• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MAJORIZATION OF THE GENERALIZED MARTIN FUNCTIONS FOR THE STATIONARY SCHRDINGER OPERATOR AT INFINITY IN A CONE

    2017-01-19 06:08:44LONGPinhongHANHuili
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:品紅寧夏大學(xué)薛定諤

    LONG Pin-hong,HAN Hui-li

    (School of Mathematics and Computer Science,Ningxia University,Yinchuan 750021,China )

    MAJORIZATION OF THE GENERALIZED MARTIN FUNCTIONS FOR THE STATIONARY SCHRDINGER OPERATOR AT INFINITY IN A CONE

    LONG Pin-hong,HAN Hui-li

    (School of Mathematics and Computer Science,Ningxia University,Yinchuan 750021,China )

    In the paper,we mainly study Dirichlet problem for the stationary Schrdinger operator and the boundary behavior of Martin function.Depended on the generalized Martin representation and the fundamental system of solutions of an ordinary differential equation corresponding to stationary Schrdinger operator,we obtain some characterizations for the majorization of the generalized Martin functions associated with the stationary Schrdinger operator in a cone with smooth boundary,and generalize some classical results in Laplace setting.

    stationary Schrdinger operator;Martin function;harmonic majorization;minimally thin;cone

    1 Introduction

    Let Rn(n≥2)be the n-dimensional Euclidean space and S its an open set.The boundary and the closure of S are denoted by?S and,respectively.In cartesian coordinate a point P is denoted by(X,xn),where X=(x1,x2,···,xn-1).For P and Q in Rn,let|P|be the Euclidean norm of P and|P-Q|the Euclidean distance.The unit sphere and the upper half unit sphere are denoted by Sn-1and,respectively.For P∈Rnand r>0,let B(P,r)be the open ball of radius r centered at P in Rn,then Sr=?B(O,r).Furthermore, denote by dSrthe(n-1)-dimensional volume elements induced by the Euclidean metric on Sr.

    In the paper we are mainly concerned with some properties for the generalized Martin function associated with the stationary Schrdinger operator in a cone.Our aim is to give precise characterization for majorization of the generalized Martin functions in a cone.Deng et al.(see[17]and[23])ever considered the growth for the potential functions in the half space.However,Miyamoto et al.(see[10,11]and[12])focused on the potential theoriesin a cone.Levin and Kheyfits(see[9])paid attention to the problems associated with the stationary Schrdinger operator in a cone.In addition,Long and Qiao et al.(see[7,8,13–15]and[16])considered some related problems about Dirichlet problem for the stationary Schrdinger operator at∞with respect to a cone as well as Levin and Kheyfits(see[9]). Based on the above statement,we will mainly generalize some results from Miyamoto and Yoshida(see[10])to the stationary Schrdinger operator’s setting.Unfortunately we don’t have Riesz-Herglotz type theorem as the classical results which needed in the proof.To get over this difficulty,here we will depend on the generalized Martin representation theorem (see[8]).For the better statements about our results,we will introduce some notations and background materials below.

    Relative to system of spherical coordinates,the Laplace operator Δ may be written by

    where the explicit form of the Beltrami operator Δ?is given by Azarin(see[1]).

    For an arbitrary domain D in Rn,ADdenotes the class of nonnegative radial potentials a(P),i.e.,0≤a(P)=a(r),P=(r,Θ)∈D,such that a∈(D)with some b>n/2 if n≥4 and with b=2 if n=2 or n=3.

    If a∈AD,then the stationary Schrdinger operator with a potential a(·)

    can be extended in the usual way from the space(D)to an essentially self-adjoint operator on L2(D),where Δ is the Laplace operator and I the identical operator(see[18,Chap.13]). Then Lahas a Green a-function(·,·).Here(·,·)is positive on D and its inner normal derivative(·,·)/?nQis not negative,where?/?nQdenotes the differentiation at Q along the inward normal into D.We write this derivative by(·,·),which is called the Poisson a-kernel with respect to D.Denote by(·,·)the Green function of Laplacian.

    For simplicity,a point(1,Θ)on Sn-1and the set{Θ;(1,Θ)∈?}for a set ?(??Sn-1) are often identified with Θ and ?,respectively.For two sets?R+and ??Sn-1,the set {(r,Θ)∈Rn;r∈,(1,Θ)∈?}in Rnis simply denoted by×?.In particular,the half space R+×={(X,xn)∈Rn;xn>0}will be denoted by Tn.By Cn(?)we denote the set R+×? in Rnwith the domain ? on Sn-1and call it a cone.We mean the sets I×? and I×?? with an interval on R+by Cn(?;I)and Sn(?;I),and Cn(?)∩Srby Cn(?;r).By Sn(?)we denote Sn(?;(0,+∞)),which is?Cn(?){O}.From now on,we always assume D=Cn(?)and write

    Let ? be a domain on Sn-1with smooth boundary and λ the least positive eigenvalue for-Δ?on ?(see[19,p.41]),

    The corresponding eigenfunction is denoted by φ(Θ)satisfying=1.In order to ensure the existence of λ and φ(Θ),we put a rather strong assumption on ?:if n≥3, then ? is a C2,α-domain(0<α<1)on Sn-1surrounded by a finite number of mutually disjoint closed hypersurfaces(e.g.,see[6,p.88–89]for the definition of C2,α-domain).

    Solutions of an ordinary differential equation

    are known(see[22]for more references)that if the potential a∈AD.We know the equation (1.3)has a fundamental system of positive solutions{V,W}such that V is nondecreasing with

    and W is monotonically decreasing with

    We remark that both V(r)φ(Θ)and W(r)φ(Θ)are a-harmonic on Cn(?)and vanish continuously on Sn(?).

    We will also consider the class BD,consisting of the potentials a∈ADsuch that there exists the finite limit=κ∈[0,∞),moreover,r-1|r2a(r)-κ|∈L(1,∞).If a∈BD,then the(super)subfunctions are continuous(e.g.see[20]).For simplicity,in the rest of paper we assume that a∈BD.

    Denote

    then the solutions V(r)and W(r)to equation(1.1)normalized by V(1)=W(1)=1 have the asymptotic(see[6])

    and

    where χ′is their Wronskian at r=1.

    Remark 1If a=0 and ?=where snis the surface area 2πn/2{Γ(n/2)}-1of Sn-1.

    is called the generalized Martin kernel of Cn(?)(relative to P0).If Q=P0,the above quotient is interpreted as 0(for a=0,refer to Armitage and Gardiner[3]).

    The rest of the paper is organized as follows:in Section 2,we shall give our main theorems;in Section 3,some necessary lemmas are given;in Section 4,we shall prove the main results.

    2 Statement of Main Results

    It is known that the Martin boundary△of Cn(?)is the set?Cn(?)∪{∞}.When we denote the Martin kernel associated with the stationary Schrdinger operator byCn(?),Q∈?Cn(?)∪{∞})with respect to a reference point chosen suitably,for any P∈Cn(?),we see

    where O denotes the origin of Rnand κ is a positive constant.

    For a set E?D and ?∈(0,1),put

    Theorem 1Let E be a set in Cn(?)satisfying∩?Cn(?)=φ.If E?with a positive number ?(0<?<1)is a-minimally thin at∞,then there exists a positive generalized harmonic function u(P)on Cn(?)such that

    For E?Cn(?)and a fixed point Q∈?Cn(?),E is a-minimally thin at Q if and only ifis the regularized reduced function of(·,Q)relative to E and a superfunction on Cn(?)(refer to[8]).

    Following the Armitage and Kuran(see[4])as well as Miyamoto et al.(see[10]),we call that set E?D characterizes the positive generalized harmonic majorization of(·,Q), if every positive generalized harmonic function υ in D which majorizes(·,Q)on E can majorize(·,Q)on D,that is to say

    Theorem 2Let E be a subset Cn(?).The following conditions on E are equivalent:

    (a)E characterizes the positive generalized harmonic majorization of

    (b)for any ?∈(0,1),E?is not a-minimally thin at∞;

    (c)for some ?∈(0,1),E?is not a-minimally thin at∞.

    Theorem 3Let E be a subset Cn(?).The following conditions on E are equivalent:

    (a)E characterizes the positive generalized harmonic majorization of

    (b)for any ?∈(0,1),

    (c)for some ?∈(0,1),

    A sequence Pm?D is called to be separated if there exists a positive constant C such that

    (see[2]).With Theorem 3,we have the corollary as follows.

    Corollary 1Let{Pm}?Cn(?)be a separated sequence such that

    The sequence{Pm}characterizes the positive generalized harmonic majorization ofif and only if

    Remark 2When a=0,the theorems and corollary above are due to Miyamoto et al.(see[10]).If a=0 and ?=Theorem 1,Theorem 2 and Theorem 3 are from the Dahlberg’s results in upper-half space or Liapunov-Dini domain in Rn(see[5]),and Corollary 1 results from Armitage and Kuran(see[4]).

    3 Some Lemmas

    For our arguments we collect the following results.

    Lemma 1(see[13])

    for any P=(r,Θ)∈Cn(?)and any Q=(t,Φ)∈Sn(?)satisfying 0<

    for any P=(r,Θ)∈Cn(?)and any Q=(t,Φ)∈

    Lemma 2(see[13])

    for any P=(r,Θ)∈Cn(?)and any Q=(t,Φ)∈Sn(?)satisfying 0<

    for any P=(r,Θ)∈Cn(?)and any Q=(t,Φ)

    Lemma 3(The generalized Martin representation,see[7])If u is a positive a-harmonic function on Cn(?),then there exists a measureμuon△,uniquely determined by u,such that

    where△is the Martin boundary of Cn(?).

    It is well-known that a cube is of the form

    where k,?1,···,?nare integers.Now we introduce a family of so-called Whitney cubes of Cn(?)having the following properties:

    (a)∪jWj=Cn(?);

    (b)intWj∩intWk=?(jk);

    (c)diamWj≤dist(Wj,RnCn(?))≤4diamWj,

    where intS,diamS and dist(S1,S2)stand for the interior of S,the diameter of S and the distance between S1and S2,respectively(see[21],P.167,Theorem 1).

    Lemma 4(see[10])Let{Wi}i≥1be a family of the Whitney cubes of Cn(?)with ?. Let E be a subset of Cn(?).Then there exists a subsequence{Wim}i≥1of{Wi}i≥1such that

    (a)∪mWim?E?;

    (b)Wim∩E?/4?(m=1,2,,···),E?/4?∪mWim.

    Lemma 5(see[8])Let a Borel subset E of Cn(?)be a-minimally thin at∞with respect to Cn(?).Then we see that

    If E is a union of cubes from the Whitney cubes of Cn(?),then(3.7)is also sufficient for E to be a-minimally thin at∞with respect to Cn(?).

    4 Proofs of Main Theorems

    Proof of Theorem 1When E is a bounded subset of Cn(?),we may assume that u(P)is a constant function.Otherwise we will follow the same method as Dahlberg to make the required function.

    Set ?∈(0,1).We assume that{Pm}is a sequence of points Pmwhich are central points of cubes Wimin Lemma 4.From the assumption on E,it follows that{Pm}can notconverge to any boundary point of Cn(?).Since{Pm}∈E?due to Lemma 4,we see that |Pm|→+∞(m→+∞).Because E?is a-minimally thin at∞and

    we get by Lemma 4 and Lemma 5 that

    Hence from(1.2)–(1.4)we can take a positive integer N such that d(Pm)≤each m≥N.

    Choose a point Qm=(tm,Φm)∈?Cn(?){O}such that

    then h1is well defined,and hence is a positive generalized harmonic function on Cn(?)which is due to Lemma 4.

    First we will prove that

    Denote the Possion Kernel of the ball Bm=B(Pm,d(Pm)))by PIBm(P,Q)for P∈Bmand

    and hence

    Because

    we get that

    For any P∈E,then exists a point Pmsuch that

    When 2r≤t or r≥2t(2|Pm|≤t or|Pm|≥2t),by Lemma 2 and(1.2)–(1.4)we obtain that

    Since

    and

    (refer to[10]and[13]),we know that

    By(2.1)and(1.2)–(1.4)we also see that

    With(4.4)–(4.5)and(4.3)we see that(4.2)holds.

    Now,for a fixed ray L which is in Cn(?)and starts from O,we will show

    Set

    Then we have that

    By Lemma 1 we see that

    for any fixed m≥N.Hence,if we can show that

    for some constant C independent of m,then we will get(4.6)from(4.1)and Lebesgue’s dominated convergence theorem.

    To prove(4.7),we divide the proof into three cases.When 2r≤tmor r≥2tm,by Lemma 1 we see that

    for some constant C′(refer to[10,p.1051]).Sinceby(1.2)–(1.4) we have

    So

    Proof of Theorem 2(a)?(b).Let C be a positive constant and set EC={P∈ E:(P,∞)≥C}.Then ECsatisfies that∩?Cn(?)=?.Since E characterizes the positive generalized harmonic majorization of(P,∞),ECalso characterizes the positive generalized harmonic majorization of(P,∞).Otherwise,there would exists a positive generalized harmonic function υ(P)on Cn(?)satisfying

    Let u(P)=υ(P)+BC for any P∈Cn(?).Then u(P)≥(P,∞)for P∈E,and so

    which contradicts(a).

    If we can show that(EC)?is not a-minimally thin at infinity when ?∈(0,1),then for all ?∈(0,1)the set E?also is not a-minimally thin at infinity,and hence(b)holds.

    Suppose that for some ?∈(0,1)the set(EC)?is a-minimally thin at infinity.Then from Theorem 1 there exists a positive generalized harmonic function υ(P)on Cn(?)satisfying

    We see that ECcharacterizes the positive generalized harmonic majorization ofso for all ?∈(0,1)the set(EC)?is not a-minimally thin at infinity.

    (c)?(a).Suppose that E does not characterize the positive generalized harmonic majorization of(P,∞).Then there exists a positive generalized harmonic function υ(P)on Cn(?)such that

    For any P∈E?(?∈(0,1)there exists a point P′such that|P-P′|<?d(P′),and by the generalized Martin representation and the same proof as Theorem 1 we see that

    From(4.8)and(4.9)we obtain that

    for the positive supfunction h(P)on Cn(?).It follows that E?is a-minimally thin at infinity. This contradicts(c).

    Proof of Theorem 3(a)?(b).Assume that

    for some ?∈(0,1).Let{Wim}m≥1be a subsequence of{Wi}i≥1from Lemma 4.With(a) of Lemma 4 we obtainZ

    Since∪mWimis a union of cubes from the Whitney cubes of Cn(?)with ?,by Lemma 5 we see that∪mWimis a-minimally thin at infinity.Further,from Lemma 4 we know thata-minimally thin at infinity.

    On the other hand,since E characterizes the positive generalized harmonic majorization of(P,∞),we see from the Theorem 2 thatis not a-minimally thin at infinity,which contradicts the conclusion above.

    (c)?(a).Suppose that E does not characterize the positive generalized harmonic majorization of(P,∞).Then it follows from Theorem 2 that for any ?∈(0,1)E?is aminimally thin at infinity.So we see from Lemma 5 that for any ?∈(0,1)

    which contradicts(c).

    Proof of Corollary 1If{Pm}is a separated sequence,then

    for a sufficiently small ?∈(0,1),and hence

    Following(c)of Theorem 3,Corollary 1 immediately holds.

    [1]Azarin V S.Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone[J].Trans.Amer.Math.Soc.,1969,80(2):119–138.

    [3]Armitage D H,Gardiner S J.Classical potential theory[M].London:Springer-verlag,2001.

    [5]Dalberg B E J.A minimum principle for positive harmonic functions[J].Proc.London Math.Soc., 1976,33(2):238–250.

    [6]Gilbarg D,Trudinger N S.Elliptic partial differential equations of second order[M].Berlin:Springer Verlag,1977.

    [7]Long Pinhong,Gao Zhiqiang,Deng Guantie.Criteria of Wiener type for minimally thin sets and rarefied sets associated with the stationary Schrdinger operator in a cone[J].Abstr.Appl.Anal., DOI:10.1155/2012/453891.

    [8]Long Pinhong.Characterizations for exceptional sets and growth problems in classical or nonlinear potential theory[D].Beijng:Beijing Normal University,2013.

    [9]Levin B,Kheyfits A.Asymptotic behavior of subfunctions of the stationary Schrdinger operator[J]. http://arxiv.org/abs/math/0211328v1,2002,96 pp.

    [10]Miyamoto I,Yanagishita M,Yoshida H.On harmonic majorization of the Martin function at infnity in a cone[J].Czech.Math.J.,2005,55(130):1041–1054.

    [11]Miyamoto I,Yoshida H.Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone[J].J.Math.Soc.Japan.,2002,54(3):487–512.

    [12]Miyamoto I,Yoshida H.On a-minimally thin sets at infinity in a cone[J].Hiroshima Math.J.,2007, 37(1):61–80.

    [13]Qiao Lei.Some researches on(generalized)harmonic and superharmonic functions[D].Beijng:Beijing Normal University,2010.

    [14]Qiao Lei,Deng Guantie.A theorem of Phragmn Lindelf type for subfunctions in a cone[J].Glasg. Math.J.,2011,53(3):599–610.

    [15]Qiao Lei,Deng Guantie.The Riesz decomposition theorem for superharmonic functions in a cone and its application(in Chinese)[J].Scientia Sinica(Math.),2012,42(8):763–774.

    [16]Qiao Lei,Deng Guantie.Integral representation for the solution of the stationary Schrodinger equation in a cone[J].Math.Nachr.,2012,285(16):2029–2038.

    [17]Qiao Lei,Deng GuanTie,Pan GuoShuang.Exceptional sets of modified Poisson integral and Green potential in the upper-half space[J].Scientia Sinica(Math.),2010,40(8):787–800.

    [18]Reed M,Simon B.Methods of modern mathematical physics[M].Vol.3,London,New York,San Francisco:Acad.Press,1970.

    [19]Rosenblum G V,Solomyak M Z,Shubin M A.Spectral theory of differential operators[M].Moscow: VINITI,1989.

    [21]Stein E M.Singular integrals and differentiability properties of functions[M].New Jersey:Princeton University Press,1970.

    [22]Verzhbinskii G M,Maz’ya V G.Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary.I[J].Sibirsk.Matem.Zh.,1971,12(6):1217–1249.

    [23]Zhang Yanhui,Deng Guantie.Growth properties of generalized Poisson integral in the half space[J]. J.Math.,2013,33(3):473–478.

    錐中與穩(wěn)態(tài)的薛定諤算子相關(guān)的廣義Martin函數(shù)無(wú)窮遠(yuǎn)處的控制

    龍品紅,韓惠麗

    (寧夏大學(xué)數(shù)學(xué)計(jì)算機(jī)學(xué)院,寧夏銀川750021)

    本文研究了穩(wěn)態(tài)的薛定諤算子的Dirichlet問(wèn)題和Martin函數(shù)的邊界行為.利用廣義Martin表示和穩(wěn)態(tài)的薛定諤算子對(duì)應(yīng)的常微分方程基本解,在具有光滑邊界的錐形區(qū)域中獲得了與穩(wěn)態(tài)的薛定諤算子相關(guān)的廣義Martin函數(shù)無(wú)窮遠(yuǎn)處廣義調(diào)和控制的一些刻畫(huà),推廣了拉普拉斯算子情形的結(jié)果.

    穩(wěn)態(tài)的薛定諤算子;Martin函數(shù);調(diào)和控制;極細(xì);錐

    O174.3

    tion:31B05;31B25;31C35

    A

    0255-7797(2017)01-0051-12

    ?Received date:2014-11-22Accepted date:2015-02-11

    Foundation item:Supported by National Natural Science Foundation of China(11271045; 11261041);Natural Science Foundation of Ningxia University(NDZR1301);Startup Foundation for Doctor Scientific Research of Ningxia University.

    Biography:Long Pinhong(1978–),male,born at Chenzhou,Hunan,lecturer,major in complex analysis and potential theory.

    猜你喜歡
    品紅寧夏大學(xué)薛定諤
    薛定諤:跟貓較勁兒的量子力學(xué)家
    利用數(shù)字化實(shí)驗(yàn)探究品紅褪色與顏色復(fù)原機(jī)理*
    Chern-Simons-Higgs薛定諤方程組解的存在性
    寧夏大學(xué)回應(yīng)考研壓分質(zhì)疑
    An investigation of principles for promoting intermediate ESL students’speaking fluency within a spoken communicative language teachingclassroom
    The Analysis of the Protagonist’s Pursuit of Self-identity in Invisible Man
    速讀·下旬(2019年6期)2019-06-10 09:19:43
    一類(lèi)相對(duì)非線(xiàn)性薛定諤方程解的存在性
    薛定諤的餡
    幽默大師(2019年6期)2019-01-14 10:38:13
    A Review of College English Textbook Research
    二氧化硫漂白性的研究
    久久毛片免费看一区二区三区| 亚洲国产av影院在线观看| 高清av免费在线| 欧美乱码精品一区二区三区| 一区二区三区激情视频| 久久狼人影院| 大型av网站在线播放| 99热国产这里只有精品6| 欧美中文综合在线视频| 在线十欧美十亚洲十日本专区| 精品人妻1区二区| 欧美日本中文国产一区发布| 日本一区二区免费在线视频| 久久99热这里只频精品6学生| 手机成人av网站| 性色av一级| 美女午夜性视频免费| 久久女婷五月综合色啪小说| 99精品久久久久人妻精品| 精品一区在线观看国产| 精品福利观看| 在线观看一区二区三区激情| 丝袜美腿诱惑在线| 日本wwww免费看| 国产男人的电影天堂91| 高清欧美精品videossex| 国产精品一二三区在线看| 亚洲第一av免费看| 免费观看人在逋| 99香蕉大伊视频| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 精品人妻1区二区| 日韩三级视频一区二区三区| 亚洲人成电影观看| 一级毛片电影观看| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 人人妻人人澡人人爽人人夜夜| 一区二区三区精品91| 中文精品一卡2卡3卡4更新| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 99香蕉大伊视频| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 另类亚洲欧美激情| 在线观看免费日韩欧美大片| 精品第一国产精品| 久久久久久免费高清国产稀缺| 日韩欧美一区二区三区在线观看 | 国产亚洲精品一区二区www | 亚洲国产欧美日韩在线播放| 视频区欧美日本亚洲| 超色免费av| 国产高清videossex| 水蜜桃什么品种好| a级片在线免费高清观看视频| 亚洲一区二区三区欧美精品| 欧美久久黑人一区二区| 欧美成人午夜精品| 岛国毛片在线播放| 日韩一卡2卡3卡4卡2021年| 午夜福利视频精品| 丁香六月天网| 大型av网站在线播放| 美女扒开内裤让男人捅视频| 99热全是精品| 精品人妻熟女毛片av久久网站| 香蕉国产在线看| 淫妇啪啪啪对白视频 | 欧美精品一区二区大全| 久久ye,这里只有精品| 一级黄色大片毛片| 十八禁网站网址无遮挡| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 叶爱在线成人免费视频播放| www.自偷自拍.com| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说| 老司机靠b影院| 9191精品国产免费久久| 自拍欧美九色日韩亚洲蝌蚪91| 成人影院久久| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡 | 少妇粗大呻吟视频| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| 无限看片的www在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影 | 桃红色精品国产亚洲av| 久久 成人 亚洲| 丝瓜视频免费看黄片| 老司机影院毛片| 最新在线观看一区二区三区| av不卡在线播放| 日韩欧美一区视频在线观看| 亚洲人成电影免费在线| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品| 伊人亚洲综合成人网| 一级毛片电影观看| 亚洲全国av大片| 国产一区二区三区在线臀色熟女 | 国产不卡av网站在线观看| 国产色视频综合| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 老司机影院成人| 久久精品国产亚洲av香蕉五月 | 大型av网站在线播放| av一本久久久久| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 各种免费的搞黄视频| 美女国产高潮福利片在线看| 精品人妻熟女毛片av久久网站| 精品久久久久久电影网| 成年人午夜在线观看视频| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| av在线app专区| 性色av乱码一区二区三区2| 国产精品免费大片| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 久久九九热精品免费| 中文精品一卡2卡3卡4更新| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影 | 爱豆传媒免费全集在线观看| 夜夜夜夜夜久久久久| 91麻豆av在线| 男女高潮啪啪啪动态图| 热re99久久国产66热| 亚洲欧美日韩高清在线视频 | 人人妻人人添人人爽欧美一区卜| 久久国产精品影院| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 成人国语在线视频| 我要看黄色一级片免费的| 日韩制服丝袜自拍偷拍| 午夜福利,免费看| 欧美日韩福利视频一区二区| 老鸭窝网址在线观看| 亚洲成国产人片在线观看| 高清欧美精品videossex| 午夜免费成人在线视频| 久久狼人影院| a级毛片在线看网站| 国产片内射在线| 曰老女人黄片| 日本91视频免费播放| 国产一区二区三区综合在线观看| 无限看片的www在线观看| 岛国在线观看网站| 巨乳人妻的诱惑在线观看| cao死你这个sao货| 首页视频小说图片口味搜索| 精品高清国产在线一区| 18禁观看日本| 一二三四社区在线视频社区8| 精品福利永久在线观看| 国产成人啪精品午夜网站| 美国免费a级毛片| 中文字幕高清在线视频| 丝袜脚勾引网站| 999久久久国产精品视频| 成年动漫av网址| 最近最新中文字幕大全免费视频| 国产成人免费观看mmmm| 天天躁日日躁夜夜躁夜夜| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 国产av又大| 91大片在线观看| 亚洲精品在线美女| 国产av一区二区精品久久| 美女大奶头黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦啦在线视频资源| 色视频在线一区二区三区| 亚洲精品在线美女| 免费在线观看影片大全网站| 精品少妇黑人巨大在线播放| 大香蕉久久成人网| 亚洲综合色网址| 色婷婷久久久亚洲欧美| 日本欧美视频一区| 亚洲欧美一区二区三区黑人| 99香蕉大伊视频| 日日夜夜操网爽| 悠悠久久av| 91精品三级在线观看| 在线观看免费午夜福利视频| 啦啦啦在线免费观看视频4| 亚洲欧美激情在线| 美女中出高潮动态图| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 99久久综合免费| 18禁观看日本| 亚洲av电影在线进入| 老司机午夜十八禁免费视频| 黑人操中国人逼视频| www.自偷自拍.com| 在线天堂中文资源库| 桃花免费在线播放| 国产精品 欧美亚洲| 九色亚洲精品在线播放| 男女无遮挡免费网站观看| tocl精华| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲| 国产av精品麻豆| 性少妇av在线| 热re99久久国产66热| 99国产极品粉嫩在线观看| 色94色欧美一区二区| 精品一区二区三区四区五区乱码| 午夜91福利影院| 精品亚洲乱码少妇综合久久| 日韩视频一区二区在线观看| 久久久久视频综合| 成年人午夜在线观看视频| 欧美变态另类bdsm刘玥| 久久九九热精品免费| 国产av国产精品国产| 自线自在国产av| 91av网站免费观看| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 久久中文字幕一级| 欧美成狂野欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 老司机靠b影院| 香蕉丝袜av| 精品久久蜜臀av无| 女性被躁到高潮视频| 青春草视频在线免费观看| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 老司机靠b影院| 俄罗斯特黄特色一大片| 国产亚洲午夜精品一区二区久久| 久久久久久免费高清国产稀缺| 国产91精品成人一区二区三区 | 日本a在线网址| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 在线精品无人区一区二区三| 日本wwww免费看| 久久精品亚洲熟妇少妇任你| 国产精品国产av在线观看| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面 | 水蜜桃什么品种好| 午夜福利一区二区在线看| 免费高清在线观看视频在线观看| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 国产亚洲欧美精品永久| 免费不卡黄色视频| 欧美激情 高清一区二区三区| 大香蕉久久成人网| 99久久综合免费| 日韩欧美一区视频在线观看| 午夜精品久久久久久毛片777| 日本av手机在线免费观看| 久久久久久久国产电影| 性高湖久久久久久久久免费观看| 日韩有码中文字幕| 99久久99久久久精品蜜桃| 男人舔女人的私密视频| 岛国毛片在线播放| 亚洲第一欧美日韩一区二区三区 | 日本撒尿小便嘘嘘汇集6| 老司机亚洲免费影院| 国产av一区二区精品久久| 免费观看a级毛片全部| 精品国产国语对白av| 国产精品久久久av美女十八| 最近最新中文字幕大全免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产视频一区二区在线看| 女性生殖器流出的白浆| 操美女的视频在线观看| av免费在线观看网站| 天堂中文最新版在线下载| 99久久综合免费| 欧美性长视频在线观看| 久久中文字幕一级| 亚洲精品国产av成人精品| 午夜福利免费观看在线| 99久久综合免费| 黄色视频不卡| 久久久久久久精品精品| 亚洲精品美女久久久久99蜜臀| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 青草久久国产| 一区二区三区激情视频| 久久性视频一级片| 999久久久精品免费观看国产| 欧美精品一区二区大全| 午夜激情av网站| 在线看a的网站| 国产成+人综合+亚洲专区| 国产三级黄色录像| 热re99久久国产66热| www.av在线官网国产| 淫妇啪啪啪对白视频 | 成人三级做爰电影| 男女无遮挡免费网站观看| 久久久久视频综合| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 国产一区有黄有色的免费视频| 午夜老司机福利片| 久久久久久久国产电影| 国产成人一区二区三区免费视频网站| 99久久人妻综合| 久久香蕉激情| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 少妇粗大呻吟视频| 国产国语露脸激情在线看| 婷婷色av中文字幕| 亚洲天堂av无毛| 国产精品一二三区在线看| 日韩大码丰满熟妇| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 秋霞在线观看毛片| 两性夫妻黄色片| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 黄色视频在线播放观看不卡| 电影成人av| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 国产一区二区三区在线臀色熟女 | 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区大全| 又紧又爽又黄一区二区| 最新的欧美精品一区二区| 下体分泌物呈黄色| 亚洲精华国产精华精| 丝袜脚勾引网站| 一级片免费观看大全| a级毛片黄视频| 国产免费福利视频在线观看| 色老头精品视频在线观看| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 超碰97精品在线观看| 欧美日韩视频精品一区| 亚洲 国产 在线| 久久精品久久久久久噜噜老黄| 999久久久国产精品视频| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 在线av久久热| 国产真人三级小视频在线观看| 久久久国产一区二区| 午夜福利乱码中文字幕| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| av国产精品久久久久影院| 国产三级黄色录像| 亚洲精品国产av成人精品| 成年美女黄网站色视频大全免费| 一边摸一边抽搐一进一出视频| 老鸭窝网址在线观看| 一级黄色大片毛片| 两性夫妻黄色片| 999精品在线视频| 99热国产这里只有精品6| 成人国产一区最新在线观看| 成人国语在线视频| 久久亚洲精品不卡| 久久综合国产亚洲精品| 久久久久精品人妻al黑| 99国产精品99久久久久| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| 51午夜福利影视在线观看| 一本久久精品| 男女免费视频国产| 日韩 亚洲 欧美在线| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 欧美人与性动交α欧美精品济南到| 亚洲国产成人一精品久久久| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 亚洲综合色网址| av视频免费观看在线观看| 高清在线国产一区| 久久久水蜜桃国产精品网| 啦啦啦中文免费视频观看日本| 女性生殖器流出的白浆| 人妻人人澡人人爽人人| 久久久久久久久久久久大奶| 另类精品久久| 午夜老司机福利片| 在线观看一区二区三区激情| 国产高清videossex| 亚洲成av片中文字幕在线观看| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 欧美精品啪啪一区二区三区 | 亚洲av成人一区二区三| 亚洲国产精品一区二区三区在线| 99热全是精品| 日本一区二区免费在线视频| 搡老岳熟女国产| 亚洲avbb在线观看| 国产精品二区激情视频| 男男h啪啪无遮挡| 美女脱内裤让男人舔精品视频| 老司机亚洲免费影院| 中国美女看黄片| 美女视频免费永久观看网站| 亚洲欧美成人综合另类久久久| 丝袜喷水一区| 欧美国产精品一级二级三级| 久久久久精品人妻al黑| 一本久久精品| 中国美女看黄片| 亚洲国产欧美日韩在线播放| 在线av久久热| 蜜桃在线观看..| 窝窝影院91人妻| 久久人妻福利社区极品人妻图片| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频| 国产精品久久久久久人妻精品电影 | 欧美中文综合在线视频| av天堂在线播放| 热99re8久久精品国产| 热re99久久精品国产66热6| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 国产三级黄色录像| 色视频在线一区二区三区| 蜜桃在线观看..| 久久久久国产一级毛片高清牌| 啦啦啦视频在线资源免费观看| 天天影视国产精品| 亚洲精品日韩在线中文字幕| 国产免费一区二区三区四区乱码| 国产xxxxx性猛交| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 最新在线观看一区二区三区| 婷婷色av中文字幕| 这个男人来自地球电影免费观看| 高清欧美精品videossex| 三级毛片av免费| 亚洲精品国产av蜜桃| 各种免费的搞黄视频| 亚洲精品久久成人aⅴ小说| 欧美久久黑人一区二区| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 中文欧美无线码| 黄色 视频免费看| 免费不卡黄色视频| 热99久久久久精品小说推荐| 亚洲精品av麻豆狂野| 免费观看人在逋| 亚洲欧美激情在线| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 美女福利国产在线| av超薄肉色丝袜交足视频| 国产精品久久久久久精品古装| 十分钟在线观看高清视频www| 午夜免费观看性视频| 午夜免费鲁丝| 精品国产乱码久久久久久男人| 黄色视频在线播放观看不卡| 久久精品久久久久久噜噜老黄| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品一区三区| 成人亚洲精品一区在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲午夜精品一区,二区,三区| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区蜜桃| 日韩大片免费观看网站| 美女高潮喷水抽搐中文字幕| 中文字幕精品免费在线观看视频| 大香蕉久久成人网| 日本91视频免费播放| 欧美大码av| 视频区欧美日本亚洲| 水蜜桃什么品种好| 热99re8久久精品国产| 午夜福利乱码中文字幕| 99国产精品99久久久久| 最近最新免费中文字幕在线| 狠狠精品人妻久久久久久综合| 亚洲国产欧美在线一区| 日本精品一区二区三区蜜桃| 国产精品熟女久久久久浪| 亚洲熟女精品中文字幕| 美女午夜性视频免费| 国产99久久九九免费精品| 性色av乱码一区二区三区2| 久久久久久免费高清国产稀缺| 一本—道久久a久久精品蜜桃钙片| 免费在线观看完整版高清| 亚洲精品国产av成人精品| 国产精品成人在线| 欧美精品高潮呻吟av久久| 久久影院123| 久久国产精品大桥未久av| 国产亚洲av高清不卡| 日本wwww免费看| 国产又色又爽无遮挡免| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 日本91视频免费播放| 国产成人av激情在线播放| 亚洲欧美精品自产自拍| 午夜视频精品福利| 法律面前人人平等表现在哪些方面 | 久久久精品94久久精品| 天天添夜夜摸| 亚洲欧美激情在线| 亚洲精品乱久久久久久| 亚洲国产日韩一区二区| 欧美精品亚洲一区二区| 少妇人妻久久综合中文| 1024香蕉在线观看| 高清欧美精品videossex| 麻豆国产av国片精品| 日韩精品免费视频一区二区三区| 亚洲中文日韩欧美视频| 亚洲精华国产精华精| 午夜免费成人在线视频| 91老司机精品| 天堂中文最新版在线下载| 少妇粗大呻吟视频| 免费av中文字幕在线| 国产亚洲欧美在线一区二区| 精品少妇一区二区三区视频日本电影| 十分钟在线观看高清视频www| www.999成人在线观看| 亚洲午夜精品一区,二区,三区| 一区二区av电影网| 黄片小视频在线播放| 午夜日韩欧美国产| 国产免费福利视频在线观看| 动漫黄色视频在线观看| 精品一区二区三区四区五区乱码| 巨乳人妻的诱惑在线观看| 欧美大码av| 成人免费观看视频高清| 精品少妇内射三级| 高清黄色对白视频在线免费看| 秋霞在线观看毛片| 两性夫妻黄色片| 久久人人97超碰香蕉20202| 国产成人一区二区三区免费视频网站| 国产精品麻豆人妻色哟哟久久| 夫妻午夜视频| 国产伦理片在线播放av一区| av国产精品久久久久影院| 亚洲九九香蕉| 97精品久久久久久久久久精品| 亚洲一卡2卡3卡4卡5卡精品中文| av在线app专区| 国产亚洲午夜精品一区二区久久| 亚洲av美国av| 99久久综合免费| 亚洲一码二码三码区别大吗| 韩国高清视频一区二区三区| 三级毛片av免费| 精品一品国产午夜福利视频| 制服人妻中文乱码| videosex国产| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 午夜精品国产一区二区电影| e午夜精品久久久久久久| 午夜福利一区二区在线看| 黄色毛片三级朝国网站|