-Rap1 signaling through its cellular distribution. Epac1 activation triggers the relocalization of Epac1 to the plasma membrane, activating membrane-localized Rap1 and enhancing integrin-mediated cell adhesion17. Another RapGEF, C3G, is regulated through post-translational modifications by Src and interacts with adaptor proteins of the Crk family upon activation of several receptors, includingplatelet-derived growth factor receptor and insulin receptor18-20. Rap1-bound GTP is efficiently hydrolyzed into GDP in the presence of RapGAPs, which accelerate the GTP hydrolysis reaction by several orders of magnitude.

    Figure 1 Mechanisms by which Rap1 signaling controls tumor cell invasion and metastasis. Rap1 signaling regulates integrin- or cadherinmediated cell adhesion, expression levels of proteases (e.g., matrix metalloproteinase), and cytoskeletal changes, which are linked to tumor cell proliferation, invasion, and metastasis.

    Two families of Rap1-specific GAPs exist: the Rap1GAP and SIPA1 families21. The mechanism through which all GAPs catalyze GTP hydrolysis primarily depends on the stabilization of the catalytic machinery of G protein through insertion of a catalytic side chain into the nucleotide-binding pocket, an arginine side chain for RasGAPs and asparagine side chain for RapGAPs22. Through differentially distributed subcellular features, such as protein-protein interactions and epigenetic modifications, RapGAPs target different Rap1-dependent signaling complexes and consequently perform distinct cellular functions. For example, Rap1GAP is recruited from the cytosol to the plasma membrane by its interaction with Gαz, which is activated by G protein coupled receptors23. E6 oncoprotein binds to SIPA1L1 (E6TP1) and targets it for degradation, resulting in deregulation of Rap1 activity24. In melanoma cells, Rap1GAP is downregulated via promoter methylation, promoting Rap1 activation, ERK phosphorylation, and cell proliferation and survival25.

    Moreover, the diversity of cellular functions regulated by small G proteins is determined by the distinct downstream effectors of these proteins. The effectors of Rap1 include the adaptor proteins AF-6, RAPL, Ezrin, Rasip1, Radil, Krit1, RacGEFs (e. g. , Tiam1 and Vav2), and RhoGAPs, including RA-RhoGAP and Arap326-31, which contribute to the regulation of Rap1-dependent cellular functions, such as cell adhesion, junction, migration, and polarization. RAPL deficiency has been speculated to significantly reduce the ability of chemokine-stimulated lymphocytes to adhere to ICAM and migrate into peripheral lymph nodes and spleen26. AF-6 interacts with p120 catenin and inhibits E-cadherin endocytosis in a Rap1-dependent manner27, affecting E-cadherin-mediated cell-cell adhesion. Rasip1 mediates Rap1-induced cell spreading without affecting adhesion; it induces junctional tightening via interaction with Radil28. Concomitantly, Rap1 promotes translocation of Radil from cytoplasm to plasma membrane, and Radil overexpression increases cell adhesion29. Rap1 interacts with Tiam1 and Vav2 without affecting their catalytic activity but in turn activates Rac and CDC42, regulating cell polarization and movement30,31. Furthermore, the Rap1 effector B-Raf can mediate ERK activation, and regulation of PI3K/Akt by Rap1 is an important mechanism in the control of cell survival and proliferation32(Figure 1).

    Tumor cell migration, invasion, and metastasis: roles of Rap1 signaling and its regulators

    The diverse roles of Rap1 in the regulation of normal cell growth are translated into several distinct activities in tumorcell development. Rap1 demonstrates distinct actions during metastasis depending on the assay employed and cancer type studied (Table 1) based on standard assays used to determine the roles of Rap1 include overexpression of wild-type Rap1 or its active mutants (Rap1V12 or Rap1E63), the use of extracellular stimuli, such as HGF, TGFβ, EGF, or cAMP analogs, and the use of siRNAs and the pharmacological inhibitor GGTI-298, followed by assessment of the invasive capacity of tumor cells by means of scratch and Transwell assays in vitro or xenograft models in vivo. Active Rap1 inhibits tumor invasion and metastasis in bladder, lung, and brain33,34, whereas it has the opposite effect in melanoma, leukemia, breast cancer, esophageal squamous cell carcinoma, head and neck squamous cell carcinoma (HNSCC), pancreatic carcinoma, and non-small cell lung carcinoma35-40. Rap1 activation promotes the adhesion of lymphoma cells to endothelial cells and its subsequent transmigration into the hematopoietic system, through which lymphoma cells spread to distant organs39. Moreover, Rap1E63 contributes to the invasive ability of prostate cancer cells41, whereas Rap1V12 suppresses prostate cancer metastasis42. Additionally, both Rap1V12 and Rap1GAP impair the migratory and invasive abilities of melanoma cells39, whereas the two isoforms of Rap1, Rap1A, and Rap1B exert the opposite effect on cell motility in glioma43,44. These manifold phenotypes reflect the multiple signaling pathways that exist downstream of Rap1.

    Similar to Rap1, which plays diverse roles in tumor metastasis, Rap1 regulators are pleiotropic (Table 2). Overexpression of the Rap1 activator DOCK4 suppresses invasion of mouse osteosarcoma cells45. Targeted shRNA-mediated EPAC1 inhibition reduces pancreatic cancer cell migration and invasion46. Stable expression of a nondegradable mutant of RAPGEF2 in breast cancer cells blocks tumor invasion and metastasis47. Rap1GAP inhibits tumor cell invasion in pancreatic carcinoma, thyroid carcinoma, melanoma, renal carcinoma, and colon cancer48-50; however, increased expression of Rap1GAP induces cell invasion in leukemia51. High expression of SIPA1 promotes tumor invasion and metastasis in prostate cancer, melanoma, and breast cancer52,53In colon cancer, downregulation of endogenous SIPA1 increases the invasive ability of cells54. This finding is inconsistent with the result for ovarian cancer, wherein C3G/Rap1 signaling promotes cell invasion, whereas Rap1GAP does not affect cell mobility55,56. Most of the studies included in Table 2 also assessed the role of Rap1 and the effect of GEFs and GAPs on tumor invasion and metastasis. Exceptions are the study on Rap1GAP in pancreatic carcinoma49and SIPA1 in melanoma and colorectal carcinoma52,54; these studies did not assess whether Rap1 is involved in the observed cellular changes.

    Other potential functions of Rap1 GEFs and GAPs in addition to their regulatory role on Rap1 activity cannot be ruled out. A recent study demonstrated that nuclear SIPA1 could activate integrin β1 promoter and promote breast cancer cell invasion in a Rap1-independent manner53. Moreover, the opposite influences of Rap1GAP and SIPA1 on regulation of melanoma cell invasion imply that there exist multiple mechanisms through which Rap1GAPs can affect cell migration and invasion. Several independent investigations have shown that the Rap1 GEF PDZ-GEF2 promotes tumor cell invasion in colon cancer, whereas Rap1GAP and SIPA1 suppresses cancer cell invasion54,57. This finding suggests a potential central role of Rap1 signaling and Rap1 signaling partners in colorectal carcinoma metastasis, and that the function of the Rap1 signaling proteins in tumor metastasis is very complex and mediates the effect of a host of other cellular and tissue-specific factors. Dissemination of tumor cells from the original tumor mass involves a breakdown of cell-cell adhesion. Tumor cell migration is promoted by disruption of the extracellular matrix to form a proteolytic microtrack. Rap1 signaling participates in several processes that contribute to these events (Figure 2), as outlined below.

    Rap1 signaling regulates cell adhesion

    Rap1 signaling regulates integrins and cadherins, which play important roles in cell adhesion to ECM and in cell-cell adhesion58. In lung cancer, cAMP-induced Epac-Rap activation suppresses TGFβ- and HGF-stimulated cell migration by enhancing cell-cell adhesion34. JAM-A drives breast cancer cell migration and adhesion through activation of Rap1 and integrin β1 and formation of a complex between JAM-A, AF-6, and PDZ-GEF236. Disrupting the balance in Rap1 activity in melanoma cells via expression of Rap1V12 or Rap1GAP impairs cell adhesion and migration via the FAK-and integrin-dependent pathways39. Given that both Rap1-specific GAPs Rap1GAP and SIPA1 inhibit cell adhesion to ECM, concluding that Rap1 plays a role in the regulation of cell adhesion is reasonable25,52. In prostate cancer cells, SIPA1 promotes tumor cell invasion and metastasis at least partially by inhibiting Rap1-mediated cell adhesion to ECM42. Reduced cell-cell adhesion is required for individual cell dissemination and invasion at the leading edge of the tumor mass during epithelial mesenchymal transition (EMT), and mesenchymal-migrating tumor cells require strong cell-to-ECM adhesion, whereas amoeboid movement does not58. In terms of the specific role of Rap1 in regulating integrin activation and integrin-mediated cell adhesion, Rap1 forms a complex containing talin combined with RIAM, which

    Table 1 Rap1 in tumor cell invasion and metastasis

    Table 2 Role of Rap1 GEFs and GAPs in tumor cell invasion and metastasis

    Figure 2 Dynamic change in Rap1 signaling during tumor cell invasion and metastasis. Dynamic change or cycling of Rap1 activity is required for invasive and metastatic behavior of tumor cells. For instance, while inactivation of Rap1-cadherin or integrin signaling is associated with reduced cell-cell adhesion or cell adhesion to extracellular matrix in one stage (steps 1 and 3), a separate step might entail increased Rap1 activity and cell adhesion (steps 2, 4, 5, and 6).

    targets talin to integrin59. However, a complete description of the roles of Rap1 in mediating cell adhesion in tumor cell invasion and metastasis requires further clarification.

    Rap1 signaling modulates expression of matrix metalloproteinases (MMPs)

    During tumor invasion and metastasis, MMPs degrade ECM barriers, cleave and activate target proteins, and regulate cell adhesion. In HNSCCs, Rap1 promotes nuclear localization of β-catenin, which induces TCF-dependent MMP7 transcription, thereby contributing to tumor cell invasion37. Knockdown of C3G in ovarian cancer cells reduces MMP2 and MMP9 production and Rap1-GTP level56. However, in HNSCCs, overexpression of Rap1GAP increases the expression levels of MMP2 and MMP9 and the invasive capacity of cells, although the role of Rap1 in this process is unclear62. Overexpression of SIPA1 in prostate cancer cells reduces MMP12 expression42. By contrast, SIPA1 knockdown in breast cancer cells reduces MMP9 expression through the FAK/Akt pathway53.

    Rap1 signaling controls Rho GTPase-mediated regulation of cytoskeletal dynamics

    Several Rho family members function in actin cytoskeleton rearrangement and consequently in modulation of cell motility. Rap1 signaling can participate in motility regulation involving Rho family proteins, particularly Cdc42, Rac1, and RhoA. Rap1 associates with RacGEFs, such as Vav2 and Tiam1, to induce translocation of Vav2 and activates Rac1 to promote cell spreading30. Cdc42 activation by Rap1 increases the activity of cell polarization-related protein complex, which in turn activates Rac1 through Tiam1 and subsequently enhances cell polarization31. Moreover, Rap1 can interact with and activates Arap3, a RhoA GAP. During tumor metastasis, Rap1 increases the ability of melanoma cell to migrate via Vav2-dependent activation of the RhoA/ ROCK/MLC pathway60. In vitro overexpressed Rap1GAP inhibits Rap1, Rac1 activation, and thyroid tumor cell migration61. Additionally, Rap1's inhibitory effects on bladder cancer and glioma cell migration are intensified by reduced Rac1 activity33,43. Rap1 signaling can regulate Rhofamily protein activities either positively or negatively, causing a wide range of effects on tumor cell invasion and metastasis.

    Rap1 signaling controls cell proliferation

    Tumor cell growth can increase tumor volume and mass, contributing to invasion via physical pushing63. An inhibitory effect of Rap1 signaling-related molecules on cell proliferation and invasion has been repeatedly observed; for instance, DOCK4 inhibits osteosarcoma and Rap1GAP inhibits pancreatic cancer, thyroid carcinoma, and melanoma cells25,45,48,49. Additionally, SIPA1 drives both cell proliferation and invasion in melanoma cells52. SIPA1-induced expression exerts little effect on primary tumor mass in prostate cancer but significantly increases both tumor cell invasion and metastasis, suggesting that SIPA1 promotes metastasis through mechanisms other than proliferation42. SIPA1 knockdown impairs the invasive capacity of breast cancer cells while it enhances their proliferation53. Similarly, overexpression of Rap1V12 in melanoma cells increases tumor mass but inhibits tumor metastasis in vivo39. Moreover, Rap1GAP overexpression inhibits cell growth but induces MMP2- and MMP9-mediated oropharyngeal squamous carcinomas cell invasion51.

    Regulation of Rap1 is dependent on tissue and subcellular-specific factors

    Rap1 signaling can affect metastasis in different manners depending on tumor types (Table 3). Tissue-specific protein expression in different tumor types likely contributes to theregulation of Rap1 signaling, similar to the spatiotemporally regulated patterns of gene expression during tumor development64. Indeed, Rap1 has been implicated in the activation and inhibition of ERK pathway in different cell types21; cAMP-induced activation of Rap1 inhibits C-Rafinduced ERK activation65. However, in neuronal cells expressing B-Raf, activated Rap1 can directly bind to B-Raf and induces downstream ERK activation7,66. Additionally, over-activation or inactivation of Rap1 inhibits melanoma cell motility, suggesting that change in Rap1 activity is critical for the metastatic dissemination of melanoma cells39. The interaction of Rap1 signaling with tissue-specific factors may explain this considerably diverse functions of Rap1. For example, while basal level of Rap1-GTP maintains cell adhesion, insulin-like growth factor type I receptor transiently regulates Rap1 activity through C3G and Rap1GAP to promote cell movement67.

    Table 3 Bidirectional effects of Rap1 signaling in different tumor types

    Protein subcellular localization of Rap1 is vital to the specificity and diversity of its function68. Relatedly, tumor cell dissemination and invasion depends on the stability and activity of Rap1 (Figure 2). Rap1 phosphorylation prevents the membrane association of Rap1, resulting in cytosolic and nuclear accumulation and in subsequent decrease in Rap1-dependent cell adhesion69,70. In addition, Rap1 stabilizes βcatenin in the nucleus and enhances β-catenin-dependent transcription and invasion in HNSCC37,51. SIPA1, recruited by AF6 and co-localized with Rap1 at cell adhesion sites, inhibits endogenous Rap1GTP and integrin β1-mediated cell adhesion to fibronectin71. However, nuclear-localized SIPA1 activates the integrin β1 gene promoter and promotes cell invasion and adhesion (Figure 3)53.

    Novel targets for the prevention of metastasis: insights from related studies on Rap1 signaling

    Prevention or early detection of the initial dissemination of tumor cells and secondary spread of tumor is an important goal in research aiming to find better clinical therapies72. In a melanoma metastasis model, six distinct Rap1-regulating molecules were used to predict the aggressive capability of melanoma cells52. Several inhibitors of cell motility, such as metalloproteinase inhibitor73and the fascin inhibitor Migrastatin74, have been suggested to demonstrate clinical utility in preventing tumor cell dissemination and subsequent invasion and metastasis. However, formation of metastases often occurs prior to the diagnosis of cancer. The Rap1 signaling pathway offers many targets for novel clinical tools given that Rap1 affects not only cell polarity and cell adhesion but also cell proliferation and invasion. Treatmentwith the demethylating agent 5-aza-2'-deoxycytidine induces Rap1GAP expression and reduces melanoma cell proliferation and survival25. In addition, treatment with 5-aza-deoxycytidine and/or the histone deacetylation inhibitor trichostatin A induces Rap1GAP expression in thyroid tumor cells, reducing cell invasion and proliferation48,75. Additional studies on these and other novel reagents targeting Rap1 signaling molecules are called for.

    Figure 3 Subcellular localization of Rap1 and SIPA1 during tumor cell invasion and metastasis. Subcellular localization of Rap1 (A) and SIPA1 (B) contributes to their distinct functions within a cell.

    Conclusions

    Rap1 signaling plays several important roles in tumor cell invasion and metastasis. The full scope of its functions remains unknown; Rap1 can induce very distinct effects depending on the tissue in which Rap1 is expressed. Therefore, the specific functions and effects of Rap1 signaling on metastasis in different tumor types remains a subject of continuing research. Additionally, many proteins contribute to the diversity in the control of tumor invasion and metastasis by Rap1 signaling, and the full panoply of factors that work with Rap1 resulting in diverse control mechanisms is not yet fully elucidated. Future works employing high throughput screening strategies to identify new molecules contributing to Rap1 signaling and real-time monitoring of Rap1 signaling during tumor invasion and metastasis are needed to further define the roles of Rap1.

    Acknowledgements

    This study is supported by grants from the National Natural Science Foundation of China (Grant No. 31271504 and 31471310) and the Shenzhen Science and Technology Innovation Committee, China (Grant No. JCYJ2013040 1144744187).

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011; 147: 275–92.

    2.Gloerich M, Bos JL. Regulating rap small G-proteins in time and space. Trends Cell Biol. 2011; 21: 615–23.

    3.Hattori M, Minato N. Rap1 GTPase: functions, regulation, and malignancy. J Biochem. 2003; 134: 479–84.

    4.Caron E. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci. 2003; 116: 435–40.

    5.Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A rasrelated gene with transformation suppressor activity. Cell. 1989; 56: 77–84.

    6.Cook SJ, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 1993; 12: 3475–85.

    7.Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJS. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997; 89: 73–82.

    8.Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol. 2006; 85: 283–93.

    9.Bos JL, de Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, et al. The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans. 2003; 31: 83–6.

    10.Dustin ML, Bivona TG, Philips MR. Membranes as messengers in T cell adhesion signaling. Nat Immunol. 2004; 5: 363–72.

    11.Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004; 7: 585–95.

    12.Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 2009; 1788: 790–6.

    13.Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 2005; 118: 4765–83.

    14.Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294: 1299–304.

    15.Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998; 394: 337–43.

    16.Rebhun JF, Castro AF, Quilliam LA. Identification of Guanine Nucleotide Exchange Factors (GEFs) for the Rap1 GTPase: regulation of MR-GEF by M-RAS-GTP interaction. J Biol Chem. 2000; 275: 34901-8.

    17.Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K. Direct spatial control of Epac1 by cyclic AMP. Mol Cell Biol. 2009; 29: 2521–31.

    18.Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata K, et al. Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 2008; 13: 549–69.

    19.Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001; 20: 3333–41.

    20.Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001; 410: 944–8.

    21.Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol. 2001; 2: 369–77.

    22.Raaijmakers JH, Bos JL. Specificity in Ras and Rap signaling. J Biol Chem. 2009; 284: 10995–9.

    23.Meng JW, Glick JL, Polakis P, Casey PJ. Functional interaction between Gαzand Rap1GAP suggests a novel form of cellular crosstalk. J Biol Chem. 1999; 274: 36663–9.

    24.Gao QS, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol. 1999; 19: 733–44.

    25.Zheng H, Gao L, Feng YF, Yuan LY, Zhao HB, Cornelius LA. Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer Res. 2009; 69: 449–57.

    26.Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004; 5: 1045–51.

    27.Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y. Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem. 2005; 280: 24095–103.

    28.Post A, Pannekoek WJ, Ross SH, Verlaan I, Brouwer PM, Bos JL. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci U S A. 2013; 110: 11427–32.

    29.Liu LH, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA. Radil controls neutrophil adhesion and motility through β2-integrin activation. Mol Biol Cell. 2012; 23: 4751–65.

    30.Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J Cell Biol. 2004; 167: 111–22.

    31.Gérard A, Mertens AEE, van der Kammen RA, Collard JG. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol. 2007; 176: 863–75.

    32.Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, et al. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem. 2003; 278: 41756–67.

    33.Vallés AM, Beuvin M, Boyer B. Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT- cells. J Biol Chem. 2004; 279: 44490–6.

    34.Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, de Rooij J. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal. 2008; 20: 1104–16.

    35.Gao L, Feng YF, Bowers R, Becker-Hapak M, Gardner J, Council L, et al. Ras-associated protein-1 regulates extracellular signalregulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 2006; 66: 7880–8.

    36.McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 2011; 13: R31.

    37.Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, et al. Rap1 stabilizes β-catenin and enhances β-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010; 16: 65–76.

    38.Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, et al. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene. 2012; 31: 2783–93.

    39.Lin KBL, Tan P, Freeman SA, Lam M, McNagny KM, Gold MR. The Rap GTPases regulate the migration, invasiveness and in vivo dissemination of B-cell lymphomas. Oncogene. 2010; 29: 608–15.

    40.Infante E, Heasman SJ, Ridley AJ. Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol. 2011; 89: 577–86.

    41.Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009; 69: 4962–8.

    42.Shimizu Y, Hamazaki Y, Hattori M, DoiK, Terada N, Kobayashi T, et al. SPA-1 controls the invasion and metastasis of human prostate cancer. Cancer Sci. 2011; 102: 828–36.

    43.Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell. 2009; 20: 5156–65.

    44.Barrett A, Evans IM, Frolov A, Britton G, Pellet-Many C, Yamaji M, et al. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling. J Cell Sci. 2014; 127: 2647–58.

    45.Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DCR, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003; 112: 673–84.

    46.Almahariq M, Tsalkova T, Mei FC, Chen HJ, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013; 83: 122–8.

    47.Magliozzi R, Low TY, Weijts BGMW, Cheng TH, Spanjaard E, Mohammed S, et al. Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013; 27: 574–85.

    48.Zuo H, Gandhi M, Edreira MM, Hochbaum D, Nimgaonkar VL, Zhang P, et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 2010; 70: 1389–97.

    49.Zhang LZ, Chenwei L, Mahmood R, van Golen K, Greenson J, Li GY, et al. Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res. 2006; 66: 898–906.

    50.Kim WJ, Gersey Z, Daaka Y. Rap1GAP regulates renal cell carcinoma invasion. Cancer Lett. 2012; 320: 65–71.

    51.Mitra RS, Goto M, Lee JS, Maldonado D, Taylor JMG, Pan QT, et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage squamous cell carcinoma. Cancer Res. 2008; 68: 3959–69.

    52.Mathieu V, Pirker C, Schmidt WM, Spiegl-Kreinecker S, L?tsch D, Heffeter P, et al. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget. 2012; 3: 399–413.

    53.Zhang Y, Gong Y, Hu D, Zhu P, Wang N, Zhang Q, et al. Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells. Oncogene. 2015; 34: 1451–62.

    54.Ji K, Ye L, Toms AM, Hargest R, Martin TA, Ruge F, et al. Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells. Cancer Genomics Proteomics. 2012; 9: 321–7.

    55.Ho SM, Lau KM, Mok SC, Syed V. Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene. 2003; 22: 4243–56.

    56.Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, et al. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett. 2015; 359: 241–9.

    57.Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cellmatrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr. 2011; 5: 323–31.

    58.Kooistra MRH, Dubé N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007; 120: 17–22.

    59.Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonistinduced activation of integrin αbβ3. Curr Biol. 2006; 16: 1796–806.

    60.Hernández-Varas P, Coló GP, Bartolomé RA, Paterson A, Medra?o-Fernández I, Arellano-Sánchez N, et al. Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells. J Biol Chem. 2011; 286: 18492–504.

    61.Tsygankova OM, Prendergast GV, Puttaswamy K, Wang Y, Feldman MD, Wang HB, et al. Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol. 2007; 27: 6647–58.

    62.Mitra RS, Zhang ZC, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003; 22: 6243–56.

    63.Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147: 992–1009.

    64.Levine M. Transcriptional enhancers in animal development and evolution. Curr Biol. 2010; 20: R754–63.

    65.Zwartkruis FJT, Wolthuis RMF, Nabben NMJM, Franke B, Bos JL. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 1998; 17: 5905–12.

    66.Grewal SS, Horgan AM, York RD, Withers GS, Banker GA, Stork PJS. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J Biol Chem. 2000; 275: 3722–8.

    67.Guvakova MA, Lee WSY, Furstenau DK, Prabakaran I, Li DC, Hung R, et al. The small GTPase Rap1 promotes cell movement rather than stabilizes adhesion in epithelial cells responding to insulin-like growth factor I. Biochem J. 2014; 463: 257–70.

    68.Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009; 8: 935–48.

    69.Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang ZP, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem. 2013; 288: 27712–23.

    70.Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal. 2013; 6: ra39.

    71.Su L, Hattori M, Moriyama M, Murata N, Harazaki M, Kaibuchi K, et al. AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J Biol Chem. 2003; 278: 15232–8.

    72.Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013; 34: 283–9.

    73.Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141: 52–67.

    74.Chen L, Yang SY, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010; 464: 1062–6.

    75.Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer. 2011; 18: 301-10.

    76.Wang K, Li J, Guo H, Xu XQ, Xiong G, Guan XY, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012; 33: 2147–54.

    77.Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. β-Arrestin2 regulates lysophosphatidic acidinduced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PloS One. 2013; 8: e56174.

    78.Tsygankova OM, Wang HB, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem. 2013; 288: 24636–46.

    79.Wu JJ, Zhang YS, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem. 2011; 286: 33954–62.

    80.Qiu TT, Qi XF, Cen JN, Chen ZX. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep. 2012; 28: 622–8.

    81.Dong XY, Tang WX, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer. 2012; 19: 575–88.

    82.Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA. Junctional adhesion molecule A interacts with Afadin and PDZGEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol Biol Cell. 2009; 20: 1916–25.

    Cite this article as:Zhang Y, Wang R, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017; 14: 90-9. doi: 10.20892/j.issn.2095-3941.2016.0086

    Brian Z. Ring and Li Su

    E-mail: bzring@gmail.com and lisu@hust.edu.cn

    Received October 24, 2016; accepted December 7, 2016. Available at www.cancerbiomed.org

    Copyright ? 2017 by Cancer Biology & Medicine

    99热全是精品| 亚洲国产av新网站| 18禁裸乳无遮挡免费网站照片| 亚洲激情五月婷婷啪啪| 只有这里有精品99| 久久人人爽人人爽人人片va| 男男h啪啪无遮挡| 夫妻午夜视频| 熟女人妻精品中文字幕| 亚洲国产av新网站| 亚洲一级一片aⅴ在线观看| 久久久精品欧美日韩精品| 高清av免费在线| 亚洲av电影在线观看一区二区三区 | 国产午夜福利久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲第一区二区三区不卡| 三级男女做爰猛烈吃奶摸视频| 青春草视频在线免费观看| 国产亚洲一区二区精品| 天天躁日日操中文字幕| 久久6这里有精品| 欧美日韩在线观看h| 尤物成人国产欧美一区二区三区| 99热这里只有精品一区| 日本黄色片子视频| 日韩 亚洲 欧美在线| 美女内射精品一级片tv| 美女xxoo啪啪120秒动态图| 亚洲国产欧美人成| 激情五月婷婷亚洲| 视频中文字幕在线观看| 亚洲av电影在线观看一区二区三区 | 日本爱情动作片www.在线观看| 久久综合国产亚洲精品| 2018国产大陆天天弄谢| 久久久精品欧美日韩精品| 亚洲精品色激情综合| 精品一区二区免费观看| 搡女人真爽免费视频火全软件| 亚洲欧洲国产日韩| 91久久精品国产一区二区三区| 69人妻影院| 亚洲精品国产av成人精品| 欧美丝袜亚洲另类| 亚洲不卡免费看| 国产一区有黄有色的免费视频| 国精品久久久久久国模美| 嫩草影院入口| av国产久精品久网站免费入址| 我要看日韩黄色一级片| 亚洲av福利一区| 日韩av免费高清视频| 搡老乐熟女国产| 男女边吃奶边做爰视频| 国产男女内射视频| 日韩av不卡免费在线播放| 久久精品人妻少妇| 久久久亚洲精品成人影院| 九九在线视频观看精品| 免费看光身美女| 亚洲欧美一区二区三区黑人 | 69人妻影院| 亚洲av电影在线观看一区二区三区 | 久久精品久久久久久噜噜老黄| 久久这里有精品视频免费| 亚洲综合精品二区| 大码成人一级视频| 99热全是精品| 国产午夜精品久久久久久一区二区三区| 国产在线一区二区三区精| 免费观看无遮挡的男女| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 自拍偷自拍亚洲精品老妇| 亚洲精品乱码久久久v下载方式| 亚洲色图综合在线观看| 亚洲,欧美,日韩| 亚洲av福利一区| 在线播放无遮挡| 欧美另类一区| 22中文网久久字幕| kizo精华| 人妻制服诱惑在线中文字幕| 在线播放无遮挡| av女优亚洲男人天堂| 亚洲精品国产av成人精品| 国产亚洲精品久久久com| 亚洲四区av| 韩国高清视频一区二区三区| 国产精品嫩草影院av在线观看| 91精品伊人久久大香线蕉| 欧美一区二区亚洲| 亚洲国产精品成人综合色| 91久久精品国产一区二区成人| 亚洲国产最新在线播放| 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| 亚洲成人中文字幕在线播放| 亚洲精品一二三| 亚洲综合精品二区| 精品午夜福利在线看| 日韩欧美 国产精品| 黄色配什么色好看| 伦理电影大哥的女人| 亚洲国产日韩一区二区| 大香蕉久久网| 高清午夜精品一区二区三区| 国产爱豆传媒在线观看| 中文字幕av成人在线电影| 色吧在线观看| 国产精品熟女久久久久浪| tube8黄色片| 全区人妻精品视频| 26uuu在线亚洲综合色| 最近最新中文字幕免费大全7| 成年女人在线观看亚洲视频 | 免费观看在线日韩| 日韩成人伦理影院| 内射极品少妇av片p| 91精品一卡2卡3卡4卡| 午夜精品一区二区三区免费看| 国产精品国产av在线观看| 精品国产露脸久久av麻豆| 黄片wwwwww| 午夜福利视频精品| 日本一本二区三区精品| 蜜臀久久99精品久久宅男| 91久久精品国产一区二区三区| 亚洲精品第二区| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 成年版毛片免费区| 亚洲国产av新网站| 99久久精品国产国产毛片| 国产成人精品一,二区| 国产免费福利视频在线观看| 激情五月婷婷亚洲| 中文字幕制服av| 欧美日本视频| 日韩欧美 国产精品| 亚洲精品日韩av片在线观看| 一级毛片 在线播放| 国产一区二区亚洲精品在线观看| 91精品伊人久久大香线蕉| 国产精品一区www在线观看| 晚上一个人看的免费电影| 乱码一卡2卡4卡精品| 精品久久久久久久人妻蜜臀av| 伊人久久精品亚洲午夜| 2022亚洲国产成人精品| 少妇的逼好多水| av在线播放精品| 老司机影院成人| 久热久热在线精品观看| 国产午夜精品一二区理论片| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 日韩三级伦理在线观看| 午夜爱爱视频在线播放| 精品酒店卫生间| 成人国产av品久久久| 久久久久久久久久成人| 久久精品久久久久久噜噜老黄| 久久久久九九精品影院| 日韩成人伦理影院| 99久久中文字幕三级久久日本| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 国产成人福利小说| 精品99又大又爽又粗少妇毛片| 插逼视频在线观看| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 国产成人精品久久久久久| 高清av免费在线| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 18禁在线播放成人免费| 亚洲在线观看片| 日产精品乱码卡一卡2卡三| 久久97久久精品| 尤物成人国产欧美一区二区三区| 亚洲av欧美aⅴ国产| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 99久久九九国产精品国产免费| 亚洲av福利一区| 99热6这里只有精品| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 一个人看视频在线观看www免费| 蜜臀久久99精品久久宅男| 九草在线视频观看| 成人国产av品久久久| 色5月婷婷丁香| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 日韩不卡一区二区三区视频在线| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| av线在线观看网站| 亚洲精品日韩在线中文字幕| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 国产乱来视频区| 夫妻性生交免费视频一级片| 我要看日韩黄色一级片| 免费少妇av软件| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| 各种免费的搞黄视频| 51国产日韩欧美| 看免费成人av毛片| 国产黄a三级三级三级人| 久热久热在线精品观看| 91午夜精品亚洲一区二区三区| 亚洲精品久久午夜乱码| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 下体分泌物呈黄色| 国产老妇女一区| 欧美另类一区| 亚洲不卡免费看| 男女边摸边吃奶| 亚洲高清免费不卡视频| kizo精华| 高清av免费在线| 亚洲精品国产av蜜桃| 日本-黄色视频高清免费观看| 国产高清国产精品国产三级 | 黄色配什么色好看| 国产高清国产精品国产三级 | 精品国产一区二区三区久久久樱花 | 日本午夜av视频| 亚洲最大成人手机在线| 亚洲国产日韩一区二区| 国产高清国产精品国产三级 | 人体艺术视频欧美日本| 午夜亚洲福利在线播放| 99久久精品一区二区三区| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区| 熟女电影av网| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 一本久久精品| 网址你懂的国产日韩在线| 欧美国产精品一级二级三级 | 国产视频内射| 寂寞人妻少妇视频99o| 69人妻影院| 国产欧美日韩精品一区二区| 成人国产av品久久久| 亚洲av日韩在线播放| 久久久久久久精品精品| 国产精品人妻久久久久久| 亚洲综合色惰| 中文字幕亚洲精品专区| 亚洲av欧美aⅴ国产| 亚洲高清免费不卡视频| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线播| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| 国产精品不卡视频一区二区| 久久99蜜桃精品久久| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 欧美日韩视频精品一区| 精品一区二区三区视频在线| 亚洲欧美一区二区三区黑人 | a级毛片免费高清观看在线播放| tube8黄色片| 精品国产三级普通话版| 一级av片app| 久久精品人妻少妇| 国产精品99久久99久久久不卡 | 色婷婷久久久亚洲欧美| 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 亚洲经典国产精华液单| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 久久久国产一区二区| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 欧美xxⅹ黑人| 99久久精品国产国产毛片| 亚洲av二区三区四区| 日本av手机在线免费观看| 赤兔流量卡办理| 丰满人妻一区二区三区视频av| 久久久久久久国产电影| 久久精品国产自在天天线| 黄色视频在线播放观看不卡| 人妻一区二区av| 街头女战士在线观看网站| 久久久久久久精品精品| tube8黄色片| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 国产成人a∨麻豆精品| 日韩国内少妇激情av| 国产亚洲最大av| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 国产v大片淫在线免费观看| 国产亚洲5aaaaa淫片| 国产人妻一区二区三区在| 肉色欧美久久久久久久蜜桃 | 国产女主播在线喷水免费视频网站| 亚洲精品影视一区二区三区av| 亚洲欧美日韩东京热| 亚洲最大成人av| 成人美女网站在线观看视频| 各种免费的搞黄视频| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 嘟嘟电影网在线观看| freevideosex欧美| 真实男女啪啪啪动态图| 欧美日韩视频精品一区| 在线观看免费高清a一片| 在线 av 中文字幕| 狂野欧美激情性xxxx在线观看| 国产精品一二三区在线看| 国产有黄有色有爽视频| 久久久精品欧美日韩精品| 色视频www国产| 三级经典国产精品| 日本猛色少妇xxxxx猛交久久| 亚洲成人久久爱视频| av专区在线播放| 中文欧美无线码| 嫩草影院入口| 熟女av电影| 人妻制服诱惑在线中文字幕| 少妇人妻久久综合中文| videossex国产| 少妇的逼水好多| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 2022亚洲国产成人精品| 一本久久精品| 日本黄大片高清| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 中文字幕久久专区| 久久精品国产自在天天线| 秋霞在线观看毛片| 黄色日韩在线| 激情 狠狠 欧美| 别揉我奶头 嗯啊视频| 久久99精品国语久久久| 久久久久性生活片| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 亚洲av国产av综合av卡| 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 精品国产乱码久久久久久小说| 亚洲av不卡在线观看| 免费观看a级毛片全部| 水蜜桃什么品种好| 国产乱人视频| 国语对白做爰xxxⅹ性视频网站| 在线播放无遮挡| av播播在线观看一区| 亚洲国产最新在线播放| 久久精品国产亚洲av天美| 亚洲人成网站高清观看| av.在线天堂| 国产av不卡久久| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 精品久久久久久久久av| 国产老妇伦熟女老妇高清| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 国产亚洲91精品色在线| 亚洲成人一二三区av| .国产精品久久| 久久ye,这里只有精品| 韩国av在线不卡| 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| 亚洲天堂国产精品一区在线| 精品国产乱码久久久久久小说| 亚洲美女搞黄在线观看| 国产精品无大码| 久久精品久久久久久久性| av福利片在线观看| 欧美成人a在线观看| 欧美日韩综合久久久久久| 啦啦啦中文免费视频观看日本| 国产探花极品一区二区| 色播亚洲综合网| 国产伦精品一区二区三区四那| 一级a做视频免费观看| 色视频www国产| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 狠狠精品人妻久久久久久综合| 99视频精品全部免费 在线| 精品久久久精品久久久| 身体一侧抽搐| 亚洲最大成人手机在线| 亚洲一区二区三区欧美精品 | 青春草视频在线免费观看| 亚洲成人中文字幕在线播放| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| 国产在线一区二区三区精| 97超视频在线观看视频| 99久久人妻综合| 各种免费的搞黄视频| 免费人成在线观看视频色| 少妇人妻 视频| 高清在线视频一区二区三区| av免费观看日本| 别揉我奶头 嗯啊视频| 亚洲综合色惰| videos熟女内射| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 久久99热这里只有精品18| 天堂俺去俺来也www色官网| 日韩中字成人| 国产精品99久久99久久久不卡 | 大话2 男鬼变身卡| 国产美女午夜福利| 国产精品久久久久久久电影| 狂野欧美激情性bbbbbb| 少妇高潮的动态图| 精品少妇久久久久久888优播| 精品酒店卫生间| 亚洲伊人久久精品综合| 又黄又爽又刺激的免费视频.| 有码 亚洲区| 国产探花在线观看一区二区| 18禁在线播放成人免费| .国产精品久久| a级毛片免费高清观看在线播放| 男人爽女人下面视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 日本猛色少妇xxxxx猛交久久| 日本黄色片子视频| 又大又黄又爽视频免费| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 日韩视频在线欧美| 国产综合精华液| 小蜜桃在线观看免费完整版高清| 久久6这里有精品| 99久久精品热视频| 亚洲精品乱码久久久v下载方式| 99热国产这里只有精品6| 久久精品国产亚洲av涩爱| videossex国产| 久久鲁丝午夜福利片| 国语对白做爰xxxⅹ性视频网站| 午夜福利高清视频| 成人二区视频| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 国产成人freesex在线| av在线天堂中文字幕| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 欧美3d第一页| 永久网站在线| 一级毛片电影观看| 欧美3d第一页| 国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 国产成人a区在线观看| 日韩制服骚丝袜av| 最近2019中文字幕mv第一页| 色网站视频免费| 亚洲av电影在线观看一区二区三区 | 最近手机中文字幕大全| 白带黄色成豆腐渣| 国产一区亚洲一区在线观看| 又爽又黄a免费视频| 久久99精品国语久久久| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 夫妻午夜视频| 极品教师在线视频| 国产亚洲5aaaaa淫片| 精品人妻熟女av久视频| 纵有疾风起免费观看全集完整版| 春色校园在线视频观看| 亚洲av中文av极速乱| 一个人观看的视频www高清免费观看| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 国产精品福利在线免费观看| 国产亚洲av片在线观看秒播厂| 国产亚洲最大av| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 在线天堂最新版资源| 国产亚洲av嫩草精品影院| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 最新中文字幕久久久久| 国产色婷婷99| 国产男女内射视频| 99久久九九国产精品国产免费| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久| 秋霞在线观看毛片| 亚洲欧美日韩无卡精品| 亚洲在线观看片| 日韩成人av中文字幕在线观看| 久久久久国产网址| 男人和女人高潮做爰伦理| 亚洲精品日韩av片在线观看| 熟妇人妻不卡中文字幕| 色哟哟·www| 成人免费观看视频高清| 欧美激情在线99| 男的添女的下面高潮视频| 欧美极品一区二区三区四区| av免费观看日本| 夜夜爽夜夜爽视频| 天美传媒精品一区二区| 国产毛片在线视频| 亚洲va在线va天堂va国产| 国产精品偷伦视频观看了| 免费看av在线观看网站| 国产男人的电影天堂91| 不卡视频在线观看欧美| 午夜免费鲁丝| 永久免费av网站大全| 国产v大片淫在线免费观看| 亚洲熟女精品中文字幕| 国产淫语在线视频| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的 | eeuss影院久久| 亚洲人成网站高清观看| 最近中文字幕高清免费大全6| 搞女人的毛片| 色婷婷久久久亚洲欧美| av天堂中文字幕网| 99热6这里只有精品| 色吧在线观看| 久热这里只有精品99| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 麻豆国产97在线/欧美| 成人免费观看视频高清| 在线观看免费高清a一片| 亚洲精品视频女| 乱码一卡2卡4卡精品| 国产精品一及| 人人妻人人爽人人添夜夜欢视频 | 日本一本二区三区精品| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 国产精品久久久久久av不卡| 欧美亚洲 丝袜 人妻 在线| 久久久久久久亚洲中文字幕| 午夜免费鲁丝| 国产爱豆传媒在线观看| 亚洲图色成人| 久久综合国产亚洲精品| 日韩国内少妇激情av| 熟女人妻精品中文字幕| 美女国产视频在线观看| 99久久人妻综合| 激情 狠狠 欧美| 寂寞人妻少妇视频99o| 性插视频无遮挡在线免费观看| 亚洲国产高清在线一区二区三| 最近2019中文字幕mv第一页| 久久国产乱子免费精品| 日韩欧美一区视频在线观看 | 久久精品国产鲁丝片午夜精品| 亚州av有码| tube8黄色片| 久久精品久久精品一区二区三区| 美女脱内裤让男人舔精品视频| 一级毛片久久久久久久久女| 国产午夜福利久久久久久| 亚洲精品国产av蜜桃| 亚洲av免费在线观看| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区 |