• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OPTIMAL DIVIDEND STRATEGY IN THE BROWNIAN MOTION MODEL WITH INTEREST AND RANDOMIZED OBSERVATION TIME

    2017-01-19 06:08:42LIUXiaoYUHongwei
    數(shù)學雜志 2017年1期
    關鍵詞:安徽師范大學布朗運動計算機科學

    LIU Xiao,YU Hong-wei

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China )

    OPTIMAL DIVIDEND STRATEGY IN THE BROWNIAN MOTION MODEL WITH INTEREST AND RANDOMIZED OBSERVATION TIME

    LIU Xiao,YU Hong-wei

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China )

    In this paper we study the optimal dividend problems in the Brownian motion model with interest and randomized observation time.By using stochastic control theory,we obtain the associated Hamilton-Jacobi-Bellman(HJB)equation with the optimal value function,which show that the optimal dividend strategy is a barrier strategy,and give the explicit expression for the optimal value function,which generalize the results of[19].

    dividend;ruin;HJB equation

    1 Introduction

    Finding the optimal dividend strategy for an insurance company is a very popular research topics in actuarial mathematics.It was first proposed for measuring the stability of an insurance company by De Finetti[1].In recent years,many papers were published about the optimal dividend strategy.See,for example,Jeanblanc and Shiryaev[2],Amussen et al.[3],Gerber and Shiu[4],Bai and Paulsen[5],Bayraktar et al.[6,7],Wang[8] and the references therein.One can refer to Avanzi[9]and Albrecher and Thonhauser [10]for knowing more about the models with dividends before 2009.But in all of the above-mentioned literatures,the surplus process need continuously observed,which cannot be realized in practice.Albrecher et al.[11–14]first introduced the idea of randomized observation time in the classical risk model,the diffusion model and the Lvy model,in which the risk process can be“l(fā)ooked”only at random times.Avanzi[15]and Peng et al. [16]considered this idea in the dual model.The model was extended to the dual model with diffusion by Liu et al.[17]and Avanzi et al.[18].

    Brownian motion model is a Brownian motion with a positive drift.This model can be viewed as a diffusion approximation of the classical risk model,but it often leads to more simple calculation of the characteristics than the classical risk model,such as ruin probability.Wang and Liu[19]studied the expected discounted sum of dividends paid until ruin in the Brownian motion model with interest under the assumption that the dividend strategy is restricted to a barrier strategy and the dividends can only be paid at some randomized observation times.Naturally,one interesting problem appears:is the barrier strategy optimal or not?In this paper,assuming that the surplus of a company is modeled by the Brownian motion model with interest,we show that the barrier strategy is the optimal dividend strategy among all the admissible dividend strategies by using stochastic control theory.

    This paper is organized as follows.In Section 2,the Brownian motion model with interest and randomized observation time is shortly discussed.In Section 3,it is shown that the optimal value function can be characterized by the associated HJB equation.In addition,the verification theorem is stated and proved.In Section 4,we show that the optimal dividend strategy is a barrier strategy,and the explicit expression for the optimal value function is given.

    2 The Model

    Let(?,F,{Ft}t≥0,P)be a filtered probability space on which all random processes and variables introduced in the following are defined.We assume that the surplus process of an insurance company is modeled by the Brownian motion model and the company invests all the surplus in the risk-free asset.Let{X(t);t≥0}be the surplus of the company before a dividend strategy is imposed.Then{X(t);t≥0}satisfies the following stochastic differential equation

    where c>0 is the drift coefficient,r>0 is the force of interest,σ>0 is the standard deviation and{B(t);t≥0}is a standard Brownian motion.

    Let{Ti;i=1,2,···}denote the random observation times.Let Zi=Ti-Ti-1with T0=0 be the ith time interval between observations,we assume that{Zi;i=1,2,···}are independent random variables with an exponential distribution of meanLet Libe the dividend payment at Ti.Let{XL(t);t≥0}denote the surplus process after an admissible dividend strategy L is imposed.

    A dividend strategy L={Li;i=1,2,···}is called admissible,if Li≤XL(Ti-)and no dividend is paid after ruin.Denote Π the set of all admissible dividend strategies.

    Let τL=inf{t:XL(t)≤0}be the ruin time.Assume that dividends are discounted at a constant force of interest δ.In this paper we assume δ>r.For a given admissiblestrategy L,we define the value function VLas

    where I{·}is the indicator function and Exis the expectation corresponding to the law of {XL(t);t≥0}with XL(0)=x.We aim to find the optimal value function,which is defined as

    and find an optimal dividend strategy L?that satisfies V(x)=VL?(x).For technical reasons, we define V(x)=0 for x<0.

    3 Hamilton-Jacobi-Bellman Equation

    In this section,the HJB equation associated with(2.3)is obtained and the verification theorem is stated and proved.

    Suppose V(x)is twice continuously differentiable on[0,∞).Consider a small time interval(0,△t],where△t>0 is sufficiently small so that the surplus process will not reach 0 if there is no dividend paying in the interval.The strategy L is that paying amount l≥0 as dividend if T1≤△t.By the strong Markov property of the surplus process,we have

    Plugging(3.2)into(3.1),rearranging the terms,dividing by△t and then letting△t tend to 0,we have

    We obtain the HJB equation associated with(2.3)as follows

    where

    Because ruin is immediate and no dividend is paid if the initial surplus x=0,we get the boundary condition V(0)=0.

    The next Theorem states the verification theorem.

    Theorem 3.1Let H(x):[0,∞)→[0,∞)with H(0)=0 be a twice continuously differentiable function.Assume that H(x)is dominated by a linear function.If H(x) satisfies

    ProofLet L={Li;i=1,2,···}be any admissible strategy and XL(t)be the surplus process associated with the dividend strategy L.Denote S={Ti;i=1,2,···}. For convenience we let H(x)=0 for x<0.From generalized Itformula,we know that

    we have

    Noting that K(t)and J(t)can be denoted as

    where Nβ(t)is a Poisson process with parameter β,we then have that K(t)and J(t)are martingales with zero-expectation,together with condition(3.5),we get

    Because H(x)is dominated by a linear function,we know that

    for some positive constants k1and k2,hence

    if t≤τ and e-δ(t∧τ)H(XL(t∧τ))=0 if t>τ.By dominated convergence theorem,we have

    Let t tend to∞in(3.11)and using(3.12)yield

    Because(3.13)holds for any admissible strategy L,we have H(x)≥V(x).

    If condition(3.7)holds,we take the admissible strategysatisfies

    By a similar argument,we get H(x)=VL?(x),hence H(x)=V(x)and L?is the optimal dividend strategy.The proof is completed.

    4 The Optimal Dividend Strategy

    In this section,we show that there exists a twice continuously differentiable concave function V(x)which is dominated by a linear function and a solution to the HJB equation (3.3)with the boundary condition V(0)=0,and the optimal dividend strategy is a barrier strategy.In addition,the explicit expression for V(x)is given.

    Let us find a twice continuously differentiable,increasing and concave solution V(x)to (3.3)with V(0)=0,and V(x)is dominated by a linear function.If there exists some point b>0 with the following properties:

    Because

    for l∈[0,x]if x<b,and 1-V′(x-l)≥0 for l∈[0,x-b)but 1-V′(x-l)<0 for l∈[x-b,x)if x>b,we have that l+V(x-l)is decreasing in[0,b)with respect to l if x<b,and l+V(x-l)is increasing in[0,x-b)but decreasing in[x-b,x]with respect to l if x>b.Hence a candidate of the optimal dividend strategy should be

    Therefore(3.3)is translated into

    Noting that V(x)behaves differently depending on wether x is below or above the barrier b, we denote V(x)as

    According to Theorem 16.69 of Breiman L[20],we know that equation(4.1)has two positive independent solutions f1(x)and f2(x),and thus the equation

    has two positive independent solutions f3(x)and f4(x).In addition,f1(x)and f3(x)are strictly decreasing,but f2(x)and f4(x)are strictly increasing.In fact,the explicit expressions for f1(x),f2(x),f3(x)and f4(x)are given by

    where M(a1,a2;x)and U(a1,a2;x)are called the confluent hypergeometric functions of the first and second kinds respectively.M(a1,a2;x)and U(a1,a2;x)satisfy the following properties:

    Therefore the solution of(4.1)can be expressed as

    for some constants A1and A2.

    for some constants A3,D and F.

    Plugging(4.15)into(4.2),we get

    and

    Plugging(4.16)and(4.17)into(4.15)and letting x tend to b,we have

    and

    From(4.20)–(4.22),we have

    where h(x)=f1(x)f2(0)-f1(0)f2(x).The value of b is determined by V1(b-)=V2(b+), i.e.,

    Using(4.12)and(4.13),we can easily show that

    and

    Hence there exists a positive solution to the equation(4.23)if

    for some constant A4.The condition V(0)=0 implies that

    Theorem 4.1If(δ-r)(β+δ)+βc≤0,then the function

    is twice continuously differentiable,concave,dominated by a linear function and a solution to the HJB equation(3.3).

    is twice continuously differentiable,concave,dominated by a linear function and a solution to the HJB equation(3.3),where b is determined by(4.23).

    ProofIf(δ-r)(β+δ)+βc≤0,it is straightforward to verify that the function given by(4.29)is twice differentiable and satisfies the differential equation(4.2)with boundary condition V(0)=0.Because of the facts that

    and

    we know that V′(x)<1 for any x>0,hence V(x)is concave and satisfies the HJB equation (3.3)with boundary condition V(0)=0.

    and

    we have

    which implies that the function given by(4.30)is twice differentiable.Noticing that,for x≥b,we have

    and hence V′(x)<1.For x<b,using the formulas

    and

    we have

    hence

    Noting that h′(b)=<0,then it follows that V′′′(x)>0.Hence V′′(x)is strictly increasing.Since

    we have V′′(x)<0 for any x<b,therefore V′(x)is decreasing in[0,b].Because V′(b)=1, we have V′(x)>1 for x≤b.Hence V(x)is concave and satisfies the HJB equation(3.3) with boundary condition V(0)=0.The proof is completed.

    Combining Theorem 3.1 with Theorem 4.1,we obtain the following proposition.

    Proposition 4.2The optimal dividend strategy is a barrier strategy.The barrier is 0 if

    or determined by(4.23)if

    The functions V(x)given by(4.29)and(4.30)are the optimal value functions respectively.

    [1]Finetti B.Su un’impostazione alternativa dell teoria collectiva del rischio[R].New York:Transaction of 15th International Congress of Actuaries,1957,2:433–443.

    [2]Jeanblanc M,Shiryaev A N.Optimization of the flow of dividends[J].Russian Math.Surv.,1995, 50(2):257–277.

    [3]Asmussen S,Hφgaard B,Taksar M.Optimal risk control and dividend distribution policies:Example of excess-of-loss reinsurance for an insurance corporation[J].Fin.Stoch.,2000,4(3):299–324.

    [4]Gerber H U,Shiu E S W.On optimal dividends strategies in the compound Poisson model[J].North Amer.Act.J.,2006,10(2):76–93.

    [5]Bai Lihua,Paulsen J.Optimal dividend policies with transaction costs for a class of diffusion processes[J].SIAM J.Contr.Optim.,2010,48(8):4987–5008.

    [6]Bayraktar E,Kyprianou A,Yamazaki K.On optimal dividends in the dual model[J].Astin Bull., 2013,43(3):359–372.

    [7]Bayraktar E,Kyprianou A,Yamazaki K.Optimal dividends in the dual model under transaction costs[J].Insurance:Math.Econ.,2014,54:133–143.

    [8]Wang Cuilian.Dividend problems in the classical compound poisson risk model with mixed exponentially distributed claim size[J].J.Math.,2015,35(3):559–566.

    [9]Avanzi B.Strategies for dividend distribution:A review[J].North American Actuarial Journal, 2009,13(2):217–251.

    [10]Albrecher H,Thonhauser S.Optimality results for dividend problems in insurance[J].RACSAM Revista de la Real Academia de Ciencias;Serie A,Matem’aticas,2009,103(2):295–320.

    [11]Albrecher H,Cheung E C K,Thonhauser S.Randomized observation periods for the compound Poisson risk model:Dividends[J].Astin Bulletin,2011,41(2):645–672.

    [12]Albrecher H,Cheung E C K,Thonhauser S.Randomized observation periods for the compound Poisson risk model:The discounted penalty function[J].Scandinavian Act.J.,2013,2013(6):424–452.

    [13]Albrecher H,Gerber H U,Shiu E S W.The optimal dividend barrier in the Gamma-Omega model[J]. European Act.J.,2011,1(1):43–55.

    [15]Avanzi B,Cheung E C K,Wong B.On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency[J].Insurance:Math.Econ.,2013,52(1):98–113.

    [16]Peng Dan,Liu Donghai,Liu Zaiming.Dividend problems in the dual risk model with exponentially distributed observation time[J].Stat.Prob.Lett.,2013,83(3):841–849.

    [17]Liu Xiao,Chen Zhenlong.Dividend problems in the dual model with diffusion and exponentially distributed observation time[J].Stat.Prob.Lett.,2014,87:175–183.

    [18]Avanzi B,Tu V,Wong B.On optimal periodic dividend strategies in the dual model with diffusion[J]. Insurance:Math.Econ.,2014,55:210–224.

    [19]Wang Cuilian,Liu Xiao.Dividend problems in the diffusion model with interest and exponentially distributed observation time[J].J.Appl.Math.,DOI:10.1155/2014/814835.

    [20]Breiman L.Probability[M].Mass:Addison-Wesley,1968.

    帶利率和隨機觀測時間的布朗運動模型中最優(yōu)分紅策略

    劉曉,余宏偉

    (安徽師范大學數(shù)學計算機科學學院,安徽蕪湖241003)

    本文研究了帶利率和隨機觀測時間的布朗運動模型中的最優(yōu)分紅問題.利用隨機控制理論,獲得了最優(yōu)值函數(shù)相應的HJB方程,表明最優(yōu)分紅策略是障礙策略,并給出了最優(yōu)值函數(shù)的顯式表達式,推廣了文獻[19]的結果.

    分紅;破產(chǎn);HJB方程

    O212.62

    tion:62P05;91B30;91B70

    A

    0255-7797(2017)01-0039-12

    ?Received date:2014-10-22Accepted date:2015-01-20

    Foundation item:Supported by the National Natural Science Foundation of China(11401010);the Natural Science Foundation of Education Department of Anhui Province(KJ2012ZD01);the Philosophy and Social Science Planning Foundation of Anhui Province(AHSK11-12D128);the Natural Science Foundation of Anhui Province(1308085QA14);the Research Culture Funds of Anhui Normal University (2015xmpy14).

    Biography:Liu Xiao(1981–),male,born at Tianchang,Anhui,associate professor,major in stochastic control.

    猜你喜歡
    安徽師范大學布朗運動計算機科學
    雙分數(shù)布朗運動重整化自相交局部時的光滑性
    《安徽師范大學學報》(人文社會科學版)第47卷總目次
    探討計算機科學與技術跨越式發(fā)展
    分數(shù)布朗運動驅動的脈沖中立型隨機泛函微分方程的漸近穩(wěn)定性
    Hemingway’s Marriage in Cat in the Rain
    布朗運動說明了什么
    淺談計算機科學與技術的現(xiàn)代化運用
    電子制作(2017年2期)2017-05-17 03:55:01
    重慶第二師范學院計算機科學與技術專業(yè)簡介
    《安徽師范大學學報( 自然科學版) 》2016 年總目次
    一類由布朗運動驅動的滑動平均的參數(shù)矩估計
    全区人妻精品视频| 99久久综合精品五月天人人| 欧美日韩乱码在线| 国产精品自产拍在线观看55亚洲| 国产精品三级大全| 久久精品影院6| 亚洲欧美日韩无卡精品| 国产男靠女视频免费网站| 精品人妻1区二区| 国产一级毛片七仙女欲春2| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 毛片女人毛片| 99久国产av精品| 日本 av在线| 欧美日韩中文字幕国产精品一区二区三区| 麻豆国产av国片精品| 国产精品 欧美亚洲| 免费av观看视频| 我的老师免费观看完整版| 午夜福利18| 色综合站精品国产| 欧美色视频一区免费| 中文在线观看免费www的网站| 亚洲国产精品合色在线| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 国产97色在线日韩免费| 天堂影院成人在线观看| 日韩欧美在线乱码| 欧美乱妇无乱码| 偷拍熟女少妇极品色| 色吧在线观看| 久久久久久久久久黄片| 亚洲国产欧洲综合997久久,| 国产精品三级大全| 亚洲精品日韩av片在线观看 | 日本成人三级电影网站| 精品电影一区二区在线| 人人妻人人澡欧美一区二区| www.色视频.com| 五月玫瑰六月丁香| 哪里可以看免费的av片| 噜噜噜噜噜久久久久久91| 亚洲七黄色美女视频| 中亚洲国语对白在线视频| 男人的好看免费观看在线视频| 精品一区二区三区视频在线 | 精品电影一区二区在线| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 久久久久久久久久黄片| 深爱激情五月婷婷| 十八禁人妻一区二区| 成人性生交大片免费视频hd| 欧美日韩精品网址| 国产高清视频在线观看网站| 亚洲成人久久性| 老汉色∧v一级毛片| 色老头精品视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 女同久久另类99精品国产91| 三级国产精品欧美在线观看| 99久久久亚洲精品蜜臀av| 精品一区二区三区视频在线 | 俺也久久电影网| 国产一区二区三区在线臀色熟女| 在线观看美女被高潮喷水网站 | 十八禁网站免费在线| 露出奶头的视频| 18美女黄网站色大片免费观看| 国产成人影院久久av| 色在线成人网| 午夜影院日韩av| 日本与韩国留学比较| 男人舔女人下体高潮全视频| 亚洲精品国产精品久久久不卡| 偷拍熟女少妇极品色| 久久性视频一级片| 国产成人影院久久av| 狂野欧美白嫩少妇大欣赏| 可以在线观看的亚洲视频| 国产精品av视频在线免费观看| 特级一级黄色大片| 国产一区二区三区视频了| 亚洲国产精品999在线| 免费电影在线观看免费观看| 丰满乱子伦码专区| 18美女黄网站色大片免费观看| 久久久国产成人免费| 午夜福利成人在线免费观看| 精品久久久久久久久久免费视频| 日韩国内少妇激情av| 欧美三级亚洲精品| 97人妻精品一区二区三区麻豆| 99久久精品热视频| 18禁美女被吸乳视频| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品综合久久99| svipshipincom国产片| 一区二区三区国产精品乱码| 一个人看的www免费观看视频| 1000部很黄的大片| 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 国产欧美日韩精品亚洲av| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 亚洲精品456在线播放app | 97超视频在线观看视频| 九色成人免费人妻av| 亚洲国产精品成人综合色| 亚洲国产色片| 久久伊人香网站| 精品久久久久久久人妻蜜臀av| 国产精品国产高清国产av| 无遮挡黄片免费观看| 欧美在线黄色| 亚洲国产欧美人成| 午夜老司机福利剧场| 亚洲欧美激情综合另类| 免费大片18禁| 国内精品美女久久久久久| 国产精品影院久久| 精品久久久久久久毛片微露脸| 欧美乱妇无乱码| xxx96com| 999久久久精品免费观看国产| 91麻豆精品激情在线观看国产| 中国美女看黄片| 亚洲国产中文字幕在线视频| 中文字幕高清在线视频| 久久久久久人人人人人| 天堂√8在线中文| 最近视频中文字幕2019在线8| 精品欧美国产一区二区三| 午夜福利成人在线免费观看| 国产伦在线观看视频一区| 一区二区三区激情视频| 免费av毛片视频| 一本一本综合久久| 亚洲不卡免费看| 在线a可以看的网站| 一a级毛片在线观看| av视频在线观看入口| x7x7x7水蜜桃| 亚洲午夜理论影院| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看| 国产免费一级a男人的天堂| 亚洲精品成人久久久久久| 日本精品一区二区三区蜜桃| 成年女人永久免费观看视频| 午夜亚洲福利在线播放| 性色avwww在线观看| 国产欧美日韩一区二区精品| 免费看十八禁软件| 美女高潮的动态| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 热99在线观看视频| 亚洲熟妇中文字幕五十中出| 亚洲av电影在线进入| 国产av不卡久久| 国产免费男女视频| 少妇高潮的动态图| 久久久久久人人人人人| 亚洲美女视频黄频| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 99久久99久久久精品蜜桃| 97人妻精品一区二区三区麻豆| 香蕉丝袜av| 久久精品91无色码中文字幕| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 欧美+亚洲+日韩+国产| 国产成年人精品一区二区| 国产黄色小视频在线观看| 精品熟女少妇八av免费久了| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区 | 欧美+日韩+精品| 亚洲激情在线av| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 一区福利在线观看| 精品无人区乱码1区二区| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 色哟哟哟哟哟哟| 舔av片在线| 天堂影院成人在线观看| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 又黄又粗又硬又大视频| 无遮挡黄片免费观看| 亚洲av二区三区四区| 一进一出抽搐gif免费好疼| 国产91精品成人一区二区三区| 18禁美女被吸乳视频| tocl精华| 日本在线视频免费播放| 国产成+人综合+亚洲专区| 嫩草影视91久久| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 男女那种视频在线观看| 全区人妻精品视频| 老汉色av国产亚洲站长工具| 一个人观看的视频www高清免费观看| 久久中文看片网| ponron亚洲| 久久久久久久久久黄片| 久9热在线精品视频| 国产激情偷乱视频一区二区| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月 | 成年女人看的毛片在线观看| 国产成人福利小说| tocl精华| 99久久99久久久精品蜜桃| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 看黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 超碰av人人做人人爽久久 | 黄色成人免费大全| 草草在线视频免费看| 午夜精品在线福利| 国产亚洲精品综合一区在线观看| 啦啦啦免费观看视频1| 欧美激情在线99| 日本三级黄在线观看| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 亚洲 国产 在线| 精品久久久久久久毛片微露脸| 免费在线观看成人毛片| 99久久99久久久精品蜜桃| 午夜福利18| 欧美黑人巨大hd| 九色国产91popny在线| 一区二区三区激情视频| 久久精品影院6| 90打野战视频偷拍视频| 免费观看的影片在线观看| 国产色婷婷99| 悠悠久久av| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 免费无遮挡裸体视频| 国产av在哪里看| 欧美一区二区亚洲| 国产成人欧美在线观看| 免费无遮挡裸体视频| 19禁男女啪啪无遮挡网站| 在线免费观看不下载黄p国产 | 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 19禁男女啪啪无遮挡网站| 国产精品久久电影中文字幕| 免费在线观看影片大全网站| 久久久国产精品麻豆| 制服人妻中文乱码| 国内揄拍国产精品人妻在线| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式 | 高清在线国产一区| 午夜视频国产福利| 国产探花极品一区二区| 在线播放国产精品三级| xxxwww97欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | xxxwww97欧美| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 国产黄片美女视频| 欧美日韩瑟瑟在线播放| 五月玫瑰六月丁香| 久久久国产成人精品二区| 婷婷亚洲欧美| 久久亚洲精品不卡| 欧美成人性av电影在线观看| 美女 人体艺术 gogo| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 黄片小视频在线播放| 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 1024手机看黄色片| 国产精品国产高清国产av| 天堂动漫精品| 欧美黄色淫秽网站| 亚洲av电影不卡..在线观看| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 亚洲av成人精品一区久久| www日本黄色视频网| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费| 18禁在线播放成人免费| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 在线观看舔阴道视频| 丁香欧美五月| 香蕉丝袜av| 一本精品99久久精品77| 此物有八面人人有两片| 色精品久久人妻99蜜桃| 欧美一级a爱片免费观看看| 国产老妇女一区| 88av欧美| 亚洲精品456在线播放app | 日韩有码中文字幕| 亚洲最大成人中文| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 午夜久久久久精精品| 禁无遮挡网站| 欧美激情在线99| 最新美女视频免费是黄的| av中文乱码字幕在线| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看 | 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 日日夜夜操网爽| www日本黄色视频网| 日韩亚洲欧美综合| 成人亚洲精品av一区二区| 午夜免费成人在线视频| 1024手机看黄色片| 国产亚洲精品综合一区在线观看| 国产精品av视频在线免费观看| 欧美日韩一级在线毛片| 亚洲无线观看免费| 国产不卡一卡二| 成人性生交大片免费视频hd| av天堂中文字幕网| 99国产综合亚洲精品| 女警被强在线播放| av天堂中文字幕网| 18禁美女被吸乳视频| 天堂av国产一区二区熟女人妻| avwww免费| 精品无人区乱码1区二区| 欧美成狂野欧美在线观看| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 桃色一区二区三区在线观看| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 少妇的逼好多水| 可以在线观看的亚洲视频| 午夜两性在线视频| 国产一区二区激情短视频| 国产 一区 欧美 日韩| 色在线成人网| 麻豆国产av国片精品| 国产亚洲精品一区二区www| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 国产亚洲精品一区二区www| 五月玫瑰六月丁香| 欧美一级毛片孕妇| 日韩免费av在线播放| 18美女黄网站色大片免费观看| 99热精品在线国产| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 老汉色∧v一级毛片| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 久久久成人免费电影| 99热6这里只有精品| 日韩欧美国产一区二区入口| 国产97色在线日韩免费| 美女免费视频网站| 欧美极品一区二区三区四区| 丁香欧美五月| 久久久久精品国产欧美久久久| 操出白浆在线播放| 亚洲欧美日韩卡通动漫| 亚洲欧美精品综合久久99| 人人妻人人看人人澡| 免费看a级黄色片| 欧美黑人巨大hd| 老司机深夜福利视频在线观看| 久久久国产精品麻豆| 夜夜躁狠狠躁天天躁| 99国产极品粉嫩在线观看| 一本一本综合久久| 九九在线视频观看精品| 俄罗斯特黄特色一大片| 国产 一区 欧美 日韩| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 波多野结衣高清无吗| 亚洲人成电影免费在线| 久久精品国产综合久久久| 欧美日韩瑟瑟在线播放| 天天添夜夜摸| 亚洲午夜理论影院| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出| 听说在线观看完整版免费高清| 美女被艹到高潮喷水动态| 搡女人真爽免费视频火全软件 | 我要搜黄色片| 久久久久免费精品人妻一区二区| 久久久久久久久久黄片| 日本三级黄在线观看| 国产伦精品一区二区三区视频9 | 亚洲色图av天堂| 51午夜福利影视在线观看| 波多野结衣巨乳人妻| 国产av不卡久久| 男女那种视频在线观看| 九九久久精品国产亚洲av麻豆| 成年免费大片在线观看| 亚洲av免费在线观看| 久久久久久久久中文| 神马国产精品三级电影在线观看| 日韩高清综合在线| 中文字幕高清在线视频| 他把我摸到了高潮在线观看| e午夜精品久久久久久久| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 欧美极品一区二区三区四区| 男女做爰动态图高潮gif福利片| 国产在线精品亚洲第一网站| 淫秽高清视频在线观看| 日本熟妇午夜| 18禁裸乳无遮挡免费网站照片| 欧美日韩黄片免| 欧美日韩一级在线毛片| 亚洲精品日韩av片在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 亚洲 欧美 日韩 在线 免费| 狂野欧美白嫩少妇大欣赏| 91av网一区二区| svipshipincom国产片| АⅤ资源中文在线天堂| 无限看片的www在线观看| 欧美成人一区二区免费高清观看| 精品国产超薄肉色丝袜足j| 午夜激情福利司机影院| 国产高清激情床上av| 级片在线观看| 日本 av在线| 欧美丝袜亚洲另类 | 国产久久久一区二区三区| 国产免费一级a男人的天堂| 欧美性感艳星| 脱女人内裤的视频| 国产一区在线观看成人免费| 精品无人区乱码1区二区| ponron亚洲| 亚洲精华国产精华精| 最新美女视频免费是黄的| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 亚洲国产精品合色在线| 成人特级av手机在线观看| 精品久久久久久久久久免费视频| 午夜a级毛片| 亚洲黑人精品在线| 免费高清视频大片| 国产日本99.免费观看| 欧美日韩黄片免| 日韩高清综合在线| 中文字幕av在线有码专区| 黄色女人牲交| 亚洲男人的天堂狠狠| 韩国av一区二区三区四区| 午夜福利欧美成人| 亚洲成人久久爱视频| 9191精品国产免费久久| 亚洲av电影在线进入| 亚洲成av人片在线播放无| 国产av不卡久久| 成人欧美大片| 少妇的逼好多水| 99久久精品一区二区三区| 国产91精品成人一区二区三区| 午夜久久久久精精品| 黄片小视频在线播放| 男女那种视频在线观看| 男女床上黄色一级片免费看| 深夜精品福利| 在线看三级毛片| 日韩中文字幕欧美一区二区| 两个人视频免费观看高清| 午夜激情福利司机影院| 亚洲在线观看片| www日本黄色视频网| 亚洲av免费高清在线观看| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 欧美不卡视频在线免费观看| 久久久久久久精品吃奶| 国语自产精品视频在线第100页| 一个人观看的视频www高清免费观看| 久久国产精品影院| 成人午夜高清在线视频| 婷婷精品国产亚洲av| 国产精品 国内视频| 一区二区三区激情视频| 成年人黄色毛片网站| 午夜福利高清视频| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 精品人妻1区二区| 在线观看日韩欧美| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 欧美最新免费一区二区三区 | 久久性视频一级片| av黄色大香蕉| 亚洲真实伦在线观看| 午夜免费激情av| 三级国产精品欧美在线观看| 国产成人aa在线观看| 成人国产一区最新在线观看| 桃色一区二区三区在线观看| 国产精品影院久久| 亚洲国产色片| 久久人人精品亚洲av| 日本黄色片子视频| 亚洲自拍偷在线| 一个人看视频在线观看www免费 | 我要搜黄色片| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 高清毛片免费观看视频网站| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 最新美女视频免费是黄的| 国产国拍精品亚洲av在线观看 | 我的老师免费观看完整版| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 国产精品亚洲av一区麻豆| 午夜a级毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美区成人在线视频| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 看黄色毛片网站| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 伊人久久精品亚洲午夜| 国产午夜福利久久久久久| 一本久久中文字幕| 午夜两性在线视频| 可以在线观看的亚洲视频| 伊人久久大香线蕉亚洲五| 国产中年淑女户外野战色| 精品国产亚洲在线| 十八禁人妻一区二区| 波野结衣二区三区在线 | 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线观看网站| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 波野结衣二区三区在线 | 香蕉久久夜色| 最近在线观看免费完整版| www日本黄色视频网| 日韩欧美在线乱码| 久久九九热精品免费| 国产不卡一卡二| 91在线观看av| 国产真实乱freesex| 中文字幕人成人乱码亚洲影|