• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving Dose Accuracy in Cancer Radiation Therapy Using Deformable Image Registration

    2017-01-19 06:42:26AmyLiuYadinDavidFredHoseaRichardWu
    中國(guó)醫(yī)療設(shè)備 2016年11期
    關(guān)鍵詞:前沿技術(shù)高技術(shù)經(jīng)濟(jì)性

    Amy Liu, Yadin David, Fred Hosea, Richard Wu

    1.Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; 2.Biomedical Engineering Consultants, LLC, Houston, Texas, USA; 3.Convivia, Oakland, California, USA

    Improving Dose Accuracy in Cancer Radiation Therapy Using Deformable Image Registration

    Amy Liu1, Yadin David2, Fred Hosea3, Richard Wu1

    1.Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; 2.Biomedical Engineering Consultants, LLC, Houston, Texas, USA; 3.Convivia, Oakland, California, USA

    編者按:近年醫(yī)療器械產(chǎn)品市場(chǎng)上,得益于計(jì)算機(jī)技術(shù)的普遍應(yīng)用以及醫(yī)學(xué)影像技術(shù)的飛速發(fā)展,腫瘤放射治療、微創(chuàng)手術(shù)機(jī)器人以及分子影像學(xué)等前沿科技均步入了迅猛發(fā)展的時(shí)代,成為未來(lái)最具有發(fā)展?jié)摿Φ膸状筢t(yī)學(xué)科學(xué)前沿領(lǐng)域。前沿技術(shù)是高技術(shù)領(lǐng)域中具有前瞻性、先導(dǎo)性和探索性的重大技術(shù),是未來(lái)高技術(shù)更新?lián)Q代和新興產(chǎn)業(yè)發(fā)展的重要基礎(chǔ),是國(guó)家高技術(shù)創(chuàng)新能力的綜合體現(xiàn)。我們邀請(qǐng)到安德森癌癥中心的Amy Liu研究員、天津大學(xué)的王樹新教授以及北京大學(xué)人民醫(yī)院的霍天龍主任就其目前的研究課題分別對(duì)精確放療,基于ARM微控制器的醫(yī)療手術(shù)機(jī)器人以及醫(yī)學(xué)MR分子探針等前沿技術(shù)組織一期專欄,向讀者全面介紹精準(zhǔn)醫(yī)療背后的人工智能技術(shù)。

    ObjectiveTo explore the differences in volume and doses to clinical target volumes (CTVs) and organs at risk (OARs) with and without adaptive treatment plans by using deformable image registration technology.MethodsTen patients with head and neck cancer were selected for this retrospective study. Each patient's original treatment plan was generated using the Eclipse treatment planning system (Varian, Inc.). Verif cation CT scans were performed during the third week of treatment. The verif cation CT images were registered with the original CT images using the Eclipse rigid registration tool simulating daily patient treatment alignment. Then, deformable image registrations (Velocity, Inc.) were performed between the two CT image sets, and the CTVs and major OARs were transferred from the original CT images to the verif cation CT images. The original treatment plan was then copied into the verif cation CT image set to calculate the radiation dose ref ecting the most recent anatomic changes. Verif cation plan doses were evaluated by a radiation oncologist, who determined whether an adaptive treatment plan was required. We compared the accumulated doses to CTVs and OARs between the original and adaptive plans, as well as between the adaptive and verif cation plans, to simulate the doses that would have been delivered if the adaptive plans were not used. All dosimetric data were extracted using the Eclipse Application Programming Interface tool, which was developed in house to access the Eclipse database. Results Body contours were different after 3 weeks of treatment. Mean volumes of all CTVs were reduced (P≤0.04), and the volumes of left and right parotid glands decreased (P≤0.004). There were no significant differences in the volumes of brainstem and oral cavity (P≥0.14) between the original and verif cation CT scans. The spinal cord had a mean 8.7% decrease in volume (P=0.04). Mean doses of CTVs were all decreased (P≤0.04), whereas the mean doses of the right parotid and oral cavity were increased (P=0.03).ConclusionVerif cation CT scans and adaptive planning are required during the course of proton therapy for patients with head and neck cancer to identify anatomic and dosimetric changes and to ensure adequate doses to target volumes and safe doses to normal tissues. Our results indicate that deformable image registration can serve as an essential tool for current proton treatment.

    deformable image registration; proton IMPT for head and neck cancer; adaptive plan; dose uncertainty

    There has been substantial growth in the use of proton therapy in the treatment of cancer in the past decade[1]. Owing to the sharp distal falloff of proton beams within tissue, this technologically advanced therapy has substantial advantages over conventional photon therapy, reducing unnecessaryradiation doses to organs at risk (OARs) and healthy tissue. Numerous reports have documented the theoretical advantages of proton therapy over photon therapy for head and neck malignancies[2-3], and clinical results achieved with proton beams have been impressive[4]. The fundamental tenet of radiotherapy is the delivery of a high radiation dose to the tumor while limiting the dose to the surrounding normal tissues[5]. However, because changes in patient anatomy (such as weight loss) occur during treatment (usually by 5~7 weeks) and because protons have a def ned range to target, the planned radiation dose to clinical target volumes (CTVs) and dose to OARs may be changed signif cantly.

    Deformable (non-rigid) imaging registration (DIR) has gained popularity in recent years, becoming an essential tool in both adaptive radiation therapy and image-guided radiation therapy to account for tissue changes during the course of treatment[6]. Using deformable image registration, we can evaluate the dose precisely throughout the entire treatment and, if needed, generate an adaptive treatment plan to correct dose def ciencies and ensure that OAR doses are appropriate. Numerous studies have been performed using deformable dose accumulation on prostate and head and neck cancer treatments with photon IMRT modality[7-8]and for adaptive therapy[6,9]. However, there have been no studies demonstrated the degree of dose variations for patients treated with IMPT modality. Because of the sharp falloff in proton distal range, small changes in anatomy can cause dosimetric changes in target and OARs. Wang et al[10]found head and neck cancer patients could have anatomical structure changes during the course of radiotherapy owing to the shrinkage of the tumor or lymph nodes or to body weight loss. It was also found that gross tumor volumes (GTVs) can be reduced by as much as 70%[11]. Therefore, it is important during the proton treatment to evaluate the dosimetric effect.

    In this retrospective study, we evaluated the contribution of repeat CT verif cation scans and adaptive IMPT re-planning in assessing anatomic volumetric and dosimetric changes during the course of proton treatment.

    1 MATERIALS AND METHODS

    1.1 Patient selection, planning methods, and treatment delivery

    This study included 10 patients with head and neck squamous cell carcinoma. These patients had been treated with a definitive chemo-radiation protocol using IMPT to the GTV with a dose of 70 Gy (relative biological equivalence, REB) in 2 Gy per fraction. The clinical target volumes (CTV1, CTV2 and CTV3) represented tissues considered to be at risk of microscopic disease but not gross disease, including lymph node regions. The average volumes were 176, 204, and 241 cm3for CTV1, CTV2, and CTV3, respectively. CT scans and volumes were obtained in a GE CT simulator and transferred electronically to the treatment planning system (TPS) at the proton therapy center of MD Anderson Cancer Center. Each patient's original treatment plan was generated using the Eclipse treatment planning system (Varian, Inc.). Verification CT scans were performed during the third week of treatment. The verification CT images were registered with the original planning CT images using the Eclipse rigid registration tool simulating daily patient treatment alignment. All plans were calculated using the TPS for delivery of proton therapy with discrete spot beam scanning[12]. The proton therapy center uses a synchrotron and the Hitachi Probeat proton beam therapy system (Hitachi, Ltd., Tokyo, Japan). A three-field beam arrangement was used, with right anterior oblique (RAO), left anterior oblique (LAO), and posterior to anterior (PA) direction beams. The f elds were all non-coplanar, as shown in Figure 1.

    Figure 1 Verif cation CT scan. a. Shows an overview of the noncoplanar field directions; b. Illustrates skin location changes (2~5 mm) noted after 3 weeks of proton therapy treatment in a representative patient with head and neck cancer.

    The maximum energy of the proton beams per field varied between 102 and 203 MeV, depending on the case and the incident beam angle. An energy absorber (6.7 cm water equivalent thickness) was mounted on the treatment snout, to engage the system to treat targets in the shallow area of the head and neck.

    Deformable image registrations were performed betweenthe two CT image sets using commercial deformable registration software (Velocity, Inc.). The accuracy of the deformable image registration algorithms was previously evaluated by Kirby et al[13]. The treatment targets had three CTVs (CTV1, CTV2, and CTV3) corresponding to intended cobalt equivalent dose levels of 70, 63, and 57 Gy, respectively. Major OARs for the study were the parotids, oral cavity, brainstem, and spinal cord. Both CTVs and OARs were deformed and transferred from the original CT images to the verification CT image data set[14]. All deformed contours were reviewed by a radiation oncologist before generating the adaptive plan. The original treatment plan was then copied into the verif cation CT image set to calculate the radiation dose ref ecting the most recent anatomic changes. The verification plan was evaluated and compared with the original approved plan on all dosimetric matrixes by a radiation oncologist, who determined whether an adaptive treatment plan was required. We compared the accumulated dose to CTVs and OARs between the original plan and the adaptive plan, as well as between the adaptive plan and verif cation plan, to simulate the doses that would have been delivered if the adaptive plans were not used. Among this selected group of patients, we used the last nine fractions of thirty three fractions total for adaptive plan.

    1.3 Volume and dose comparisons

    All CTVs and OAR volumes were compared between the original and verification CT scans with paired-sample analysis. Again, the OARs analyzed were the spinal cord, brainstem, parotid glands, and oral cavity. For each plan, dose volume histograms (DVHs) were calculated for CTVs and OARs. First, the original plan (based on the original CT) was compared with the adaptive plan (based on the verification CT) with the renormalized 33-fraction treatment dose to ensure that the plans were consistent in their quality. Then, comparisons were made among verif cation and adaptive plans. This comparison accounted for the last nine fractions delivered by the adaptive plan. The selected nine fractions for the adaptive plan were based on the weekly CT verification image and plan review results.

    All dosimetric data were extracted using the Eclipse Application Programming Interface (API) tool, which was developed in house at M.D. Anderson to access the Eclipse database. (The API tool facilitates efficient and accurate extraction of dosimetric data from the Eclipse treatment planning database, compared with manual data collection using the tools within the Eclipse system.)

    Wilcoxon matched-pairs nonparametric tests were used to evaluate the effect of adaptive plan vs. verif cation on volume and plan dosimetric changes. A probability value of ≤0.05 was considered signif cant. All statistics were calculated using R.

    2 RESULTS

    2.1 Volume comparisons

    As illustrated in Figure 1 (which shows a representative image from one patient), body contours were changed after 3 weeks of treatment. Also, the CTV and OAR locations inside of patients had some degree of change. As a result, the dose distribution changed. Figure 2 illustrates the CTV dose coverage changes between the original and verif cation CT scans. Table 1 compares the volumes of CTVs and OARs for the original vs. verification CT scans. Between the original and verification CT scans, the mean volumes of all CTVs were reduced (P≤0.04), and the volumes of left and right parotid glands decreased (P≤0.004). There were no signif cant differences in the volumes of the brainstem or oral cavity (P≥0.14) between the original and verif cation CT scans. The spinal cord had a mean 8.7% decrease in volume (P=0.04). Our f ndings were consistent with those of previous studies that found that CTV and parotid volumes shrink after radiation treatment (in this case, after 3 weeks). Volumes of the other OARs examined (brainstem, spinal cord, and oral cavity) remained relatively consistent.

    Figure 2 Example of the base of tongue of a patient with carcinoma. a. From the original plan; b. From a verification plan. The figure shows the dose distribution changes due to slight changes in the tongue location.

    Table 1 Volume comparisons

    2.2 Dosimetric comparisons

    There were no signif cant dosimetric differences betweenthe original plan and adaptive plan (Figure 3), which could be attributed to the re-planning process with the same planning goal setting that should achieve adaptive plan dose constraint as close as possible using verif cation CT.

    1.利潤(rùn)追求。組建聯(lián)合體的根本驅(qū)動(dòng)在于外部交易內(nèi)部化、生產(chǎn)經(jīng)營(yíng)規(guī)?;蜆?biāo)準(zhǔn)化,提高經(jīng)濟(jì)效益,產(chǎn)生合作剩余,成員共同協(xié)商收益分配,使各方能夠獲取比單獨(dú)經(jīng)營(yíng)時(shí)更多的利潤(rùn)。農(nóng)村產(chǎn)業(yè)融合強(qiáng)調(diào)的是不同產(chǎn)業(yè)相互滲透、交叉、重組后,經(jīng)營(yíng)主體由競(jìng)爭(zhēng)關(guān)系轉(zhuǎn)變?yōu)楹献麝P(guān)系,實(shí)現(xiàn)范圍經(jīng)濟(jì),使各主體獲得比獨(dú)立經(jīng)營(yíng)某一產(chǎn)業(yè)時(shí)更多的利潤(rùn)。二者都是借由市場(chǎng)主體聯(lián)結(jié),降低交易費(fèi)用,只是前者側(cè)重規(guī)模經(jīng)濟(jì)性,后者更凸顯范圍經(jīng)濟(jì)性。

    Figure 3 Dose volume histograms (DVHs). a. For clinical target volume (CTV) comparison and are derived from original plan (square lines) and adaptive plan (triangles) in the head and neck case; b. For CTVs and organs at risk (OARs) derived from the verification plan (square lines) and adaptive plan (triangle lines). There was no significant difference for CTV coverage between the original plan and the adaptive plan. There was a significant difference between the verification plan and adaptive plan.

    Figure 3 shows a selected patient DVH for CTVs and OARs derived from the adaptive plan (triangles) and verif cation plan (squares). On verif cation plan DVH, 95% CTV1 volume was covered by the prescription dose (70 Gy); however, the dose homogeneity and conformity[15]degraded. The decreases in dose homogeneity and conformity were more signif cant for CTV2 and CTV3. There were increased doses in the right parotid and oral cavity. Values for V26(the percentage volume that received more than 26 Gy) for the right parotid were 33% and 54%, respectively. For the oral cavity, V30values were 6% and 10%, respectively.

    However, there were significant dosimetric differences

    between the adaptive plan and verification plan. As shown in Table 2, on verif cation, the mean doses (D99and D95) of CTV1, CTV2, and CTV3 were all decreased (P≤0.04), whereas the mean doses (Dmean) of the right parotid and oral cavity were increased (P=0.03). Our study also indicated that there was no signif cant mean dose (Dmean) increase to the left parotid (P=0.4) and mean maximum dose (Dmax) increases to brainstem (P=0.28) and spinal cord (P=0.12).

    Table 2 Dosimetric comparison of adaptive plan with verif cation plan

    3 DISCUSSION

    This retrospective study demonstrated the importance of performing verification CT imaging and the need for adaptive planning during the course of IMPT for patients with head and neck cancer. The dosimetry outcomes reported in this study are consistent with those of other investigations[16]without use of DIR. Deformable image registration technology has played an important role in generating adaptive treatment planning. It can reduce the workload of physicians in re-contouring all structures in the new CT image data set, which is time consuming but a very important step to ensure the accuracy of the adaptive treatment plan designs. In this study, the spinal cord deformation volume should not change theoretically between the two CT data sets, but results of the statistical analysis suggest that it had more changes than expected (P=0.04). This could be related to two reasons. First, the deformed spinal cord contours on the verification CT scans were not reviewed as rigorously as were CTVs and parotids. Second, the spinal cord (a soft tissue structure) is inside the C spine vertebra (a hard bony structure). There may be deformation inaccuracy by the Velocity DIR algorithm that may focus more on high-density areas. On the other hand, there were no signif cantvolume changes for the brainstem or oral cavity. The low-level dose to these two structures may also have contributed to these results. Many commercial and in-house DIR systems have been developed in recent years. These systems use a variety of approaches, and the accuracy of contour deformation needs to be further evaluated and used with precaution[13]. As a result, the new contours review or moderation process on the new CT data set cannot be completely eliminated and replaced with DIR.

    The results here of parotid dose changes are consistent with the finding from Hansen et al[16]. The right parotid mean dose was increased on verification compared with the adaptive plan (P=0.03), whereas the left parotid dose had insignif cant changes (P=0.4). Among the ten patients, four patients had GTV on the right side and six on the left. Further studies are needed to evaluate the geometric relationship of deformed CTVs and parotids.

    Future investigation can also be extended to a large number of patients being treated that have used DIR to obtain accumulated doses from multiple plans to correlate treatment outcomes. Future studies should also investigate change in CTVs and different degrees of shrinkage in OARs (especially parotids) between photon and proton modalities that can be uniquely due to proton variable RBE to a variety of different types of tissue in which DIR may have increased uncertainty to perform contour deformation.

    There are increased workloads and costs for physicians, physicists, and dosimetrists to perform reimaging and re-planning. The Eclipse API may automate this process in a seamless fashion and thus reduce the burden on all involved personnel.

    4 CONCLUSION

    Verif cation CT imaging and adaptive planning are required during the course of IMPT for patients with head and neck cancer to identify anatomic and dosimetric changes and to ensure adequate doses to target volumes and safe doses to normal tissues. Our results indicate that deformable image registration can serve as an essential tool for current IMPT regimens.

    5 ACKNOWLEDGMENT

    We thank Michael Worley and the Department of Scientif c Publications at MD Anderson Cancer Center for editorial assistance.

    [1] Smith AR.Proton therapy[J].Phys Med Biol,2006,51(13): R491-504.

    [2] Lomax AJ,Goitein M,Adams J.Intensity modulation in radiotherapy:photons versus protons in the paranasal sinus[J]. Radiother Oncol,2003,66(1):11-18.

    [3] Steneker M,Lomax A,Schneider U.Intensity modulated photon and proton therapy for the treatment of head and neck tumors[J]. Radiother Oncol,2006,80(2):263-267.

    [4] Frank SJ,Cox JD,Gillin M,et al.Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice[J].Int J Radiat Oncol Biol Phys,2014,89(4):846-853.

    [5] Njeh CF,Dong L,Orton CG.Point/Counterpoint.IGRT has limited clinical value due to lack of accurate tumor delineation[J]. Med Phys,2013,40(4):040601.

    [6] Lawson JD,Schreibmann E,Jani AB,et al.Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy[J].J Appl Clin Med Phys,2007,8(4):2432. [7] Cui Y,Piper JW,Harrison AS,et al.Deformable Dose Accumulation with Image Guided Radiotherapy for Final Dose Evaluation in Pelvic Cases[J].J Nucl Med Radiat Ther,2012,(Suppl.3):1.

    [8] Veiga C,McClelland J,Moinuddin S,et al.Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for“dose of the day”calculations[J].Med Phys,2014,41(3):031703.

    [9] Chitapanarux I,Chomprasert K,Nobnaop W,et al.A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer[J].J Radiat Res,2015,56(3):529-538.

    [10] Wang W,Yang H,Hu W,et al.Clinical study of the necessity of replanning before the 25thfraction during the course of intensitymodulated radiotherapy for patients with nasopharyngeal carcinoma[J].Int J Radiat Oncol Biol Phys,2010,77(2):617-621.

    [11] Barker JL Jr,Garden AS,Ang KK,et al.Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system[J].Int J Radiat Oncol Biol Phys, 2004,59(4):960-970.

    [12] Gillin MT,Sahoo N,Bues M,et al.Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D.Anderson Cancer Center,Proton Therapy Center, Houston[J].Med Phys,2010,37(1):154-163.

    [13] Kirby N,Chuang C,Ueda U,et al.The need for applicationbased adaptation of deformable image registration[J].Med Phys,2013,40(1):011702.

    [14] Schreibmann E,Pantalone P,Waller A,et al.A measure to evaluate deformable registration fields in clinical settings[J].J Appl Clin Med Phys,2012,13(5):3829.

    [15] Iqbal K,Isa M,Buzdar SA,et al.Treatment planning evaluation of sliding window and multiple static segments techniquein intensity modulated radiotherapy[J].Rep Pract Oncol Radiother,2012,18(2):101-106.

    [16] Hansen EK,Bucci MK,Quivey JM,et al.Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys,2006,64(2):355-362.

    R197.39 [Document code] A

    10.3969/j.issn.1674-1633.2016.11.002 [Article ID] 1674-1633(2016)11-0009-05

    Received: 2015-09-09

    Amy Liu, Computational Scientist, Department of Radiation Physics, Pickens Academic Tower, 1400 Pressler St., Unit 1420, Houston, Texas 77030-3722, USA. E-mail: AYLiu@mdanderson.org

    猜你喜歡
    前沿技術(shù)高技術(shù)經(jīng)濟(jì)性
    2024人工智能(AI)十大前沿技術(shù)趨勢(shì)展望
    高層建筑結(jié)構(gòu)設(shè)計(jì)經(jīng)濟(jì)性探討與分析
    基于經(jīng)濟(jì)性和熱平衡的主動(dòng)進(jìn)氣格柵策略開發(fā)(續(xù)2)
    眼底成像前沿技術(shù)研究進(jìn)展
    2021年上半年高技術(shù)制造業(yè)快速增長(zhǎng)
    智能制造(2021年4期)2021-11-14 18:56:41
    全球紡機(jī)前沿技術(shù)集結(jié)
    粉末冶金前沿技術(shù)專題
    歐陽(yáng)明高技術(shù)控的產(chǎn)業(yè)情懷
    汽車觀察(2016年3期)2016-02-28 13:16:25
    600MW超臨界機(jī)組熱經(jīng)濟(jì)性定量分析
    論測(cè)量的經(jīng)濟(jì)性
    哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 午夜日韩欧美国产| 亚洲,一卡二卡三卡| 亚洲,一卡二卡三卡| 9191精品国产免费久久| 精品久久久精品久久久| av不卡在线播放| 午夜激情av网站| 男人爽女人下面视频在线观看| 亚洲欧美精品综合一区二区三区 | 国产免费又黄又爽又色| 秋霞伦理黄片| 久久久欧美国产精品| 99re6热这里在线精品视频| 人人妻人人爽人人添夜夜欢视频| 免费在线观看完整版高清| 亚洲中文av在线| 中文字幕另类日韩欧美亚洲嫩草| 天天躁夜夜躁狠狠久久av| 1024视频免费在线观看| 日产精品乱码卡一卡2卡三| 日本午夜av视频| av片东京热男人的天堂| 美女国产视频在线观看| av又黄又爽大尺度在线免费看| 多毛熟女@视频| 国产av国产精品国产| 我的亚洲天堂| 精品卡一卡二卡四卡免费| 大片免费播放器 马上看| 好男人视频免费观看在线| 老司机亚洲免费影院| 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看| 国产精品国产三级国产专区5o| 韩国精品一区二区三区| 精品一区二区三卡| 午夜免费观看性视频| 亚洲国产日韩一区二区| 你懂的网址亚洲精品在线观看| 亚洲一码二码三码区别大吗| 亚洲精品,欧美精品| 男人操女人黄网站| 欧美bdsm另类| 国产成人免费观看mmmm| 亚洲精品国产一区二区精华液| 久久午夜综合久久蜜桃| 亚洲国产最新在线播放| 一二三四在线观看免费中文在| 蜜桃国产av成人99| 中文字幕制服av| 97在线人人人人妻| 国产精品久久久av美女十八| 一区二区日韩欧美中文字幕| 日韩欧美一区视频在线观看| 黄片小视频在线播放| 亚洲中文av在线| 成人毛片a级毛片在线播放| 超色免费av| 99热网站在线观看| 青春草亚洲视频在线观看| 在线观看免费高清a一片| 热99国产精品久久久久久7| 韩国高清视频一区二区三区| 精品人妻一区二区三区麻豆| 日韩中文字幕欧美一区二区 | a级毛片在线看网站| 欧美日韩视频精品一区| 极品人妻少妇av视频| 久久久久国产一级毛片高清牌| 国产精品欧美亚洲77777| 中国国产av一级| kizo精华| 人妻 亚洲 视频| 久久av网站| 亚洲精品美女久久久久99蜜臀 | 亚洲精品成人av观看孕妇| 亚洲成人一二三区av| 国产亚洲精品第一综合不卡| 啦啦啦中文免费视频观看日本| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 免费黄网站久久成人精品| 久久久久久久亚洲中文字幕| 欧美激情 高清一区二区三区| 色网站视频免费| a级毛片在线看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲最大av| 精品国产国语对白av| 亚洲精品成人av观看孕妇| 国产日韩欧美亚洲二区| 国产午夜精品一二区理论片| 性高湖久久久久久久久免费观看| 人成视频在线观看免费观看| 免费在线观看黄色视频的| 夫妻午夜视频| 热re99久久国产66热| 一二三四在线观看免费中文在| 国产爽快片一区二区三区| 国产精品久久久av美女十八| 国产成人精品在线电影| av免费观看日本| 久久久久视频综合| 精品国产一区二区三区久久久樱花| 麻豆精品久久久久久蜜桃| 亚洲精品一区蜜桃| 少妇的逼水好多| 波野结衣二区三区在线| 久久久久久久久久久久大奶| 中文字幕人妻熟女乱码| 国产精品三级大全| 97在线视频观看| 亚洲,一卡二卡三卡| 狂野欧美激情性bbbbbb| 亚洲伊人久久精品综合| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频| 尾随美女入室| 久热久热在线精品观看| 亚洲精品av麻豆狂野| 亚洲精品aⅴ在线观看| 精品国产一区二区三区四区第35| 亚洲欧美清纯卡通| 狠狠精品人妻久久久久久综合| 久久精品熟女亚洲av麻豆精品| 久久久久精品人妻al黑| 亚洲精品自拍成人| 18禁裸乳无遮挡动漫免费视频| 久久97久久精品| 在线观看免费日韩欧美大片| av片东京热男人的天堂| 亚洲婷婷狠狠爱综合网| 国产欧美日韩一区二区三区在线| 亚洲男人天堂网一区| 只有这里有精品99| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 精品酒店卫生间| a级毛片在线看网站| 国产亚洲午夜精品一区二区久久| 夜夜骑夜夜射夜夜干| 久久久精品区二区三区| 欧美变态另类bdsm刘玥| 国产精品 国内视频| 十分钟在线观看高清视频www| av电影中文网址| 91成人精品电影| 国产成人精品在线电影| 观看av在线不卡| 久久精品久久精品一区二区三区| 999精品在线视频| 日韩精品免费视频一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲美女视频黄频| 欧美日韩视频高清一区二区三区二| 一边摸一边做爽爽视频免费| 久久婷婷青草| 精品人妻偷拍中文字幕| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频| 少妇人妻精品综合一区二区| 日韩电影二区| 成人毛片60女人毛片免费| 精品午夜福利在线看| 五月天丁香电影| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 黑人猛操日本美女一级片| 久久久久网色| 男女午夜视频在线观看| 久久婷婷青草| 99re6热这里在线精品视频| 日本欧美国产在线视频| 亚洲精品在线美女| 亚洲国产毛片av蜜桃av| 欧美日本中文国产一区发布| 亚洲欧美精品自产自拍| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 伊人久久大香线蕉亚洲五| 午夜免费男女啪啪视频观看| 日本免费在线观看一区| 最黄视频免费看| 黄片播放在线免费| 97人妻天天添夜夜摸| 亚洲精品一区蜜桃| 日韩,欧美,国产一区二区三区| 亚洲精品,欧美精品| www.精华液| av不卡在线播放| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 麻豆av在线久日| av网站在线播放免费| 又黄又粗又硬又大视频| 精品99又大又爽又粗少妇毛片| 伦精品一区二区三区| 亚洲精品aⅴ在线观看| 日日撸夜夜添| 久久精品国产综合久久久| 中文字幕制服av| 九草在线视频观看| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 又黄又粗又硬又大视频| 国产日韩欧美在线精品| 老司机影院毛片| 成人国产麻豆网| 久久综合国产亚洲精品| 亚洲欧美一区二区三区国产| 一个人免费看片子| 最近中文字幕2019免费版| 少妇人妻 视频| 一二三四中文在线观看免费高清| 人妻系列 视频| 亚洲精品久久成人aⅴ小说| 欧美日韩一区二区视频在线观看视频在线| 免费播放大片免费观看视频在线观看| 天堂8中文在线网| 国产精品国产三级国产专区5o| 国产精品香港三级国产av潘金莲 | 黄片播放在线免费| 国产成人aa在线观看| 欧美97在线视频| 国产成人精品久久久久久| 色吧在线观看| 99久久综合免费| 久久精品国产亚洲av天美| 美女高潮到喷水免费观看| 久久精品国产自在天天线| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 久久鲁丝午夜福利片| 久久99蜜桃精品久久| av天堂久久9| 国产精品一二三区在线看| 亚洲欧美成人精品一区二区| 久久久久久久久久久久大奶| 高清av免费在线| 下体分泌物呈黄色| 亚洲三级黄色毛片| 叶爱在线成人免费视频播放| 亚洲综合色惰| 一区二区三区乱码不卡18| 男人添女人高潮全过程视频| 日本-黄色视频高清免费观看| 日本vs欧美在线观看视频| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 黄色一级大片看看| 99香蕉大伊视频| 在线观看美女被高潮喷水网站| 精品国产超薄肉色丝袜足j| 亚洲国产精品999| 婷婷色麻豆天堂久久| www.熟女人妻精品国产| 亚洲四区av| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 韩国精品一区二区三区| 久久久久久久久久久免费av| 日韩中字成人| 少妇猛男粗大的猛烈进出视频| 久久久精品区二区三区| 在线精品无人区一区二区三| 国产精品无大码| 观看美女的网站| 亚洲国产成人一精品久久久| 成年人免费黄色播放视频| 日韩伦理黄色片| 午夜91福利影院| 涩涩av久久男人的天堂| 免费观看在线日韩| 亚洲综合色网址| 侵犯人妻中文字幕一二三四区| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区久久| 亚洲欧美色中文字幕在线| 天天操日日干夜夜撸| 久久久精品94久久精品| 国产黄色视频一区二区在线观看| 18禁国产床啪视频网站| 中文欧美无线码| 久久 成人 亚洲| 熟妇人妻不卡中文字幕| 99精国产麻豆久久婷婷| 一本色道久久久久久精品综合| 曰老女人黄片| 久久亚洲国产成人精品v| 观看av在线不卡| 在线观看免费高清a一片| 国产又爽黄色视频| 电影成人av| 精品久久蜜臀av无| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区 | 久久久国产一区二区| 亚洲欧美精品综合一区二区三区 | 国产欧美日韩综合在线一区二区| 美女福利国产在线| 久久精品国产鲁丝片午夜精品| 熟女电影av网| 亚洲国产欧美在线一区| 一级片'在线观看视频| 午夜激情av网站| 亚洲在久久综合| 亚洲美女视频黄频| av电影中文网址| 秋霞伦理黄片| 两性夫妻黄色片| 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 亚洲综合色网址| 建设人人有责人人尽责人人享有的| 黄片小视频在线播放| 看非洲黑人一级黄片| 久久精品国产综合久久久| 国产又爽黄色视频| 日韩av在线免费看完整版不卡| 亚洲国产精品一区三区| 午夜精品国产一区二区电影| 欧美最新免费一区二区三区| 18禁裸乳无遮挡动漫免费视频| 黄色视频在线播放观看不卡| 80岁老熟妇乱子伦牲交| 大香蕉久久成人网| 男男h啪啪无遮挡| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 中文字幕人妻丝袜制服| 男女边吃奶边做爰视频| 999精品在线视频| 色网站视频免费| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 九草在线视频观看| av免费在线看不卡| 九色亚洲精品在线播放| 蜜桃在线观看..| 搡女人真爽免费视频火全软件| 久久久久网色| 亚洲男人天堂网一区| 亚洲国产av新网站| 久久久久网色| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 在线 av 中文字幕| 少妇的逼水好多| 搡女人真爽免费视频火全软件| 不卡av一区二区三区| 国产成人一区二区在线| 国产国语露脸激情在线看| 中文乱码字字幕精品一区二区三区| 日韩一区二区视频免费看| 免费观看a级毛片全部| 99九九在线精品视频| 一区福利在线观看| 国产国语露脸激情在线看| 在线 av 中文字幕| 人妻一区二区av| 日本vs欧美在线观看视频| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| av免费在线看不卡| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 人妻一区二区av| 少妇的丰满在线观看| 妹子高潮喷水视频| 在线天堂最新版资源| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 制服丝袜香蕉在线| 久久综合国产亚洲精品| 亚洲伊人色综图| 中文天堂在线官网| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲| 免费高清在线观看视频在线观看| 久久 成人 亚洲| av视频免费观看在线观看| 精品国产一区二区久久| 国产片特级美女逼逼视频| 99国产精品免费福利视频| 久久久久视频综合| 亚洲成人一二三区av| 欧美日韩一区二区视频在线观看视频在线| 欧美精品av麻豆av| 日韩制服丝袜自拍偷拍| 亚洲精品自拍成人| 色播在线永久视频| 午夜免费观看性视频| 亚洲伊人久久精品综合| 在线免费观看不下载黄p国产| 最近中文字幕2019免费版| 男女高潮啪啪啪动态图| 黑人巨大精品欧美一区二区蜜桃| 男女边摸边吃奶| 欧美日韩国产mv在线观看视频| 少妇的逼水好多| 亚洲伊人久久精品综合| 精品少妇一区二区三区视频日本电影 | 日本色播在线视频| av卡一久久| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 久久久久久免费高清国产稀缺| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 国产一区有黄有色的免费视频| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 美女午夜性视频免费| 日本色播在线视频| av天堂久久9| 麻豆乱淫一区二区| 九草在线视频观看| 观看av在线不卡| 久久韩国三级中文字幕| 另类亚洲欧美激情| 欧美人与性动交α欧美精品济南到 | 一本久久精品| 国产不卡av网站在线观看| 成人国语在线视频| 18禁动态无遮挡网站| 久久免费观看电影| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 国产一区亚洲一区在线观看| 国产乱来视频区| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 久久精品国产鲁丝片午夜精品| 婷婷色麻豆天堂久久| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到 | 下体分泌物呈黄色| 欧美最新免费一区二区三区| 精品国产一区二区久久| 色哟哟·www| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜| 精品第一国产精品| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 韩国av在线不卡| 欧美精品一区二区大全| 一本久久精品| 伦理电影大哥的女人| 丰满迷人的少妇在线观看| 亚洲国产看品久久| 亚洲综合色惰| 久久久久久久大尺度免费视频| 老鸭窝网址在线观看| 日韩免费高清中文字幕av| 精品酒店卫生间| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 国产精品一国产av| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 精品第一国产精品| 在线观看免费视频网站a站| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 亚洲av中文av极速乱| 老司机影院成人| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 久久精品aⅴ一区二区三区四区 | 好男人视频免费观看在线| 伦精品一区二区三区| 国产亚洲欧美精品永久| 日本91视频免费播放| 久久精品久久久久久噜噜老黄| 激情视频va一区二区三区| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 99国产精品免费福利视频| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 亚洲国产毛片av蜜桃av| 日韩大片免费观看网站| 自线自在国产av| 日本色播在线视频| 亚洲五月色婷婷综合| 成人毛片a级毛片在线播放| 老司机亚洲免费影院| 国产av精品麻豆| 国产成人a∨麻豆精品| 国产一区二区三区综合在线观看| 国产精品女同一区二区软件| 亚洲视频免费观看视频| 精品一区在线观看国产| 久久精品aⅴ一区二区三区四区 | 少妇人妻精品综合一区二区| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| 狠狠婷婷综合久久久久久88av| 精品国产国语对白av| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 人妻一区二区av| av一本久久久久| 国产免费又黄又爽又色| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 99香蕉大伊视频| 性色av一级| 一区在线观看完整版| 久久久久久人人人人人| 日韩中字成人| 亚洲av综合色区一区| 成人手机av| 久久久久国产精品人妻一区二区| 一级片免费观看大全| 水蜜桃什么品种好| 男的添女的下面高潮视频| 99久国产av精品国产电影| 色94色欧美一区二区| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区 | 人人妻人人添人人爽欧美一区卜| 亚洲视频免费观看视频| 亚洲欧洲日产国产| 日韩视频在线欧美| 中国三级夫妇交换| 国产野战对白在线观看| 亚洲国产av新网站| 飞空精品影院首页| 1024视频免费在线观看| 亚洲国产色片| 午夜福利在线观看免费完整高清在| 美女福利国产在线| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 少妇被粗大的猛进出69影院| www.精华液| 精品视频人人做人人爽| 国产男女内射视频| 国产成人精品一,二区| 亚洲一级一片aⅴ在线观看| 丁香六月天网| 中文字幕色久视频| 一个人免费看片子| 亚洲伊人久久精品综合| 亚洲国产成人一精品久久久| 老鸭窝网址在线观看| 高清不卡的av网站| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 午夜免费观看性视频| 国产精品免费大片| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 90打野战视频偷拍视频| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 午夜久久久在线观看| 两个人免费观看高清视频| 男女国产视频网站| 国产成人午夜福利电影在线观看| 国产亚洲最大av| 91精品三级在线观看| 国产综合精华液| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 少妇的逼水好多| 国产精品女同一区二区软件| 亚洲久久久国产精品| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 美女福利国产在线| 成年人免费黄色播放视频| 人人澡人人妻人| 午夜免费男女啪啪视频观看| 有码 亚洲区| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 丝袜美腿诱惑在线| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 国产精品一国产av| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 国产一区二区在线观看av| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久| 少妇的逼水好多| 美女xxoo啪啪120秒动态图|