耿 靜,程淑蘭,方華軍,于貴瑞,徐敏杰,王 磊,李曉玉,司高月,何 舜
1 中國科學(xué)院地理科學(xué)與資源研究所,生態(tài)系統(tǒng)觀測與模擬重點(diǎn)實(shí)驗(yàn)室, 北京 100101 2 中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院, 北京 100049
氮素類型和劑量對寒溫帶針葉林土壤N2O排放的影響
耿 靜1,2,程淑蘭2,方華軍1,*,于貴瑞1,徐敏杰2,王 磊1,李曉玉1,司高月2,何 舜2
1 中國科學(xué)院地理科學(xué)與資源研究所,生態(tài)系統(tǒng)觀測與模擬重點(diǎn)實(shí)驗(yàn)室, 北京 100101 2 中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院, 北京 100049
大氣氮沉降;土壤N2O通量;氮素有效性;主控因子;北方森林
氧化亞氮(N2O)是地球大氣中三大溫室氣體之一,百年尺度上單分子N2O的增溫潛勢(GWP)是CH4和CO2的21倍和298倍,對全球變暖的貢獻(xiàn)約占6%[1]。同時(shí),對流層中的N2O通過擴(kuò)散進(jìn)入平流層,與O3反應(yīng)生成NO破壞臭氧層,增加地面紫外輻射量[2]。IPCC第五次報(bào)告表明,2011年大氣中N2O濃度為324 ppb,較工業(yè)化前的數(shù)值高出20%,近幾十年平均增幅為0.25%/a。大氣N2O的源估計(jì)為17.7 Tg N/a,自然源(農(nóng)業(yè)、水體、生物燃燒等)和人為源(自然植被土壤、海洋)分別占37.8%和62.2%;大氣N2O的匯估計(jì)為12.6 Tg N/a,主要在平流層被光解為NOx,最終轉(zhuǎn)化成硝酸和硝酸鹽等反應(yīng)性氮[3]。其中,60%—70%的大氣反應(yīng)性氮以干濕沉降形式到達(dá)地表,導(dǎo)致當(dāng)前全球大氣氮沉降量高達(dá)105 Tg N/a[4-5],顯著改變陸地生態(tài)系統(tǒng)碳、氮循環(huán),降低生物多樣性,進(jìn)而影響陸地生態(tài)系統(tǒng)的結(jié)構(gòu)和功能[6]。
北方森林(Boreal forests)是僅次于熱帶森林的第二大森林群區(qū),占全球陸地面積的14.5%,其土壤碳密度平均為296 t C/hm2[17];此外,由于該區(qū)溫度較低,土壤氮素礦化緩慢,土壤有效氮極其匱乏,對外源性氮素響應(yīng)十分敏感[18]。研究表明,外源性氮素輸入會顯著改變北方森林植物和微生物群落組成[19]、土壤碳氮轉(zhuǎn)化與溫室氣體排放[20]、生態(tài)系統(tǒng)生產(chǎn)力和固碳潛力[21]。過去普遍認(rèn)為,水熱條件較好、土壤風(fēng)化強(qiáng)烈的熱帶/亞熱帶森林土壤N2O排放較高,而溫度較低、有效氮貧乏的高緯度地區(qū)森林土壤N2O排放量可以忽略不計(jì)[22-23]。然而,近年來一些研究發(fā)現(xiàn),由于氣溫升高和氮沉降增加提高了高緯度地區(qū)森林、苔原等自然生態(tài)系統(tǒng)氮素的可利用性,導(dǎo)致該區(qū)土壤也大量排放N2O[24-25]。長期以來對高緯度地區(qū)自然植被土壤N2O排放的忽視,可能是導(dǎo)致全球N2O收支研究中諸多不確定性的原因之一[26]。大興安嶺寒溫帶針葉林是北方森林的南緣,面積占全國森林面積的29%,有關(guān)土壤N2O對外源性氮素輸入尚未有實(shí)驗(yàn)報(bào)道。
1.1 研究區(qū)概況
研究區(qū)位于內(nèi)蒙古大興安嶺森林生態(tài)系統(tǒng)國家野外科學(xué)觀測研究站以東的開拉氣林場(50°20′—50°30′N, 121°45′—122°00′E),屬大興安嶺西北坡,海拔826 m。該地區(qū)是寒溫帶半濕潤氣候,冬季寒冷漫長,夏季涼爽多雨。年均氣溫-5.4℃,最高溫出現(xiàn)在7月,最低溫在1月。年降水量450—550 mm,其中60%集中于5—9月。年均日照2594 h,全年地表蒸發(fā)量800—1200 mm,無霜期80 d。該區(qū)主要物種為興安落葉松(Larixgmelini)、白樺(Betulaplatyphylla)、杜鵑(Rhododendronsimsii)、杜香(Ledumpalustre)、紅豆越橘(VacciniumVitisidaea)等。研究區(qū)的植被類型為杜香-落葉松林,林齡約150a。土壤類型為發(fā)育于花崗巖殘積物上的棕色針葉林土,土壤腐殖質(zhì)含量10%—30%,pH值為4.5—6.5。
1.2 試驗(yàn)設(shè)計(jì)
1.3 土壤N2O排放通量監(jiān)測
土壤N2O排放量采用靜態(tài)箱-氣相色譜法測定,測定時(shí)段為2013年生長季(5—10月)。在每個(gè)樣地中分別設(shè)置帶槽的底座(50 cm×50 cm×10 cm)和蓋箱(50 cm×50 cm×20 cm),在測定時(shí),將槽內(nèi)灌滿水,打開風(fēng)扇的電源,然后小心地把帶有溫度計(jì)和小風(fēng)扇的蓋箱沿槽放入。在40 min 時(shí)間段內(nèi),每隔10 min用100mL注射器抽取1次氣樣,同時(shí)記錄大氣溫度、箱內(nèi)溫度和地下5 cm的溫度值。測定N2O時(shí)氣相色譜的柱箱溫度為55 ℃,檢測器ECD的溫度為250℃;載氣(干空氣及高純H2)流量分別為300 mL/min和50 mL/min,尾吹氣(N2)流量為10 mL/min。利用土壤水分儀(TDR200,Spectrum Technologies, USA)測定10 cm土壤體積含水量。用氣相色譜儀(7890A,Agilent,USA)分析N2O氣體濃度,利用下述公式計(jì)算土壤N2O氣體通量:
(1)
式中,Qt為t時(shí)刻N(yùn)2O的排放通量(μg N m-2h-1);V為箱體的體積(m3);A為取樣時(shí)箱體所覆蓋的面積(m2);Ta為取樣時(shí)的大氣溫度(K);P為取樣時(shí)的大氣壓值(kPa);ΔC為Δt時(shí)間內(nèi)箱體內(nèi)N2O濃度增量(ppb);Δt為時(shí)間變化量(s)。
1.4 土壤采集與分析
1.5 統(tǒng)計(jì)分析
利用重復(fù)測定方差分析(RANOVA)比較不同施氮水平和施氮類型對土壤溫度、含水量、無機(jī)氮含量和土壤N2O通量的影響,利用Tukey′s HSD進(jìn)行均值間的多重比較。采用一元和多元逐步回歸分析方法探討土壤N2O通量與土壤環(huán)境因子之間的關(guān)系。所有數(shù)據(jù)利用SPSS 16.0軟件進(jìn)行分析,利用SigmaPlot 12.5軟件進(jìn)行繪圖。
2.1 土壤溫度和水分
整個(gè)生長季,土壤5cm溫度季節(jié)變化顯著,整體上呈現(xiàn)單峰季節(jié)變化(表1,P< 0.001)。對照處理土壤溫度最高值和最低值分別出現(xiàn)在7月初和5月初,平均變化范圍為0.70—15.03℃(圖1)。不同施氮處理下,土壤溫度變化格局相似,增氮對土壤溫度無明顯影響(表1)。
表1 月份、施氮水平、施氮類型對土壤N2O通量、土壤溫度、水分和無機(jī)氮含量影響的重復(fù)測量方差分析
Table 1 Repeated measures ANOVA of effects of month, N level and N form on soil N2O fluxes, soil temperature, soil moisture and inorganic N contents
變異來源Sourceofvariance土壤溫度Soiltemperature土壤水分Soilmoisture土壤N2O通量SoilN2Oflux土壤NO-3-N含量SoilNO-3-Ncontent土壤NH+4-N含量SoilNH+4-NcontentO層OlayerM層MlayerO層OlayerM層Mlayer組內(nèi)差異Withinsubjects(Multivariate)月份Month<0.001<0.001<0.0010.120.002<0.001<0.001月份×施氮水平Month×Nlevel0.980.020.180.430.160.710.06月份×施氮類型Month×Nform0.840.110.330.320.090.480.33組間差異Betweensubjects施氮水平Nlevel0.790.030.0030.050.14<0.001<0.001施氮類型Nform<0.0010.040.010.160.12<0.0010.003
圖1 土壤溫度和水分的季節(jié)變化及其對增氮的響應(yīng)Fig.1 The seasonal variations and responses of soil temperature and soil moisture to N additionCK:對照 control;LAC:低氮氯化銨 low-NH4Cl;LPN:低氮硝酸鉀 low-KNO3;LAN:低氮硝酸銨 low-NH4NO3;MAC:中氮氯化銨 medium-NH4Cl;MPN:中氮硝酸鉀 medium-KNO3;MAN:中氮硝酸銨 medium-NH4NO3;HAC:高氮氯化銨 high-NH4Cl;HPN:高氮硝酸鉀 high-KNO3;HAN:高氮硝酸銨 high-NH4NO3
整個(gè)生長季0—10 cm層土壤含水量季節(jié)波動明顯,呈逐漸遞減的趨勢(圖1)。由于5、6月份土壤處于凍融期,土壤含水量較高,5月初對照處理土壤含水量值最高(27.48%)。秋季降水明顯減少,8月中旬和9月末土壤含水量較低,最低值為5.86%。就某個(gè)月份而言,施氮水平對土壤含水量有顯著影響(表1,P=0.02)。施氮水平和施氮類型均顯著改變了土壤體積含水量(表1,P=0.03,P=0.04)。
2.2 土壤N2O通量
整個(gè)生長季土壤N2O排放通量季節(jié)變化顯著(表1,P< 0.001)。除7月份外,其他月份土壤N2O排放均很低,對照處理土壤N2O通量變化范圍為-1.19—5.13 μg N m-2h-1。施氮后土壤N2O排放急劇增加,7月份出現(xiàn)明顯的排放峰(47.77μg N m-2h-1)(圖2)。施氮水平和施氮類型均對土壤N2O有極顯著的影響(表1,P=0.003,P=0.01)。隨著增氮水平增加,土壤N2O排放量逐漸增加。就施氮類型而言,KNO3和NH4NO3的促進(jìn)效應(yīng)顯著高于NH4Cl,說明硝態(tài)氮比銨態(tài)氮肥對土壤N2O排放量的影響更為顯著。與對照相比,施加NH4NO3對土壤N2O排放的促進(jìn)效應(yīng)最強(qiáng),不同施氮?jiǎng)┝刻幚硗寥繬2O通量的增幅度為442%—677%。
圖2 土壤N2O通量的季節(jié)變化及其對增氮的響應(yīng)Fig.2 The seasonal variations and responses of soil N2O fluxes to N addition
2.3 土壤無機(jī)氮含量
2.4 土壤N2O通量與土壤變量之間的關(guān)系
土壤變量Soilvariables回歸方程Equation決定系數(shù)R2P土壤溫度Soiltemperature(Ts)FN2O=0.68+0.37Ts0.040.0012有機(jī)層NH+4-N含量NH+4-NcontentinOlayer(NH+4-NO)FN2O=1.24+0.01NH+4-NO0.040.0053多元回歸MultipleregressionFN2O=-7.51+0.47Ts+0.011NH+4-NO+0.85LN+2.37MN+2.86HN0.27<0.001
3.1 施氮類型和劑量對土壤無機(jī)氮累積的影響
3.2 施氮類型和劑量對土壤N2O通量的影響
[1] Stocker T F, Qin D H, Plattner G K, Tignor M B, Allen S K, Boschung J, Nauels A, Yu X, Bex V, Midgley P M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1-1535.
[2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326(5949): 123-125.
[3] 蔡祖聰, 徐華, 馬靜. 稻田生態(tài)系統(tǒng)CH4和N2O排放. 合肥: 中國科學(xué)技術(shù)大學(xué)出版社. 2009, 1-375.
[4] Lamarque J F, Kiehl J T, Brasseur G P, Butler T, Cameron-Smith P, Collins W D, Collins W J, Granier C, Hauglustaine D, Hess P G, Holland E A, Horowitz L, Lawrence M G, McKenna D, Merilees P, Prather M J, Rasch P J, Rotman D, Shindell D, Thornton P. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. Journal of Geophysical Research, 2005, 110(D19): D19303.
[5] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.
[6] 王汝南. 模擬大氣氮沉降對溫帶森林土壤溫室氣體交換通量的影響[D]. 北京: 北京林業(yè)大學(xué), 2012.
[7] Butterbach-Bahl K, Gasche R, Willibald G, Papen H. Exchange of N-gases at the H?glwald Forest—A summary. Plant and Soil, 2002, 240(1): 117-123.
[8] Baggs E M. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry, 2008, 22(11): 1664-1672.
[9] Nemergut D R, Townsend A R, Sattin S R, Freeman K R, Fierer N, Neff J C, Bowman W D, Schadt C W, Weintraub M N, Schmidt S K. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environmental Microbiology, 2008, 10(11): 3093-3105.
[10] Ernfors M, Rütting T, Klemedtsson L. Increased nitrous oxide emissions from a drained organic forest soil after exclusion of ectomycorrhizal mycelia. Plant and Soil, 2011, 343(1/2): 161-170.
[11] Zhu T B, Meng T Z, Zhang J B, Yin Y F, Cai Z C, Yang W Y, Zhong W H. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biology and Fertility of Soils, 2013, 49(3): 323-331.
[12] Corre M D, Veldkamp E, Arnold J, Wright S J. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology, 2010, 91(6): 1715-1729.
[13] Fenn M E, Poth M A, Terry J D, Blubaugh T J. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Canadian Journal of Forest Research, 2005, 35(6): 1464-1486.
[14] 方華軍, 程淑蘭, 于貴瑞, 王永生, 徐敏杰, 黨旭升, 李林森, 王磊, 李曉玉, 司高月. 森林土壤氧化亞氮排放對大氣氮沉降增加的響應(yīng)研究進(jìn)展. 土壤學(xué)報(bào), 2015, 52(2): 262-271.
[15] Zhang W, Mo J M, Yu G R, Fang Y T, Li D J, Lu X K, Wang H. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 2008, 306(1/2): 221-236.
[16] Wei D, Xu-Ri, Liu Y W, Wang Y H, Wang Y S. Three-year study of CO2efflux and CH4/N2O fluxes at an alpine steppe site on the central Tibetan Plateau and their responses to simulated N deposition. Geoderma, 2014, 232-234: 88-96.
[17] Lal R. Forest soils and carbon sequestration. Forest Ecology and Management, 2005, 220(1/3): 242-258.
[18] Luyssaert S, Schulze E D, B?rner A, Knohl A, Hessenm?ller D, Law B E, Ciais P, Grace J. Old-growth forests as global carbon sinks. Nature, 2008, 455(7210): 213-215.
[19] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology and Biochemistry, 2007, 39(8): 1878-1887.
[20] Maljanen M, Jokinen H, Saari A, Str?mmer R, Martikainen P J. Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and nitrogen. Soil Use and Management, 2006, 22(2): 151-157.
[21] Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis P G, Kolari P, Kowalski A S, Lankreijer H, Law B E, Lindroth A, Loustau D, Manca G, Moncrieff J B, Rayment M, Tedeschi V, Valentini R, Grace J. The human footprint in the carbon cycle of temperate and boreal forests. Nature, 2007, 447(7146): 849-851.
[22] Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R. A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 2007, 21(3): GB3010.
[23] Koehler B, Corre M D, Veldkamp E, Wullaert H, Wright S J. Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Global Change Biology, 2009, 15(8): 2049-2066.
[24] Repo M E, Susiluoto S, Lind S E, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen P J. Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2009, 2(3): 189-192.
[25] Elberling B, Christiansen H H, Hansen B U. High nitrous oxide production from thawing permafrost. Nature Geoscience, 2010, 3(7): 506-506.
[26] Zaehle S, Dalmonech D. Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Current Opinion in Environmental Sustainability, 2011, 3(5): 311-320.
[27] 方華軍, 程淑蘭, 于貴瑞. 森林土壤碳、氮淋失過程及其形成機(jī)制研究進(jìn)展. 地理科學(xué)進(jìn)展, 2007, 26(3): 29-37.
[28] 胡艷玲, 韓士杰, 李雪峰, 趙玉濤, 李東. 長白山原始林和次生林土壤有效氮含量對模擬氮沉降的響應(yīng). 東北林業(yè)大學(xué)學(xué)報(bào), 2009, 37(5): 36-38, 42.
[29] Gao W L, Cheng S L, Fang H J, Chen Y, Yu G R, Zhou M, Zhang P L, Xu M J. Effects of simulated atmospheric nitrogen deposition on inorganic nitrogen content and acidification in a cold-temperate coniferous forest soil. Acta Ecologica Sinica, 2013, 33(2): 114-121.
[31] Xu X L, Li Q K, Wang J Y, Zhang L M, Tian S N, Zhi L, Li Q R, Sun Y. Inorganic and organic nitrogen acquisition by a fernDicranopterisdichotomain a subtropical forest in South China. PLoS One, 2014, 9(5): e90075.
[32] Sheng W P, Yu G R, Fang H J, Jiang C M, Yan J H, Zhou M. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China. PLoS One, 2014, 9(2): e89322.
[33] Kuzyakov Y, Xu X L. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 2013, 198(3): 656-669.
[34] Fang H J, Yu G R, Cheng S L, Zhu T H, Zheng J J, Mo J M, Yan J H, Luo Y Q. Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads. Biogeochemistry, 2011, 102(1/3): 251-263.
[35] Wang Y S, Cheng S L, Fang H J, Yu G R, Xu M J, Dang X S, Li L S, Wang L. Simulated nitrogen deposition reduces CH4uptake and increases N2O emission from a subtropical plantation forest soil in southern China. PLoS One, 2014, 9(4): e93571.
[36] Lu M, Yang Y H, Luo Y Q, Fang C M, Zhou X H, Chen J K, Yang X, Li B. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 2011, 189(4): 1040-1050.
[37] Fang H J, Yu G R, Cheng S L, Zhu T L, Wang Y S, Yan J H, Wang M, Cao M, Zhou M. Effects of multiple environmental factors on CO2emission and CH4uptake from old-growth forest soils. Biogeosciences, 2010, 7(1): 395-407.
[38] 傅民杰, 王傳寬, 王穎, 劉實(shí), 丁爽. 氣候暖化對解凍期不同緯度興安落葉松林土壤氧化亞氮釋放的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(7): 1635-1642.
[39] Zhang J B, Cai Z C, Zhu T B. N2O production pathways in the subtropical acid forest soils in China. Environmental Research, 2011, 111(5): 643-649.
[40] Zhang J B, Cai Z C, Zhu T B, Yang W Y, Müller C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Scientific Reports, 2013, 3: 2342.
[41] Livesley S J, Grover S, Hutley L B, Jamali H, Butterbach-Bahl K, Fest B, Beringer J, Arndt S K. Seasonal variation and fire effects on CH4, N2O and CO2exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011, 151(11): 1440-1452.
The effects of types and doses of nitrogen addition on soil N2O flux in a cold-temperate coniferous forest, northern China
GENG Jing1, 2, CHENG Shulan2, FANG Huajun1,*, YU Guirui1, XU Minjie2, WANG Lei1, LI Xiaoyu1, SI Gaoyue2, HE Shun2
1KeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicalSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China2CollegeofResourcesandEnvironment,UniversityofChineseAcademyofSciences,Beijing100049,China
atmospheric N deposition; soil N2O flux; N availability; controlling factors; boreal forest
國家自然科學(xué)基金項(xiàng)目(41471212, 31470558, 31290221, 31130009, 31290222);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2012CB417103);中國科學(xué)院地理科學(xué)與資源研究所“秉維”優(yōu)秀青年人才基金項(xiàng)目(2011RC202);中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDA05050600)
2015-08-04;
日期:2016-06-13
10.5846/stxb201508041639
* 通訊作者Corresponding author.E-mail: fanghj@igsnrr.ac.cn
耿靜,程淑蘭,方華軍,于貴瑞,徐敏杰,王磊,李曉玉,司高月,何舜.氮素類型和劑量對寒溫帶針葉林土壤N2O排放的影響.生態(tài)學(xué)報(bào),2017,37(2):395-404.
Geng J, Cheng S L, Fang H J, Yu G R, Xu M J, Wang L, Li X Y, Si G Y, He S.The effects of types and doses of nitrogen addition on soil N2O flux in a cold-temperate coniferous forest, northern China.Acta Ecologica Sinica,2017,37(2):395-404.