• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NOTE ON HOMOGENIZATION OF THE HYPERBOLIC PROBLEMS WITH IMPERFECT INTERFACES

    2017-01-19 06:08:38YANGZhanyingYUYunxia
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:數(shù)學(xué)系雙曲云霞

    YANG Zhan-ying,YU Yun-xia

    (1.School of Mathematics and Statistics,South-Central University for Nationalities, Wuhan 430074,China )

    (2.Department of Mathematics,Xinxiang University,Xinxiang 453000,China )

    A NOTE ON HOMOGENIZATION OF THE HYPERBOLIC PROBLEMS WITH IMPERFECT INTERFACES

    YANG Zhan-ying1,YU Yun-xia2

    (1.School of Mathematics and Statistics,South-Central University for Nationalities, Wuhan 430074,China )

    (2.Department of Mathematics,Xinxiang University,Xinxiang 453000,China )

    In this paper,we are concerned with a class of hyperbolic problems with nonperiodic coefficients in two-component domains.By the periodic unfolding method,we derive the homogenization and corrector results,which generalize those achieved by Donato,Faella and Monsurr.

    hyperbolic problems;periodic unfolding method;homogenization;correctors

    1 Introduction

    In this paper,we study the homogenization and corrector results for the following hyperbolic problem with-1<γ<1,

    where ??Rnis the union of two ε-periodic sub-domains ?1εand ?2ε,separated by an interface Γε,such that ?1ε∪2ε=? and Γε=??2ε.Here,?1εis connected and the number of connected components of ?2εis of order ε-n.This problem models the wave propagationin a medium made up of two materials with different coefficients of propagation.For the physical model,we refer the reader to Carslaw and Jaeger[1].

    Let Y=[0,l1)×···×[0,ln)be the reference cell with li>0,i=1,···,n.We suppose that Y1and Y2are two nonempty open disjoint subsets of Y such that Y=Y1∪,where Y1is connected and Γ=?Y2is Lipschitz continuous.Throughout this paper,we have the following assumptions.

    ?For any ε,Aε(x)=is a matrix satisfying the following:

    ?For any ε,hε(x)=h(x/ε),where h is a Y-periodic function such that h∈L∞(Γ)and there exists h0∈R such that 0<h0<h(y)a.e.on Γ.

    ?The initial data satisfy the assumptions:

    For the classical case Aε(x)=A(x/ε)with A being periodic,symmetric,bounded and uniformly elliptic,Donato,Faella and Monsurrgave the homogenization for γ≤1 in[2]. Later,they obtained the corrector results in[3]for-1<γ≤1.Their proofs are based on the oscillating test functions method.In[4],the first author gave the corrector results for γ<-1 by the unfolding method.However,the above methods do not work for the case that Aε(x)is non-periodic coefficient matrix.

    In this paper,we will consider problem(1.1)with Aε(x)being non-periodic for-1<γ<1.More precisely,suppose that there exists a matrix A=(aij)1≤i,j≤nsuch that

    where Tεis the unfolding operator.By the unfolding method,we derive the homogenization and corrector results for-1<γ<1.Next,we state our main theorems,in which we will use some notations to be defined in the next section.We first state the homogenization results whose unfolded formulation will be provided for the study of correctors in Section 3.

    Theorem 1.1For-1<γ<1,let uεbe the solution of problem(1.1)with(1.2).We further suppose that

    Then there exists u1∈L∞such that

    Also,u1is the unique solution of the following problem:

    where the homogenized matrix A0=is defined by

    and χj∈L∞(?;(Y1))(j=1,···,n)is the solution of the following cell problem:

    Further,we have the following precise convergence of flux:

    Notice that the homogenized matrix A0still depends on x,compared with the classical constant matrix(see for instance[2,4]).

    In order to investigate the corrector results,we need stronger assumptions on the initial data than that of the convergence results,as already evidenced in the classical works(see, for instance,[3,5]).Here we impose some assumptions,introduced by the first author(see [4]for more details),which are slightly weaker than those in[3].Now we list them as follows.

    (i)For fiε∈L2

    where U0is given in

    These assumptions ensure the convergence of the energy in C0([0,T]).Moreover,we obtain the following corrector results.

    Theorem 1.2For-1<γ<1,let uεbe the solution of problem(1.1)with(1.2). Suppose that the initial data satisfy(1.8)–(1.10).Let u1be the solution of the homogenized problem(1.4),then we have the following corrector results:

    where χj∈L∞is the solution of the cell problem(1.6).

    For the parabolic case,Jose[6]proved the homogenization for γ≤1.Later,the corrector results for-1<γ≤1 were given by Donato and Jose[7].Recently,by the unfolding method,the first author obtained the homogenization and corrector results for γ≤1 in[8].Our results are also related to those of hyperbolic problems in perforated domains which were studied in[9,10].

    The paper is organized as follows.In Section 2,we briefly recall the unfolding method in perforated domains.Section 3 is devoted to the homogenization result.In Section 4,we prove the corrector results.

    2 Preliminaries

    Let ??Rnbe an open and bounded set with Lipschitz continuous boundary.Let ε be the general term of a sequence of positive real numbers which converges to zero.

    For any k∈Zn,we denote

    where kl=(k1l1,···,knln)and i=1,2.For any fixed ε,let Kε=1,2}.We suppose that

    and define the two components of ? and the interface respectively by

    Observe that?? and Γεare disjoint,the component ?1εis connected and the component?2εis union of ε-ndisjoint translated sets of εY2.

    The following notations are related to the unfolding method in[11–13]:

    This paper will also use the following notations:

    ?θi=

    ?MO(v)=

    ?Vεis defined by

    endowed with the norm‖v‖Vε=‖?v‖L2(Ω1ε).

    ?For any γ∈R,the product space

    is equipped with the norm

    ?C denotes generic constant which does not depend upon ε.

    ?The notation Lp(O)will be used both for scalar and vector-valued functions defined on the set O,since no ambiguity will arise.

    In the rest of this section,we give a brief review of the unfolding operators in twocomponent domains.We refer the reader to[9]and[14]for further properties and related comments.

    For any x∈Rn,we use[x]Yto denote its integer part(k1l1,···,knln)such that x-[x]Y∈Y,and set{x}Y=x-[x]Y.Then one has

    Definition 2.1[2]Let i=1,2.For p∈[1,+∞)and q∈[1,∞],let φ∈Lq(0,T;Lp(?iε)). The unfolding operatoris defined as follows:

    Definition 2.2[2]Let i=1,2.For p∈[1,+∞)and q∈[1,+∞],let φ be in Lq(0,T;Lp(?×Yi)).The averaging operatoris defined as follows:

    Proposition 2.3For p∈[1,+∞)and q∈[1,∞],let φ∈Lq(0,T;L1(?iε)).Then for a.e.t∈(0,T),we have

    Proposition 2.4(some convergence properties)

    (i)Let ω∈L2

    (ii)Let ωε∈L2(0,T;L2(?iε))and ω∈L2(0,T;L2(?)),then the following two assertions are equivalent:

    (iii)Let ωε∈L2(0,T;L2(?iε))and ω∈L2(0,T;L2(?×Yi)),then the following two assertions are equivalent:

    Following the arguments in the proof of[Proposition 1.7,14](see also[Proposition 2.13, 9]),we can obtain the following result which will be used to get the corrector results.

    Proposition 2.5Let p,q∈[1,∞),for i=1,2,let f∈Lq(0,T;Lp(?))and g∈L∞(?;Lp(Yi)),then we have

    We end this subsection with the following convergence theorem which is crucial to obtaining our homogenization result.

    Theorem 2.6Let uε=(u1ε,u2ε)and{uε}be in L∞(0,T;)with-1<γ<1.If

    then there exist u1∈L∞for a.e.x∈?,such that,up to a subsequence(still denoted by ε),

    In fact,the proof can be obtained by following the lines of the proofs of[Theorem 2.12, 14](see also[Theorem 2.19,9])and[Theorem 2.20,13].

    3 Homogenization Results

    In this section,we are devoted to the asymptotic behavior of the hyperbolic problem (1.1).For every fixed ε,the Galerkin method provides that problem(1.1)has a unique solution uε.Under assumption(1.3),following the arguments in[2],we can obtain the following uniform estimate,

    Now,we state the unfolded formulation of the homogenization results(see Theorem 1.1)which will be used for getting the corrector results.

    Theorem 3.1Under the assumptions of Theorem 1.1,there exist u1∈L∞(0,T;(?))=0 such that

    where χj∈L∞(?;(Y))(j=1,···,n)is the solution of the cell problem(1.6).

    The proofs of Theorem 3.1 and Theorem 1.1 mainly rely on the periodic unfolding method.Indeed,following the lines of proof of Theorem 3.1[4],we can use Theorem 2.6 to obtain the proofs of these two theorems.

    Remark 3.2Following the framework in the proof of Theorem 3.2[8],we derive

    which will be used in the proof of Corollary 4.2.

    Remark 3.3In Theorem 1.1,we exclude the case γ=1.For this case,the homogenized problem is a coupled system of a PDE and an ODE.As a result,the corrector results are more complicated.

    4 Proof of Theorem 1.2

    In this section,we are devoted to the proof of corrector results.To do that,we need some stronger assumptions than those of the homogenization results.Here,we impose the assumptions(1.8)–(1.10),as presented in[4],which are slightly weaker than those in[3]. Under these assumptions,the energy of problem(1.1)converges in C0([0,T])to that of the homogenized one.Moreover,we obtain that some convergences in(3.2)are strong ones.

    For each ε,the energy Eε(t),associated to the problem(1.1),is defined by

    The energy associated to the homogenized problem(1.4)is defined by

    Following the classical arguments(see for instance[3]),we have the following result.

    Theorem 4.1Let γ∈(-1,1).Suppose that uεis the solution of problem(1.1)with the initial data satisfying(1.8)–(1.10).Let u1be the solution of the homogenized problem (1.4),then we have

    Corollary 4.2Under the assumptions of Theorem 4.1,we have

    To prove this corollary,we need the following classical result.

    Proposition 4.3(see[14])Let{Dε}be a sequence of n×n matrices in M(α,β,O) for some open set O,such that Dε→D a.e.on O(or more generally,in measure in O).If ζε?ζ weakly in L2(O),then

    Proof of Corollary 4.2From(3.4),we have

    By Proposition 4.3 and the weak lower-semicontinuity,we deduce

    Thus,Proposition 2.3 allows us to get that

    The former equality implies that

    These give the first line and(iii)in(4.1)due to the ellipticity of Aε.

    By the latter equality in(4.2)and Proposition 2.3,we know

    Combining this with(3.2),we obtain

    This together with the ellipticity of A,allows us to obtain the rest convergences in(4.1).

    Proof of Theorem 1.2Observe that u1is independent of y.By(ii)of Proposition 2.4, the first convergence in(1.11)follows from(i)in Corollary 4.2.By(i)and(ii)in Corollary 4.2,we use(iii)of Proposition 2.4 to get

    By the fact that?u1is independent of y,(i)of Proposition 2.4 gives

    Together with(3.3)and Proposition 2.5,we complete the proof of Theorem 1.2.

    [1]Carslaw H S,Jaeger J C.Conduction of heat in solids[M].Oxford:Clarendon Press,1947.

    [2]Donato P,Faella L,MonsurrS.Homogenization of the wave equation in composites with imperfect interface:A memory effect[J].J.Math.Pures Appl.,2007,87(2):119–143.

    [3]Donato P,Faella L,MonsurrS.Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces[J].SIAM J.Math.Anal.,2009,40(5):1952–1978.

    [4]Yang Zhanying.Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method[J].Commu.Pure Appl.Anal.,2014,13(1):249–272.

    [5]Cioranescu D,Donato P.An Introduction to Homogenization[M].Oxford:Oxford Univ.Press,1999.

    [6]Jose E C.Homogenization of a parabolic problem with an imperfect interface[J].Rev.Rouma.Math. Pures Appl.,2009,54(3):189–222.

    [7]Donato P,Jose E C.Corrector results for a parabolic problem with a memory effect[J].ESAIM: Math.Model.Num.Anal.,2010,44(3):421–454.

    [8]Yang Zhanying.The periodic unfolding method for a class of parabolic problems with imperfect interfaces[J].ESAIM:Math.Model.Num.Anal.,2014,48(5):1279–1302.

    [9]Donato P,Yang Zhanying.The periodic unfolding method for the wave equation in domains with holes[J].Adv.Math.Sci.Appl.,2012,22(2):521–551.

    [10]Nabil A.A corrector result for the wave equations in perforated domains[J].GAKUTO Internat. Ser.Math.Sci.Appl.,1997,9:309–321.

    [11]Cioranescu D,Damlamian A,Griso G.Periodic unfolding and homogenization[J].C.R.Math.Acad. Sci.Paris,2002,335(1):99–104.

    [12]Cioranescu D,Damlamian A,Griso G.The periodic unfolding method in homogenization[J].SIAM J.Math.Anal.,2008,40(4):1585–1620.

    [13]Donato P,Le Nguyen K H,Tardieu R.The periodic unfolding method for a class of imperfect transmission problems[J].J.Math.Sci.,2011,176(6):891–927.

    [14]Cioranescu D,Damlamian A,Donato P,Griso G,Zaki R.The periodic unfolding method in domains with holes[J].SIAM J.Math.Anal.,2012,44(2):718–760.

    [15]Chen Jiajia,Mu Chunlai.The upper and lower bound on the blow-up phenomena for some nonlinear parabolic systems[J].J.Math.,2012,32(5):897–903.

    帶不完美界面的雙曲問(wèn)題均勻化的一個(gè)注記

    楊占英1,于云霞2

    (1.中南民族大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,湖北武漢430074)

    (2.新鄉(xiāng)學(xué)院數(shù)學(xué)系,河南新鄉(xiāng)453000)

    本文研究了一類(lèi)二分區(qū)域上的具有非周期系數(shù)的雙曲問(wèn)題.利用周期Unfolding方法,得到了均勻化及其矯正結(jié)果,推廣了Donato,Faella和Monsurr的工作.

    雙曲問(wèn)題;周期Unfolding方法;均勻化;矯正

    O175.23;O175.27

    tion:35B27;35L20

    A

    0255-7797(2017)01-0028-11

    ?Received date:2015-06-05Accepted date:2015-09-09

    Foundation item:Supported by National Natural Science Foundation of China(11401595).

    Biography:Yang Zhanying(1980–),female,born at Zhoukou,Henan,associate professor,major in homogenization theory and its application.

    猜你喜歡
    數(shù)學(xué)系雙曲云霞
    一個(gè)人就是一個(gè)數(shù)學(xué)系
    ——丘成桐
    中國(guó)科學(xué)技術(shù)館之“雙曲隧道”
    軍事文摘(2021年22期)2022-01-18 06:22:48
    望洋興嘆
    揠苗助長(zhǎng)
    買(mǎi)櫝還珠
    玩具
    雙曲型交換四元數(shù)的極表示
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    一階雙曲型偏微分方程的模糊邊界控制
    論Gross曲線的二次扭
    禁无遮挡网站| 国产亚洲精品av在线| xxx96com| 91九色精品人成在线观看| 亚洲精品在线美女| 国产欧美日韩一区二区三| 久久人妻福利社区极品人妻图片| 久久久精品国产亚洲av高清涩受| 精品一区二区三区av网在线观看| 亚洲一区中文字幕在线| 色在线成人网| 99国产综合亚洲精品| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 国产高清有码在线观看视频 | 老司机福利观看| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 在线观看免费日韩欧美大片| 欧美午夜高清在线| 亚洲aⅴ乱码一区二区在线播放 | 女性被躁到高潮视频| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 大香蕉久久成人网| 天堂影院成人在线观看| 欧美精品亚洲一区二区| avwww免费| 国产黄色小视频在线观看| 三级毛片av免费| 精品国内亚洲2022精品成人| 在线观看www视频免费| 1024香蕉在线观看| 中亚洲国语对白在线视频| 国产成人欧美在线观看| 中文字幕精品免费在线观看视频| 亚洲美女黄片视频| 免费看美女性在线毛片视频| 国产97色在线日韩免费| 亚洲一区二区三区不卡视频| 成人三级黄色视频| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 国产亚洲精品一区二区www| 日韩欧美国产一区二区入口| or卡值多少钱| xxxwww97欧美| 成人永久免费在线观看视频| 色在线成人网| 国产高清有码在线观看视频 | 黄色a级毛片大全视频| 一区二区三区激情视频| 亚洲男人天堂网一区| 午夜免费激情av| 国产高清videossex| 亚洲国产精品合色在线| 国产成人系列免费观看| 极品教师在线免费播放| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人一区二区免费高清观看 | 国产一区二区三区视频了| 亚洲三区欧美一区| 欧美日韩黄片免| 免费看a级黄色片| 成人三级黄色视频| 国产高清激情床上av| 亚洲男人天堂网一区| 啦啦啦免费观看视频1| 亚洲精品色激情综合| 色综合亚洲欧美另类图片| 亚洲精品一区av在线观看| 亚洲精品久久成人aⅴ小说| 欧美在线黄色| АⅤ资源中文在线天堂| 亚洲精品中文字幕一二三四区| 麻豆成人午夜福利视频| 色av中文字幕| 天天一区二区日本电影三级| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 黄片播放在线免费| 亚洲专区中文字幕在线| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 无限看片的www在线观看| 日韩成人在线观看一区二区三区| 日本a在线网址| 校园春色视频在线观看| 精品少妇一区二区三区视频日本电影| 香蕉av资源在线| 给我免费播放毛片高清在线观看| 一级毛片女人18水好多| 韩国精品一区二区三区| 天天添夜夜摸| 精品日产1卡2卡| 婷婷亚洲欧美| 亚洲激情在线av| 午夜福利视频1000在线观看| 午夜免费鲁丝| 91字幕亚洲| 黑丝袜美女国产一区| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 丰满的人妻完整版| 国产色视频综合| 啦啦啦韩国在线观看视频| 精品电影一区二区在线| 91av网站免费观看| 欧美一级毛片孕妇| 一级黄色大片毛片| 99精品欧美一区二区三区四区| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| 在线视频色国产色| 母亲3免费完整高清在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 天堂√8在线中文| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 两性夫妻黄色片| 国产精品野战在线观看| 国产成人系列免费观看| 欧美成人一区二区免费高清观看 | 国产精品永久免费网站| 麻豆久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟女乱码| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 日本 欧美在线| 91大片在线观看| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 久久草成人影院| 麻豆成人av在线观看| 亚洲国产欧洲综合997久久, | 亚洲国产看品久久| 两性夫妻黄色片| 人人妻人人看人人澡| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久国内视频| 看片在线看免费视频| 色在线成人网| 免费高清在线观看日韩| 中文字幕精品亚洲无线码一区 | 久久久久久久午夜电影| 欧美一级毛片孕妇| 国产午夜福利久久久久久| 亚洲av日韩精品久久久久久密| 少妇的丰满在线观看| 婷婷精品国产亚洲av| 中文字幕人成人乱码亚洲影| 国产精品精品国产色婷婷| 国产视频内射| 看免费av毛片| 麻豆成人av在线观看| 男人舔女人下体高潮全视频| 91成年电影在线观看| 一本一本综合久久| 级片在线观看| 白带黄色成豆腐渣| 国产精品久久久av美女十八| 成人亚洲精品一区在线观看| 91国产中文字幕| 亚洲第一电影网av| 手机成人av网站| 成人三级黄色视频| 露出奶头的视频| 色精品久久人妻99蜜桃| 在线看三级毛片| 看片在线看免费视频| 91字幕亚洲| 久久香蕉国产精品| 久久午夜亚洲精品久久| 中文字幕精品亚洲无线码一区 | 国产免费男女视频| 亚洲中文字幕日韩| 国内揄拍国产精品人妻在线 | 别揉我奶头~嗯~啊~动态视频| √禁漫天堂资源中文www| 中文资源天堂在线| ponron亚洲| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区| 国产熟女xx| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 正在播放国产对白刺激| 欧美乱码精品一区二区三区| 99久久久亚洲精品蜜臀av| 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 男人的好看免费观看在线视频 | 国产区一区二久久| 中文在线观看免费www的网站 | 亚洲中文日韩欧美视频| 日韩中文字幕欧美一区二区| 亚洲片人在线观看| 国产黄色小视频在线观看| 久久草成人影院| 亚洲自偷自拍图片 自拍| 自线自在国产av| 啦啦啦 在线观看视频| 国产熟女午夜一区二区三区| 国产精品永久免费网站| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 欧美成人性av电影在线观看| 久久久精品国产亚洲av高清涩受| 日日摸夜夜添夜夜添小说| 熟女电影av网| 亚洲精品一区av在线观看| 国产欧美日韩一区二区三| 69av精品久久久久久| 婷婷丁香在线五月| 亚洲国产欧美网| 国产精品综合久久久久久久免费| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 日韩大码丰满熟妇| 免费看日本二区| 免费在线观看视频国产中文字幕亚洲| 亚洲 国产 在线| 欧美性猛交╳xxx乱大交人| 久久久久九九精品影院| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看 | 久热这里只有精品99| 亚洲一码二码三码区别大吗| 国产日本99.免费观看| 国产1区2区3区精品| 老熟妇仑乱视频hdxx| 国产精品久久久久久精品电影 | 怎么达到女性高潮| 免费在线观看日本一区| 免费无遮挡裸体视频| 日韩免费av在线播放| 国产高清激情床上av| 免费搜索国产男女视频| 亚洲国产中文字幕在线视频| 中文资源天堂在线| 女人高潮潮喷娇喘18禁视频| 日本免费a在线| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 成人亚洲精品一区在线观看| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 99精品久久久久人妻精品| 国产99久久九九免费精品| 午夜福利高清视频| 天天添夜夜摸| av片东京热男人的天堂| netflix在线观看网站| 欧美又色又爽又黄视频| 一个人免费在线观看的高清视频| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 国产一区在线观看成人免费| 99riav亚洲国产免费| 黄片播放在线免费| 一区二区三区高清视频在线| 亚洲无线在线观看| av片东京热男人的天堂| 好看av亚洲va欧美ⅴa在| 午夜影院日韩av| 最近最新中文字幕大全免费视频| 美女扒开内裤让男人捅视频| 身体一侧抽搐| 一本久久中文字幕| 色老头精品视频在线观看| 国产精品九九99| 精品欧美一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 欧美性长视频在线观看| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 日韩国内少妇激情av| 成人免费观看视频高清| 看免费av毛片| 男女床上黄色一级片免费看| 伦理电影免费视频| 草草在线视频免费看| 国产成人欧美在线观看| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 久久中文看片网| 老司机福利观看| 神马国产精品三级电影在线观看 | 久久草成人影院| 午夜福利在线在线| 无人区码免费观看不卡| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 免费在线观看日本一区| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 精品久久久久久久久久久久久 | 亚洲aⅴ乱码一区二区在线播放 | 国产成人系列免费观看| 国产视频内射| 免费看a级黄色片| 人人妻人人澡人人看| 亚洲一区二区三区色噜噜| 中文字幕另类日韩欧美亚洲嫩草| 国产伦在线观看视频一区| 亚洲av成人av| 啦啦啦韩国在线观看视频| 亚洲av美国av| 久久热在线av| 国产精品免费一区二区三区在线| 91大片在线观看| 黄色女人牲交| 国产人伦9x9x在线观看| 色综合亚洲欧美另类图片| 亚洲男人的天堂狠狠| 国产野战对白在线观看| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 午夜老司机福利片| www.自偷自拍.com| 免费在线观看黄色视频的| 国产亚洲av高清不卡| а√天堂www在线а√下载| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 狂野欧美激情性xxxx| 黄网站色视频无遮挡免费观看| 精品久久久久久久毛片微露脸| 久久久久精品国产欧美久久久| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一av免费看| 成人三级做爰电影| 精华霜和精华液先用哪个| 久久精品国产99精品国产亚洲性色| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 高潮久久久久久久久久久不卡| 欧美又色又爽又黄视频| 精品久久久久久久末码| 一级a爱视频在线免费观看| 成人午夜高清在线视频 | 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 女性生殖器流出的白浆| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| 黑人欧美特级aaaaaa片| 国产欧美日韩精品亚洲av| 午夜免费鲁丝| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 久久香蕉国产精品| netflix在线观看网站| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 一级毛片精品| 国产一卡二卡三卡精品| 午夜激情福利司机影院| 一区二区三区激情视频| av视频在线观看入口| 成人欧美大片| 草草在线视频免费看| e午夜精品久久久久久久| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 一级毛片女人18水好多| 国产一区在线观看成人免费| 99久久国产精品久久久| 此物有八面人人有两片| 在线av久久热| 一a级毛片在线观看| 亚洲avbb在线观看| 亚洲第一青青草原| 窝窝影院91人妻| 亚洲无线在线观看| 欧美绝顶高潮抽搐喷水| 一级片免费观看大全| 变态另类成人亚洲欧美熟女| 欧美成狂野欧美在线观看| 亚洲成人久久性| 人人妻人人澡人人看| 人人妻人人澡欧美一区二区| 成人亚洲精品av一区二区| 一区二区日韩欧美中文字幕| 国产精品一区二区免费欧美| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 91麻豆av在线| 一二三四在线观看免费中文在| 久久香蕉国产精品| 亚洲第一电影网av| 亚洲国产精品999在线| 无人区码免费观看不卡| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 宅男免费午夜| 国产精品野战在线观看| 少妇裸体淫交视频免费看高清 | 黑丝袜美女国产一区| 久久精品亚洲精品国产色婷小说| 国产精品久久久久久人妻精品电影| 又紧又爽又黄一区二区| 国产真实乱freesex| 久久久久亚洲av毛片大全| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 人人妻人人澡人人看| 亚洲 欧美 日韩 在线 免费| av超薄肉色丝袜交足视频| 国产亚洲精品av在线| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3 | 国产精品二区激情视频| 正在播放国产对白刺激| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 男人舔奶头视频| 一级作爱视频免费观看| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 国产人伦9x9x在线观看| www.999成人在线观看| 久久久久久久久中文| 免费女性裸体啪啪无遮挡网站| 欧美日韩精品网址| 午夜精品在线福利| 神马国产精品三级电影在线观看 | 激情在线观看视频在线高清| 亚洲av熟女| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久 | 999久久久精品免费观看国产| 精品久久久久久久末码| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 国产又黄又爽又无遮挡在线| 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| 亚洲国产看品久久| 我的亚洲天堂| 精品国产乱码久久久久久男人| 国语自产精品视频在线第100页| 国产成人精品无人区| 天天一区二区日本电影三级| 国产精品自产拍在线观看55亚洲| 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全电影3 | 草草在线视频免费看| 亚洲一区高清亚洲精品| 日本 av在线| 观看免费一级毛片| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 黄频高清免费视频| www日本在线高清视频| 男女视频在线观看网站免费 | 午夜福利在线在线| 91麻豆av在线| 亚洲成人国产一区在线观看| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕久久专区| 精品久久久久久,| 日本五十路高清| 午夜精品久久久久久毛片777| 日本成人三级电影网站| 国产一区二区激情短视频| 亚洲欧洲精品一区二区精品久久久| 久久国产精品男人的天堂亚洲| x7x7x7水蜜桃| 999精品在线视频| 久久天躁狠狠躁夜夜2o2o| 老司机靠b影院| 精品久久蜜臀av无| 日韩欧美一区二区三区在线观看| 成人三级做爰电影| 久久人人精品亚洲av| 精品日产1卡2卡| 日韩欧美一区二区三区在线观看| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久,| 狂野欧美激情性xxxx| 精品国产一区二区三区四区第35| 欧美一级毛片孕妇| 午夜影院日韩av| 老司机午夜福利在线观看视频| 1024香蕉在线观看| 国产亚洲精品一区二区www| 久久精品91无色码中文字幕| 悠悠久久av| 欧美成人免费av一区二区三区| 欧美黑人欧美精品刺激| 搞女人的毛片| tocl精华| 欧美在线黄色| 中文字幕av电影在线播放| 满18在线观看网站| 麻豆久久精品国产亚洲av| 欧美一级毛片孕妇| 亚洲精品粉嫩美女一区| 国语自产精品视频在线第100页| 国产极品粉嫩免费观看在线| 两个人免费观看高清视频| 成人精品一区二区免费| 日本 欧美在线| 亚洲专区中文字幕在线| 国产精品永久免费网站| 黑丝袜美女国产一区| 亚洲熟女毛片儿| 亚洲成a人片在线一区二区| 黄片小视频在线播放| 一本大道久久a久久精品| 久久午夜亚洲精品久久| 国产又色又爽无遮挡免费看| 一级毛片精品| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| 欧美激情高清一区二区三区| 在线观看www视频免费| 国产v大片淫在线免费观看| 亚洲国产欧洲综合997久久, | 黑丝袜美女国产一区| 欧美激情久久久久久爽电影| 精品久久久久久久末码| √禁漫天堂资源中文www| 国产免费男女视频| 91av网站免费观看| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 欧美国产精品va在线观看不卡| 视频在线观看一区二区三区| 国产精品综合久久久久久久免费| 性欧美人与动物交配| 一区福利在线观看| 黄色丝袜av网址大全| 国产蜜桃级精品一区二区三区| 欧美久久黑人一区二区| 欧美日韩中文字幕国产精品一区二区三区| 在线观看66精品国产| 欧美黄色淫秽网站| 99在线人妻在线中文字幕| 国产精品一区二区精品视频观看| 欧美色欧美亚洲另类二区| 国产精品免费一区二区三区在线| 欧美国产精品va在线观看不卡| 操出白浆在线播放| 国产一卡二卡三卡精品| 不卡av一区二区三区| 18禁黄网站禁片午夜丰满| 国产91精品成人一区二区三区| 不卡av一区二区三区| bbb黄色大片| 国产精品,欧美在线| 欧美日韩瑟瑟在线播放| 99热6这里只有精品| 亚洲精品色激情综合| 女性被躁到高潮视频| 午夜激情福利司机影院| 亚洲精品色激情综合| 成年版毛片免费区| 国产区一区二久久| 国产黄a三级三级三级人| 精品不卡国产一区二区三区| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| 免费女性裸体啪啪无遮挡网站| 日本免费一区二区三区高清不卡| 黄色丝袜av网址大全| 俄罗斯特黄特色一大片| 成人av一区二区三区在线看| 伦理电影免费视频| 视频区欧美日本亚洲| 成人国产综合亚洲| tocl精华| 国产主播在线观看一区二区|