• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    2014-05-13 02:38:13LIHuaWAREAntonyandGUOLiSchoolofMathematicsandStatisticsZhengzhouUniversityZhengzhou450001China

    LIHua,WAREAntonyand GUO LiSchool ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    LIHua1,?,WAREAntony2and GUO Li11School ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    Received 18 January 2014;Accep ted 14M ay 2014Abstract.This paper p resents the w avelet collocation m ethods for the num ericalapp roxim ation of sw ing op tions for natu ralgas storage in am ean revertingm arket.The m odel is characterized by the Ham ilton-Jacobi-Bellm an(H JB)equations w hich on ly have the viscosity solution due to the irregu larity of the sw ing op tion.The differential operator is form u lated exactly and efficiently in the second generation interpolating w aveletsetting.The convergence and stability of the num ericalschem e are studied in the fram ew ork of viscosity solu tion theory.Num erical experim ents dem onstrate the accu racy and com pu tationalefficiency of them ethods.

    AM SSub jectClassifications: 65C20,62P05,97M 30

    Chinese Lib rary Classifications:O 175.27

    Sw ing op tion;viscosity solution;w avelet;collocation.

    1 In troduction

    The aim of this paper is to investigate the app lication of adap tive w avelet collocation m ethods for Ham ilton-Jacobi-Bellm an(HJB)equations arising from p ricing sw ing options in am ean revertingm arket.

    M odelsof sw ing op tionsare an extension of the Black-Scholesm odel.Due to the uncertainty of fu ture consum p tion and the lim ited fungibility ofm any comm od ities,som e comm od ity m arkets have introduced sw ing op tionsw hich give the consum er flexibility w ith respect to both the tim ing and theam ountof comm od ity delivered.For descrip tions ofsw ing op tions,w e refer to[1,2]and the references therein.Sw ing op tionsare very comm on in energym arkets,because they p rovide consum ersw ith flexibility to vary their rateof consum p tion w ithou t being exposed to p rice fluctuations,w hich can be extrem e,especially in the case of electricity.For sw ing op tions on electricity,see[3];on gas,see[4]; on coal,see[5],for exam p le.

    Due to their im portance in the energy m arkets,the p ricing of sw ing op tions has gainedm oreand m oreatten tion over the lastdecade,andm uch efforthasbeen expanded in designing algorithm s for p ricing sw ing op tions.The d iscrete valuation of sw ing options has been stud ied by several au thors.In[1],a d iscrete forestm ethodology is developed for sw ing op tions as a dynam ically coup led system of European op tions.A lso in[2],a binom ial/trinom ial forest is built to calcu late the p rice of sw ing op tions.In[6] and[7],M onte Carlo techniques are em p loyed for p ricing sw ing op tions.Continuous tim em odels allow the use of pow erfu lm athem atical tools to analyze the p roperties of solu tions and have recently appeared in the literature.A continuous tim em odel for the p rice of the general comm od ity-based sw ing op tion is p resen ted in[8],w here the p rice function is the solution of a system of quasi-variational inequalities.In[9],a continuous tim em odel is built for p ricing sw ing op tions on naturalgas in am ean revertingm arket, w here the p rice function is the solu tion of a HJB equation.

    Them ore pow erfu l them odel is,them ore im portan t it is to develop the right com putational tools to get reliable in form ation ou t from them odel.In this paper,w e study the num erical solu tion of sw ing op tion m odels p resen ted in[9,10],w here a finite-elem en t app roach is developed to solve this class ofm odels.Fu rtherm ore,the stochasticm eshes are app lied in[11]and the op tim al exercise boundary estim ation is app lied in[12]respectively for solving sw ing op tionm odels.For fu rther su rvey abou t sw ing op tions,w e refer the readers to[13].

    Since op tim ization strategiesare involved in sw ing op tions,in regionsw here the optim al exercise strategy is a rapid ly-changing function of the p rice,the solu tion m ay exhibit less regu larity,w hich w ill be p roblem atic for nonadap tive(uniform grid)m ethods. Therefore,w e develop w avelet-based m ethods for p ricing sw ing op tions.This fram ew ork allow s for using finer resolu tion w here needed and coarser resolution in sm ooth areas,and thereby im p roves the app roxim ation efficiency.

    This paper is organized as follow s.In Section 2,w e in troduce the efficient form u lation of operators in a w avelet collocation setting.In Section 3,w e briefly introduce the sw ing op tionm odels to be stud ied in thispaper.In Section 4,w e p resentaw avelet-based num erical schem e to the p roposed HJB system.In Section 5,the convergence analysis is perform ed in the fram ew ork of viscosity solu tion theory.In Section 6,the num erical resu ltsare p resented.Conclusions are d raw n in Section 7.

    2 Second generation in terpolating w avelets

    2.1 Scaling functions on an in terval

    Consider the interval?=[0,1].For each level j,w e p lace a grid

    on?.A setof interpolating scaling functions{φj,k,k=0,1,···,2j}can be constructed using the interpolating subd ivision schem e and they satisfy the tw o-scale relationship

    and qjk(x)is the Lagrange interpolating polynom ial through the p points closest to xj,kon Gj.The scaling function space

    satisfiesa second-generationm u ltiresolu tion analysis in the sense that

    2.2 Wavelets

    For convenience,w e denote the filter h in Eq.(2.1)in them atrix form:

    In terpolating w aveletsw ith desired high vanishing m om en ts can be constructed by the lifting schem e[14]as follow s,

    This is done by designing the lifting filter Sjsuch that thew aveletsψj,kassociated w ith the above filtershave?p vanishingm om ents,i.e.,

    This fam ily ofw avelets is very suitable to num ericalanalysis.

    For convenience,w e denoteφj=[φj,0,φj,1,···,φj,2j]′.Sim ilarlyψj,?φjand?ψjdenote the vectors ofw avelet functions,dual scaling functions and dualw avelets respectively,and the correspond ing spacesare denoted by Wj,?Vjand?Wjrespectively.

    2.3 Projections and w avelet transform s

    Define the p rojectionsof f∈L2(?)onto Vjand Wjrespectively by

    w here vj,k=h f,?φj,ki,wj,k=h f,?ψj,ki and h·,·i denotes the L2inner p roduct.Sim ilarly w e have the dualp rojections?Pjand?Qjand the p rojections satisfy

    The fastw avelet transform s can be deduced based on the above p rojections.

    ?(Decom position:)Given vj+1,

    where

    ?(Reconstruction:)Given vjand wj,

    2.4 Wavelet collocation rep resen tations of operators

    The exact and efficient form u lation of operators in a Galerkin setting has been p roposed by Bey lkin and Coifm an[15,16]and Dahm en and M icchelli[17].In this section,w e develop an efficien t rep resen tation of operators in the collocation schem e.Let(x):= δ(x),w hereδ(x)is the Dirac d istribu tion functional.Define

    The standard form u lation can be obtained by decom posing?PJand PJ:

    w hich containsm atrix entries reflecting‘interactions’betw een allpairsofd ifferentscales. This p rocedu re resu lts in an order N log N algorithm even for such sim p le operators as m u ltip lication by a function,w here N is the totalnum ber ofw avelets used.Fortunately, this form u lation can be derived ind irectly from its nonstandard form,w hich is obtained by expand ingLPJin a telescop ic series,i.e.,

    The above entries can be com puted exactly(for details see Chap ter 3 in[18]).Theadvantage of the nonstandard rep resentation(2.10)is that it on ly involves‘interaction’on one scale j and the form u lation only resu lts in an order of N com pu tation.

    3 M odels of sw ing op tions

    In thissection,w egivea brief introduction to the sw ing op tionm odels in[9]w ith natu ral gasas the underlying comm od ity.

    Envisage a situation in w hich the net consum p tion to date qtism anaged on a continuous basis by the holder,w ho is allow ed to vary the rate of consum p tionw ithin p rescribed lim itssubject to qtalso lying in som e interval[a,b].Ifallgas is imm ed iately converted in to cash at the spot rate,the cash flow generated by‘consum ing’at the ratefor a period ofΔt,given a spotp rice of St,is

    The totald iscounted cash flow over the life of the op tion,given an exercise strategy specified by q′tis,exclud ing any penalty paym ents,

    Here and in the follow ing w e assum e a constant risk-free interest rate r.

    Supposew e are given a strategy q′t=k(t),and an underlying asset satisfying the d iffusion p rocess

    w here Wtisa standard Brow nianm otion,andμandσare su fficiently w ell-behaved functions.

    We let qtdenote the am oun t of gas stored at tim e t,constrained to be in[a,b].A positive value ofind icates that gas is being injected at a rate of,w hile a negative value connotes the w ithdrawal ofgas ata rate of.

    Itw illbenatu ral to im posea charge perunit tim e,χst(qt,St),dependenton the cu rrent levelofgas in the inventory and possibly also itsm arketvalue.Therew illalso bea charge for in jection orw ithd raw al.This chargew ill typ ically be p roportional to the ratebu tw ith d ifferentp roportionalities for each case:i.e.,itw illbeof the form

    We assum e that a borrow ing account Atism aintained in order to finance these cash flow s.Over a tim e increm ent dt,then,thenom inalvalue of thegas in storagew illchange by

    and therew illbe an associated cash flow of

    w hereμ?is the d riftof the forw ard p rocess,χstis cash flow,andχiw(k)-kS is gain.

    We seek to m axim ize the value of our hedged portfolio.The op tim al strategy that achieves this resu lts in

    4 Wavelet collocation schem e

    We em p loy a hybrid w avelet/finite d ifference sem i-Lagrangian num erical schem e to solve Eq.(3.2).Throughout this section,w e consider the casew here-μ?(S,t)=(ln S+)S,andare constants,andσ(S)=σ0S.

    We firstapp ly tim e reverseand logarithm transform to(3.2)by(M axim ization w illbe dealtw ith later)

    We then introduce a change of variables to rem ove the d rift term in x:uxterm by

    Eq.(4.1)is reduced to

    Since there is no d iffusion term and on ly d rift term in q,w e em p loy a sem i-Lagrangian m ethod to dealw ith the d rift term in q:i.e.wτ-kwqis exp ressed as a single d irectional derivative in the d irection of the curve(Q(τ;q,τ0),τ)τpassing through the point(y,τ), w here,given q andτ0,Q(τ)satisfies

    Solving the above ord inary d ifferentialequation,

    Thus,w e obtain

    Them axim ization p roblem isas follow s.

    Prob lem 4.1.Find w such that

    For the num erical app roxim ation,w e take an im p licit finite d ifferencem ethod inτ, and a w avelet collocation m ethod in y.Then the app roxim ation p roblem to Problem 4.1 isw ritten as follow s.

    Prob lem 4.2.Givenτn=nΔτ,n=0,···,N,find am ap U:{τ0,τ1,···,τN}→Vjsuch that,for any y∈Gj,the follow ing equation holds for each m.

    Please note that the‘m ax’function is realized as follow s.For each m,find a set

    And also w e use a free boundary cond ition in the space dom ain y.

    5 Convergence rate of the schem e

    The app roxim ation of viscosity solu tions to HJB equations has been intensively stud ied by Barles and Jakobsen[19]in 2005.The theory of viscosity solutions p rovides am eans ofanalysis in thissetting.We can dem onstrate them onotonicity and p rove the regu larity and consistency of this num ericalschem e.Thus,convergence follow s from the resu ltsof Barles and Jakobsen[19].

    For convenience,w e rew rite the num ericalschem e as

    1.M onotonicity.

    For anyν≥0,h0>0 such that if|h|≤h0,u≤v are functions in Vj(Gj),andφ(τ)= eντ(a+bτ)+c for a,b,c≥0,then

    w herew eassum e that M-1φ(τn)=φ(τn).Actually this is true,since

    2.Regularity.

    We now show that,for every h andφ∈Vj(Gj),the function

    is bounded and continuous in Gjand the function r7-→Q(h,τ,x,r,φ(τn))is uniform ly continuous for bounded r,uniform ly in(τ,x)∈Gj.

    Bounded:for every h,M-1isbounded and for everyφn+1∈Vj(Gj),φn+1isbounded.

    We know f is bounded and

    The function(τ,y)7-→Q(h,τ,y,φ(τn+1),φ(τn))is bounded in Gj.

    Con tinuous:sinceφ∈Vj(Gj),for any(τ?,y?)∈[τ0,···,τN]×Gj,if

    Uniform ly con tinuous:for any bounded r1,r2,for anyδ>0,if

    then for any(τ,y)∈[τ0,···,τN]×Gj,

    w here?=δ.

    3.Consistency.

    For any h=(Δτ,Δy)>0,(τ,y)∈[τ0,···,τN]×Gj,and sm ooth functionφ:

    Fu rtherm ore,it is easy to show the stability cond ition

    It follow s imm ed iately that Problem 4.2 has a unique solution.Therefore,w e have the follow ing convergence resu lt.

    Theorem 5.1.Let U and w be the solutions to Problem 4.2 and Problem 4.1 respectively.There existsa constant C dependent only onμ,K in(K1),(A 1)such that

    in Gj,where=|u|1.

    Proof.Firstw e notice that|U0,h-w0|=0 and by Theorem 3.1 in[19]w e have

    6 Num erical tests

    We test the ability of the num ericalm ethod to solve the HJB equation w ith them odel param eters:tim e to exp iry 5 years,r=0.05,σ0=0.5,=-1.48 and=0.4.We take Δτ=T2-M.For each M,J=12,w e com pute the num erical solu tion and take it as the‘true’solu tion.Then,w e com pu te the solu tions at level J=6,···,10 w ith the sam e tim e step-size,com pare them w ith the‘true’solution and find the relative errors.Errors in the L∞norm at tim e0 are p resen ted in Table1,the convergence ratesare p resented in Table 2, from w hich w e can see that the convergence rate is about7,i.e.the order is abou t3.The op tion p ricesare show n in Fig.1(left).The sw ing ratesare show n in Fig.1(righ t),w here a negative valuem eans a strategy of selling the natu ralgasw ith this rate,and a positive valuem eans buying the natu ralgasw ith this rate.

    Table 1:Errors in the L∞norm for the swing option at time 0 and q=1.

    Table 2:Convergence rates in the L∞for the swing option computed from the data in Table 1.

    Figure 1:Left:sw ing option valuation.Right:recommended sw ing rates.

    7 Conclusion

    This paper p resented w avelet collocation m ethods for the numerical app roxim ation of viscosity solu tions of an HJB equation w hich arises in p ricing sw ing op tions in am ean

    reverting w orld.The d ifferential operator w as form u lated exactly and efficiently in the second generation interpolating w aveletspaces.Them ethodsw ere num erically dem onstrated uncond itionally stable.The convergencew as analysed in the fram ew ork of viscosity solu tion theory.The accu racy and com pu tational efficiency of them ethod w ere verified w ith the num erical resu lts.

    Append ix

    w here h=2-jand rk:=φ(2)0,m(m-k)is the nonzero second order derivative for interior scaling functions(see Table 3).

    Table 3:Nonzero second order derivatives for interior scaling functions.

    A A is inverse negative in the sense that A-1≤0

    Recall that them atrix A is identical to?A excep t that the first p row s and colum ns(and the last p row s and colum ns)are d ifferent.It is obvious that A is not an M m atrix from the entriesof A,and it is notd iagonally dom inant.

    Varga(1962)and Sch roeder(1961)show ed thatam atrix M is inverse positive,if

    Ortega and Rheinbold t(1967)show ed that M is inverse positive,if

    How everw e can not find a sp litting of A satisfying either of these tw o cond itions.W hat w e can do for A is a sp litting B-C,w here B and C are both M m atrix.

    J.E.Peris(1991)defined that,a positive sp litting M=B-C of a squarem atrix M is said to be a B-sp litting if them atrix B is nonsingu lar and

    Then he p roved the follow ing theorem.

    Theorem A.1.LetM bea squarematrix such that M=B-C isa B-splitting.Then M is inverse positive ifand only ifthere exists some x>0 such that M x?0,where?means that there isat least oneentry greater than zero.

    How ever,w e cou ld not find a B-sp litting for A.We also referred to other references: Fu jim oto and Ranade[20]etc.

    A lthough w e are unable to p rove them onotonicity of A,bu tw e found that num erically it is true.We now num erically show A-1≤0(see Fig.2).Again,given the polynom ial exactness p,neither the interval[a,b]or the scale j changes inversem onotonicity of them atrix A.Therefore,w e on ly give the num erical dem onstration for j=7 and the interval[0,1]in Fig.2.

    Figure 2:Left:inverse of thewavelet collocation matrix A of d2/dx2for j=7,on the interval[0,1].Right:the maximum values of each column in A-1.

    B I-cA is inverse positive in the sense that(I-cA)-1≥0

    For an evolution p roblem,am atrix of the form I-cA is usually involved,w here c is a positive num ber less than 1.In this section,ou r aim is to num erically show that I-cA is inverse positive in the sense that(I-cA)-1≥0.As c-→0,I-cA-→I and As c-→∞, I-cA-→-cA,therefore,in these tw o cases,I-cA is inverse positive.For 0<c<∞, w e still found that I-cA is inverse positive.Fig.3 is typicalofm any experim entsw hich have been done.

    Figure 3:Left:inverse of the wavelet collocation matrix B=I-cA for the cases c=100(top),and c=0.01 (bottom)for j=7 and the interval[0,1].Right:themaximum values of each column in B-1.

    Acknow ledgm en ts

    This research w ork issupported by Foundation Projectof Henan Science and Technology Departm entunder GrantNo.112300410064 and No.122300413202.

    [1]Lari-LavassaniA.,Sim chiM.and Ware A.,A discrete valuation of sw ing op tions.Canadian Applied M athematicsQuarterly,9(1)(2001),35-74.

    [2]Jaillet P.,Ronn E.R.and Tom paid is S.,Valuation of comm od ity-based sw ing op tions.M anagement Science,50(7)(2004),909-921.

    [3]Keppo J.,Pricing of electricity sw ing contracts.JournalofDerivatives,11(2004),26-43.

    [4]Clew low L.,StricklC.,Energy Derivatives:Pricing and Risk M anagem ent,Lacim a Publications,2000.

    [5]Joskow,Contract du ration and relationship-specific investm ents:Em p irical evidence from coalm arkets.American Econom ic Review,77(1987),168-185.

    [6]D¨orr U.,Valuation of Sw ing Op tions and Exam ination of Exercise Strategiesby M onte Carlo Techniques.M asters thesis,University ofOxford,2003.

    [7]M einshausen N.,Ham bly B.M.,M onte-Carlom ethods for thevaluation ofm u ltip le-exercise op tions.M athematical Finance,14(4)(2004),557-583.

    [8]Dah lgren M.,A continuous tim em odel to p rice comm od ity-based sw ing op tions.Review of DerivativesResearch,8(2005),27-47.

    [9]Ware A.F.,Sw ing op tions in am ean-reverting w orld,Paper p resented at the conference in honor of Robert Elliott,Calgary,Ju ly 2005.

    [10]W ilhelm M.,W inter C.,Finite elem ent valuation of sw ing op tions.Journal ofComputational Finance,11(3)(2008),107-132.

    [11]M arshall T.J.,M ark Reesor R.,Forestof stochasticm eshes:A new m ethod for valuing highd im ensional sw ing op tions.Operation Research Letters,39(2011),17-21.

    [12]Turbou lt F.,You lal Y.,Sw ing op tion p ricing by op tim al exercise boundary estim ation.In Num ericalM ethods in Finance,ed.Carm ona,R.etal.,Sp ringer Proceed ings in M athem atics 12,2012.

    [13]Lem pa J.,M athem aticsof Sw ing Op tions:A Su rvey.Quantitative Energy Finance,Publisher: Sp ringer New York,115-133,2014.

    [14]Sw eldensW.,The lifting schem e:a custom-design construction of biorthogonalw avelets. Applied Computationaland Harmonic Analysis,3(1996),186-200.

    [15]Beylkin G.,Coifm an R.and Rokhlin V.,Fastw avelet transform sand num ericalalgorithm s. Comm.in Pureand Applied M ath.,44(1991),141-183.

    [16]Bey lkin G.,On the rep resentation of operators in bases of com pactly supported w avelets. SIAM Journalon Numerical Analysis,6(6)(1992),1716-1740.

    [17]Dahm enW.,M icchelliC.A.,Using refinem entequation forevaluating integralsofw avelets. SIAM Journalon Numerical Analysis,30(2)(1993),507-537.

    [18]LiH.,Adap tivew aveletcollocationm ethods forop tion p ricing PDEs,PhD thesis,University of Calgary,2006.

    [19]BarlesG.,Jakobsen E.R.,Error bounds form onotone app roxim ation schem es for Ham ilton-Jacobi-Bellm an equations.SIAM J.Numer.Anal.,43(2)(2005),540-558.

    [20]Fu jim oto T,Ranade R.R.,Tw o characterizationsof inverse-positivem atrices:the Haw kins-Sim on cond ition and the Le Chatelier-Braun p rincip le.Electronic JournalofLinearAlgebra,11 (2004),59-65.

    10.4208/jpde.v27.n3.4 Sep tem ber 2014

    ?Correspond ing au thor.Email addresses:hual i08@zzu.edu.cn(H.Li),aware@ucalgary.ca(A.Ware), 1053500513@qq.com(L.Guo)

    真人做人爱边吃奶动态| 嫩草影院精品99| 国产精品98久久久久久宅男小说| 最好的美女福利视频网| 日韩大尺度精品在线看网址| 国产精品1区2区在线观看.| 午夜福利18| 国产一区二区在线观看日韩| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 露出奶头的视频| 日本爱情动作片www.在线观看 | a级毛片免费高清观看在线播放| 国产一区二区激情短视频| 亚洲av免费在线观看| 亚洲内射少妇av| 波多野结衣高清作品| 色综合站精品国产| 69av精品久久久久久| 97热精品久久久久久| 桃红色精品国产亚洲av| or卡值多少钱| 亚洲aⅴ乱码一区二区在线播放| 91在线精品国自产拍蜜月| 亚洲精华国产精华精| 桃红色精品国产亚洲av| videossex国产| 午夜福利视频1000在线观看| 啦啦啦啦在线视频资源| 精品久久久久久久久久久久久| 久久国产精品人妻蜜桃| 亚洲精品456在线播放app | 欧美高清性xxxxhd video| 简卡轻食公司| 欧美色视频一区免费| 韩国av在线不卡| 免费大片18禁| 国产精品一区二区性色av| 欧美高清成人免费视频www| 久久99热6这里只有精品| 日韩高清综合在线| 国产亚洲91精品色在线| 日本与韩国留学比较| 人妻制服诱惑在线中文字幕| av在线老鸭窝| 亚洲avbb在线观看| 亚洲最大成人av| 国产高潮美女av| 亚洲精品在线观看二区| 男人舔女人下体高潮全视频| 久久精品综合一区二区三区| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 99久久成人亚洲精品观看| 国产精品野战在线观看| 看十八女毛片水多多多| 久久久久久九九精品二区国产| 无遮挡黄片免费观看| 高清日韩中文字幕在线| 国产精品精品国产色婷婷| 久久亚洲真实| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 熟女电影av网| 欧美绝顶高潮抽搐喷水| 国产av在哪里看| 色综合站精品国产| aaaaa片日本免费| 免费在线观看日本一区| 亚洲专区中文字幕在线| 国产精品三级大全| 欧美激情在线99| 老司机午夜福利在线观看视频| 亚洲午夜理论影院| 黄片wwwwww| 校园人妻丝袜中文字幕| 九九爱精品视频在线观看| 欧美激情久久久久久爽电影| 免费av毛片视频| 色精品久久人妻99蜜桃| av在线老鸭窝| 亚洲最大成人中文| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| av在线老鸭窝| 国产精品久久久久久亚洲av鲁大| 亚洲av日韩精品久久久久久密| 国产精品美女特级片免费视频播放器| 国内精品久久久久精免费| 午夜福利在线观看免费完整高清在 | 无人区码免费观看不卡| 欧美绝顶高潮抽搐喷水| 国产一区二区三区av在线 | 国产免费av片在线观看野外av| 一区二区三区免费毛片| 在线播放国产精品三级| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 国产麻豆成人av免费视频| 看片在线看免费视频| 日韩欧美 国产精品| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 午夜免费男女啪啪视频观看 | 乱人视频在线观看| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 国产精品av视频在线免费观看| 欧美在线一区亚洲| 日本一本二区三区精品| 三级国产精品欧美在线观看| 舔av片在线| 欧美色欧美亚洲另类二区| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡| 国产精品女同一区二区软件 | 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 国产精品野战在线观看| eeuss影院久久| 一区二区三区免费毛片| 国产综合懂色| 22中文网久久字幕| 国产黄色小视频在线观看| 亚洲男人的天堂狠狠| 免费av不卡在线播放| 国产私拍福利视频在线观看| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 日本一二三区视频观看| 国产精品野战在线观看| 一a级毛片在线观看| 性插视频无遮挡在线免费观看| 乱码一卡2卡4卡精品| 精品一区二区三区视频在线观看免费| 淫秽高清视频在线观看| 久久久久久久久久久丰满 | 99国产精品一区二区蜜桃av| 国产综合懂色| 人人妻人人澡欧美一区二区| 国产精品久久视频播放| 国产综合懂色| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 又爽又黄无遮挡网站| 色综合色国产| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 天堂av国产一区二区熟女人妻| 99国产极品粉嫩在线观看| 校园人妻丝袜中文字幕| 亚洲人成网站高清观看| 村上凉子中文字幕在线| videossex国产| 成人美女网站在线观看视频| 又粗又爽又猛毛片免费看| 观看美女的网站| 亚洲美女搞黄在线观看 | 黄色女人牲交| 亚洲国产色片| 欧美日韩国产亚洲二区| 亚洲综合色惰| 在线观看午夜福利视频| 亚洲在线观看片| 日韩精品青青久久久久久| 一个人免费在线观看电影| 免费黄网站久久成人精品| 夜夜看夜夜爽夜夜摸| 成年女人永久免费观看视频| 高清在线国产一区| 三级国产精品欧美在线观看| 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| .国产精品久久| 精品久久久久久久久av| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久 | 亚州av有码| 美女被艹到高潮喷水动态| 国产一级毛片七仙女欲春2| 亚洲中文字幕一区二区三区有码在线看| 日本熟妇午夜| 国产三级中文精品| 99热只有精品国产| 欧美激情在线99| 欧美色视频一区免费| 精品人妻一区二区三区麻豆 | 高清毛片免费观看视频网站| 精品99又大又爽又粗少妇毛片 | 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 亚洲欧美日韩东京热| 亚洲成人中文字幕在线播放| 色哟哟·www| avwww免费| 美女高潮喷水抽搐中文字幕| 成人特级av手机在线观看| 色精品久久人妻99蜜桃| 国产大屁股一区二区在线视频| 亚洲精华国产精华液的使用体验 | 亚洲自偷自拍三级| 高清日韩中文字幕在线| 中亚洲国语对白在线视频| 久久精品国产鲁丝片午夜精品 | 春色校园在线视频观看| 别揉我奶头 嗯啊视频| 淫妇啪啪啪对白视频| 全区人妻精品视频| 色吧在线观看| 毛片女人毛片| 欧美另类亚洲清纯唯美| 精品人妻一区二区三区麻豆 | 国产亚洲91精品色在线| 超碰av人人做人人爽久久| 男女视频在线观看网站免费| 91精品国产九色| 亚洲午夜理论影院| 成人国产一区最新在线观看| 天堂动漫精品| 啪啪无遮挡十八禁网站| 色播亚洲综合网| 亚洲欧美清纯卡通| 少妇人妻精品综合一区二区 | 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 国产av在哪里看| 最近视频中文字幕2019在线8| 黄色丝袜av网址大全| 国产三级中文精品| 久久午夜亚洲精品久久| 亚洲经典国产精华液单| 国产精品女同一区二区软件 | 欧美一区二区国产精品久久精品| 精品欧美国产一区二区三| av女优亚洲男人天堂| 免费看日本二区| 中文字幕免费在线视频6| 亚洲成av人片在线播放无| 国产亚洲精品久久久久久毛片| 欧美又色又爽又黄视频| 麻豆国产97在线/欧美| 亚洲黑人精品在线| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 免费观看在线日韩| 天堂动漫精品| 好男人在线观看高清免费视频| 国产精品一区二区免费欧美| 国产视频一区二区在线看| 高清日韩中文字幕在线| 97热精品久久久久久| 午夜激情福利司机影院| 亚洲三级黄色毛片| 在线观看舔阴道视频| 欧美精品啪啪一区二区三区| 成年版毛片免费区| 97人妻精品一区二区三区麻豆| 国产精品日韩av在线免费观看| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 亚洲人成网站在线播放欧美日韩| www日本黄色视频网| 久久亚洲真实| 精品99又大又爽又粗少妇毛片 | 国产精品一区二区三区四区久久| 久久久国产成人免费| 成人精品一区二区免费| 久久精品人妻少妇| 亚洲国产欧美人成| 99热6这里只有精品| 国产精品国产高清国产av| 亚洲经典国产精华液单| 男女下面进入的视频免费午夜| 亚洲va在线va天堂va国产| 亚洲人成网站高清观看| 亚洲精品在线观看二区| 免费观看人在逋| 亚洲男人的天堂狠狠| av福利片在线观看| 色吧在线观看| 一个人观看的视频www高清免费观看| 欧美3d第一页| 国产欧美日韩精品一区二区| 国产精品乱码一区二三区的特点| 精品一区二区三区视频在线观看免费| 深夜精品福利| 一区二区三区免费毛片| 亚洲精品456在线播放app | 亚洲熟妇熟女久久| 99热6这里只有精品| 欧美高清成人免费视频www| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 一级av片app| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 欧美3d第一页| 国产精品乱码一区二三区的特点| 国产 一区精品| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 亚洲第一区二区三区不卡| 床上黄色一级片| 亚洲精品久久国产高清桃花| 一级av片app| 搞女人的毛片| 亚洲美女视频黄频| 俺也久久电影网| 免费一级毛片在线播放高清视频| 91久久精品电影网| 亚洲av日韩精品久久久久久密| 在线看三级毛片| 成人国产综合亚洲| 在线免费观看的www视频| 国内精品宾馆在线| 国产在线男女| 午夜福利18| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 久久久久久国产a免费观看| 男女那种视频在线观看| 国产精品一及| 日韩欧美国产在线观看| 婷婷六月久久综合丁香| 一卡2卡三卡四卡精品乱码亚洲| 国产精品无大码| 一级黄片播放器| 国产高潮美女av| 久久久色成人| 91久久精品电影网| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 男人和女人高潮做爰伦理| 亚洲成人免费电影在线观看| 99久久无色码亚洲精品果冻| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| 国产私拍福利视频在线观看| 国产综合懂色| 国产91精品成人一区二区三区| 九九爱精品视频在线观看| 国产不卡一卡二| 最新在线观看一区二区三区| av天堂在线播放| 亚洲国产色片| 国产三级中文精品| 日本黄色片子视频| 深夜a级毛片| 又爽又黄无遮挡网站| 日本五十路高清| 在线看三级毛片| 日韩欧美国产一区二区入口| 成人av在线播放网站| 国内精品美女久久久久久| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 中亚洲国语对白在线视频| av福利片在线观看| 毛片女人毛片| 12—13女人毛片做爰片一| 在线免费十八禁| av在线蜜桃| 一本一本综合久久| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 一本一本综合久久| ponron亚洲| 男人的好看免费观看在线视频| 黄色日韩在线| 中国美女看黄片| 成年版毛片免费区| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 国产精品美女特级片免费视频播放器| av天堂在线播放| 亚洲一区高清亚洲精品| av国产免费在线观看| 国产精品伦人一区二区| 精品久久久久久久久亚洲 | 一区福利在线观看| 国产久久久一区二区三区| 国产高清激情床上av| 午夜福利成人在线免费观看| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 久久这里只有精品中国| 日本一本二区三区精品| 国产一区二区亚洲精品在线观看| av在线亚洲专区| 亚洲性夜色夜夜综合| 国产亚洲精品av在线| 日韩欧美免费精品| 成年版毛片免费区| 国产精华一区二区三区| 中文字幕av成人在线电影| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 日韩 亚洲 欧美在线| 97碰自拍视频| 午夜精品在线福利| 国产精品久久久久久亚洲av鲁大| 91精品国产九色| 国产主播在线观看一区二区| 直男gayav资源| 97人妻精品一区二区三区麻豆| 亚洲人成网站在线播| 亚洲综合色惰| 国产欧美日韩精品一区二区| 国产精品久久久久久精品电影| 十八禁国产超污无遮挡网站| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添小说| 美女黄网站色视频| 真人做人爱边吃奶动态| 日本爱情动作片www.在线观看 | 黄片wwwwww| 在线播放国产精品三级| 哪里可以看免费的av片| av在线亚洲专区| 69av精品久久久久久| 亚洲人成网站在线播放欧美日韩| 午夜爱爱视频在线播放| 欧美日本亚洲视频在线播放| 亚洲不卡免费看| 亚洲av免费在线观看| a级一级毛片免费在线观看| or卡值多少钱| 亚洲av五月六月丁香网| 在现免费观看毛片| 久久久午夜欧美精品| 老司机午夜福利在线观看视频| 搡女人真爽免费视频火全软件 | av在线亚洲专区| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看| 国产精品久久电影中文字幕| 波多野结衣高清作品| 色综合婷婷激情| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 亚洲最大成人手机在线| 欧美+亚洲+日韩+国产| 久久草成人影院| 久久这里只有精品中国| 国产探花在线观看一区二区| 少妇裸体淫交视频免费看高清| 少妇高潮的动态图| 男人和女人高潮做爰伦理| 日日啪夜夜撸| 国产久久久一区二区三区| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 人妻久久中文字幕网| 久久久久久久久大av| 久久热精品热| 久久精品国产99精品国产亚洲性色| 五月伊人婷婷丁香| 淫妇啪啪啪对白视频| 我要看日韩黄色一级片| 免费av不卡在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 黄色丝袜av网址大全| 麻豆国产97在线/欧美| 国产探花极品一区二区| 18禁裸乳无遮挡免费网站照片| 大型黄色视频在线免费观看| 老司机午夜福利在线观看视频| 国产91精品成人一区二区三区| 成人精品一区二区免费| 亚洲国产精品成人综合色| 亚洲一区二区三区色噜噜| 很黄的视频免费| 少妇丰满av| 大又大粗又爽又黄少妇毛片口| 在线观看美女被高潮喷水网站| 国产老妇女一区| 少妇人妻精品综合一区二区 | 欧美+日韩+精品| 亚洲精华国产精华精| 亚洲中文字幕一区二区三区有码在线看| 国产精华一区二区三区| 日本黄色视频三级网站网址| 久久九九热精品免费| aaaaa片日本免费| 亚洲午夜理论影院| 69人妻影院| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 波野结衣二区三区在线| 女人十人毛片免费观看3o分钟| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 在线免费观看的www视频| 亚洲av成人精品一区久久| 国产av不卡久久| 欧美最黄视频在线播放免费| 我要看日韩黄色一级片| 久久精品国产亚洲av涩爱 | 欧美人与善性xxx| 91久久精品国产一区二区成人| 亚洲人成网站在线播放欧美日韩| 国产精品嫩草影院av在线观看 | 久久6这里有精品| 中文亚洲av片在线观看爽| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 97超级碰碰碰精品色视频在线观看| 最好的美女福利视频网| 国产精品久久久久久久久免| 午夜福利18| 麻豆精品久久久久久蜜桃| 午夜免费成人在线视频| 成年免费大片在线观看| 最好的美女福利视频网| 女人被狂操c到高潮| 午夜福利欧美成人| 欧美国产日韩亚洲一区| 久久中文看片网| av在线老鸭窝| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| 国产精品精品国产色婷婷| 亚洲无线观看免费| 一区二区三区四区激情视频 | 日韩 亚洲 欧美在线| 99国产极品粉嫩在线观看| 免费看日本二区| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 欧美精品国产亚洲| 成人一区二区视频在线观看| a级毛片a级免费在线| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区成人| 欧美区成人在线视频| 国产精品一区www在线观看 | 国产单亲对白刺激| 久久亚洲精品不卡| 乱码一卡2卡4卡精品| 午夜福利18| 天美传媒精品一区二区| 欧美日本视频| 欧美性感艳星| 亚洲经典国产精华液单| 日本a在线网址| 亚洲电影在线观看av| x7x7x7水蜜桃| 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 久久久午夜欧美精品| 国产精品久久久久久久久免| 久久精品国产亚洲av香蕉五月| 十八禁国产超污无遮挡网站| 亚洲内射少妇av| 特级一级黄色大片| 欧美黑人巨大hd| ponron亚洲| 成人亚洲精品av一区二区| 久久久久久伊人网av| 啦啦啦韩国在线观看视频| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 毛片女人毛片| 久久精品人妻少妇| 欧美另类亚洲清纯唯美| 国产av不卡久久| 亚洲最大成人中文| 久久九九热精品免费| 亚洲乱码一区二区免费版| 亚洲人成伊人成综合网2020| 精品人妻1区二区| 女人被狂操c到高潮| 99久久中文字幕三级久久日本| 美女被艹到高潮喷水动态| 天美传媒精品一区二区| 九九在线视频观看精品| 国产精品嫩草影院av在线观看 | www.www免费av| 欧美+亚洲+日韩+国产| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 校园春色视频在线观看| 精品午夜福利在线看| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| netflix在线观看网站| 免费搜索国产男女视频| 国产乱人伦免费视频| 欧美一区二区国产精品久久精品| 国产精品乱码一区二三区的特点| 高清毛片免费观看视频网站| 欧美+亚洲+日韩+国产| 国产69精品久久久久777片| 3wmmmm亚洲av在线观看|