劉德軍,董 彬,李文斌,王 斌,王鑫坤,高 微,宮元娟
(1. 沈陽農(nóng)業(yè)大學工程學院,沈陽 110866;2. 沈陽市華創(chuàng)建材科技有限公司,沈陽 110000)
無醛無毒防火秸稈人造板的制備與性能試驗
劉德軍1,董 彬2,李文斌1,王 斌1,王鑫坤1,高 微1,宮元娟1※
(1. 沈陽農(nóng)業(yè)大學工程學院,沈陽 110866;2. 沈陽市華創(chuàng)建材科技有限公司,沈陽 110000)
針對目前市場秸稈人造板物理機械性能差,不能完全解決甲醛含量等問題,該研究采用MgSO4、MgCO3、活性硅和ALSiO4等做成無機膠凝材料,采用豆膠與改性異氰酸酯(diphenylmethane diisocyanate,MDI)制成有機膠凝材料,無機膠凝材料與有機膠凝材料混合制成膠黏劑。秸稈物料熱重分析和秸稈板顯微結構觀察表明,膠黏劑對提高秸稈板的性能指標具有顯著影響。通過五因素四水平L16(45)正交試驗優(yōu)化秸稈人造板的熱壓工藝,獲得最佳工藝條件為:無機膠凝材料與有機膠凝材料質量比為4:1,膠黏劑添加量與秸稈物料質量比為0.65:0.35(固體有效成分在秸稈人造板中質量分數(shù)為35%),熱壓時間3 min,熱壓溫度為100~120 ℃,熱壓壓力80 MPa。試驗研究表明:熱壓壓力、膠黏劑中無機膠凝材料的比例和膠黏劑添加量是影響秸稈板性能的重要因素,最佳工藝組合下生產(chǎn)的秸稈板各項指標均達到中密度纖維板的國家標準,該研究對中國秸稈資源的開發(fā)利用和人造板的生產(chǎn)具有重要的參考意義。
秸稈;加工;材料性能;人造板;無機膠凝材料;膠黏劑
中國秸稈資源豐富,目前存在浪費和環(huán)境污染的嚴重問題。為了充分利用這一巨大的生物質資源,各地政府相繼出臺了多項優(yōu)惠政策,設立專項資金,鼓勵科研院所和企業(yè)進行新產(chǎn)品的研發(fā)和推廣。生產(chǎn)秸稈人造板是合理利用秸稈資源,增加農(nóng)民收入和實現(xiàn)農(nóng)村經(jīng)濟的可持續(xù)發(fā)展主要途徑之一。通常秸稈人造板是指以全部秸稈(100%)或以木材和秸稈(至少30%)混合,添加異氰酸酯類膠黏劑,通過鋪裝、預壓、熱壓以及后期鋸割處理、養(yǎng)生處理、表面處理得到秸稈中密度纖維板和秸稈刨花板,統(tǒng)稱為秸稈人造板[1]。農(nóng)作物秸稈人造板技術的成熟為減少森林木材資源砍伐、保護生態(tài)環(huán)境提供了新的產(chǎn)業(yè)發(fā)展思路,通過“以草補木”滿足國家社會對人造板的需求,減少森林砍伐,保護生態(tài)環(huán)境,對生態(tài)文明體系的構建起到了積極作用。秸稈人造板生產(chǎn)在中國有著很大的發(fā)展空間。
目前市場上的人造板都是以三醛膠(脲醛、甲醛、酚醛)制成[2-7],即使是目前市場上在售的生態(tài)板也是以三醛膠為基礎進行的改良,不能完全解決游離甲醛的問題,而且采用傳統(tǒng)的辦法進行物料破碎或纖維分離,得率低,形態(tài)差,影響了產(chǎn)品的物理力學性能,也難以得到滿意的膠合強度(尤其是內(nèi)結合強度)。秸稈人造板產(chǎn)品能否被市場認可,關鍵取決于產(chǎn)品性能和價格。就產(chǎn)品性能而言,重點是要提高產(chǎn)品的防腐、防霉以及阻燃等性能,就價格而言,關鍵是要降低生產(chǎn)原料成本(膠黏劑成本)和加工成本[8]。國外以異氰酸酯(diphenylmethane diisocyanate,MDI)為膠基的板材[9-12],雖然解決了甲醛的問題,但是板材燃燒時會產(chǎn)生氫氣,氫為劇毒,存在潛在的巨大危害[13-22]。
根據(jù)作者多年相關研究及專業(yè)經(jīng)驗,本文試驗了一種新型無醛無毒防火人造板的加工與制備工藝,并對生產(chǎn)的玉米和水稻秸稈板材進行測試試驗,各項指標均優(yōu)于目前市場的各種人造隔墻、隔斷板及門芯板,解決了中國目前市場木質門芯板、秸稈人造板存在的防火性能差、強度低、制備成本高以及環(huán)境污染問題。
1.1 試驗材料
1)秸稈原料:試驗用玉米秸稈和稻秸均來源于沈陽市沈北新區(qū)八間房地區(qū)(經(jīng)度:42°12′;緯度:123°47′),就近收集于本地農(nóng)戶。試驗地點位于該地區(qū)沈陽華創(chuàng)建材有限公司生產(chǎn)車間內(nèi)。秸稈原料為田間自然晾曬 2 個月以上,玉米秸稈含水率為13%,品種為東單1501;水稻秸稈含水率為11%,品種為沈稻47。秸稈在生產(chǎn)車間分別用9FX-80田型秸稈粉碎機粉碎,山東省泰安市岱岳泰峰農(nóng)牧機械廠生產(chǎn),電機功率3 kW,生產(chǎn)效率為1500 kg/h,粉碎后的秸稈物料經(jīng)旋風除塵器下料口出料,粉碎粒度為0.5~5 cm。
2)膠黏劑制備:膠黏劑由無機膠凝材料和有機膠凝材料混合而成。無機膠凝材料由MgO,MgSO4,MgCO3,活性硅添加劑和活性ALSiO4按照一定的質量比例加入25~40 ℃溫水中充分攪拌而成。有機膠凝材料是將豆粕大豆粉水解后進行堿化法處理,制成豆膠,按照質量比豆膠12.5%、改性MDI 2%、去離子水85.5%的比例充分攪拌后制成有機凝膠材料。
1.2 試驗設備
試驗所用的設備除了上述的9FX-80型秸稈粉碎機外,還有用于膠料混合的NZF1000型臥式混合攪拌機,榮陽市宏鑫機械設備廠生產(chǎn)。人造板壓縮裝置、鋪料裝置以及加熱裝置都采用科創(chuàng)公司訂制加工的專用人造板生產(chǎn)設備。壓縮裝置由五層加熱壓縮板組成,可一次性完成5塊板材的壓制作業(yè)。鋪料裝置由帶式輸送機上料,內(nèi)設往復運動散料器使物料均勻散布在壓制托板上。加熱裝置為秸稈顆粒燃料鍋爐,加熱產(chǎn)生蒸汽為壓縮裝置提供熱源。
秸稈物料混合膠粘劑前后的熱重試驗,采用美國TA公司TGA熱重分析儀。秸稈板微觀結構觀察采用基恩士KEYENCE公司的VHX-5000數(shù)碼顯微系統(tǒng)。
1.3 工藝流程
秸稈人造板在生產(chǎn)前首先對秸稈進行揉絲粉碎和篩分,去除碎料和較大絲條,與此同時按比例配制膠黏劑,其具體的生產(chǎn)工藝流程如圖1所示。
圖1 秸稈人造板的生產(chǎn)工藝流程Fig.1 Technological process of straw particleboard
1.4 試驗方案設計
根據(jù)前期單因素試驗結果及分析,本試驗主要考慮膠黏劑的配比,膠黏劑添加比,熱壓壓力,熱壓溫度和熱壓時間5個因素,每個因素設立4水平。根據(jù)無機膠凝材料在膠黏劑中所起的作用,膠黏劑的配比T1、T2、T3和T4指無機膠凝材料與有機膠凝材料分別按照1:4、1:9、9:1和4:1的質量比例充分混合而成。膠黏劑的添加比是指膠黏劑占預壓秸稈物料總質量的百分比,前期的單因素試驗結果表明:膠黏劑添加比在15%以下時,秸稈板很難成型,當超過65%時,根據(jù)國家建筑材料耐火等級標準GB8624-97,秸稈板達到A級難燃建筑材料的性能,考慮到秸稈板的成型效果和實際需要,本試驗的膠黏劑添加比分別為15%、30%、45%、65%,熱壓成型后秸稈板中膠黏劑有效固體質量分數(shù)分別為8.25%、16.5%、24.5%、35%。在膠黏劑添加比為15%的情況下,熱壓壓力10 MPa以上,熱壓溫度80 ℃,熱壓時間持續(xù)1 min以上,秸稈板才能成型,且考慮到機器的最大壓力水平和秸稈板熱壓成型的經(jīng)濟性,熱壓壓力的試驗水平為10、40、60、80 MPa;熱壓溫度的試驗水平為80、100、120、140 ℃;熱壓時間的試驗水平為1、3、6、10 min。采用L16(45)正交試驗表設計,試驗因素和水平如表1 所示。每個試驗用玉米秸稈和水稻秸稈分別壓制2塊,板材厚度為(10±2) mm,在試驗過程中板材厚度保持一致,通過物料重量和鋪裝厚度控制。檢測性能指標按照國家標準在秸稈板上截取,每個試驗指標測試4次,數(shù)據(jù)取平均值[23-25]。
表1 正交試驗因素水平及其編碼表Table 1 Factors levels and code of variables
1.5 秸稈人造板性能檢測
按中華人民共和國國家標準《GB/T11718-2009》中密度纖維板室內(nèi)型板的物理力學性能指標對秸稈人造板進行檢測,按照《GB/T18884-2002》中規(guī)定的衛(wèi)生、環(huán)保要求,對秸稈人造板進行衛(wèi)生環(huán)保要求進行檢測。檢測指標包括:密度ρ、含水率W、內(nèi)結合強度M、靜曲強度I、彎曲彈性模量E、2 h吸水厚度膨脹率TS、握釘力、甲醛含量和耐燃性。耐燃性和甲醛釋放量按照國家林業(yè)局,全國人造板標準化技術委員會《G B/T8625-19》和《G B18580-2001》標準對試驗秸稈樣板進行難燃性和甲醛釋放量的檢測[26-28]。壓制好的水稻秸稈和玉米秸稈人造板如圖2所示。
圖2 水稻秸稈和玉米秸稈人造板Fig.2 Rice straw and corn stalk particleboard
2.1 物料熱重分析
為了探明膠黏劑對秸稈人造板性能的影響機理,利用熱重分析儀對添加膠黏劑前后的玉米秸稈和水稻秸稈的質量與溫度的變化關系進行試驗分析見圖3,從圖3a可以看出,玉米秸稈物料在沒有施膠的情況下,溫度沒有達到 1 00 ℃時,曲線下降明顯,分析主要是水分蒸發(fā)導致,當溫度達到 2 00 ℃時,玉米秸稈開始燃燒,之后隨著溫度和時間的變化,質量損失增加。微分熱重曲線表明在340 ℃左右時的質量損失最大。而施膠后如圖3a曲線3所示,質量損失明顯低于施膠前,在340 ℃時質量損失才增加,而且自始至終質量損失呈緩慢下降的趨勢,但最終的質量損失遠遠低于施膠前的玉米秸稈。施膠前后的水稻秸稈熱重試驗結果從圖3b可以發(fā)現(xiàn)與玉米秸稈呈現(xiàn)類似的變化規(guī)律,其質量最大損失率試驗值為48%,試驗后的物料成碳化狀態(tài),說明施膠后的秸稈物料不燃燒,只發(fā)生碳化反應。這說明,膠黏劑起到一定的阻燃作用。在熱壓成型的過程中,熱壓溫度和熱壓時間只是促進膠黏劑的固化,并使得秸稈物料與膠黏劑發(fā)生化學反應,使秸稈物料表面膠接在一起[24]。熱壓溫度過低或者熱壓時間較短會使秸稈板受熱不均勻且膠黏劑未完全固化,而使得秸稈板的性能受到影響。而實際生產(chǎn)中,為提高生產(chǎn)率,又不宜熱壓時間過長,另外過長的熱壓時間還會使膠黏劑中的異氰酸酯熱分解,使性能變差[25]??紤]到熱重分析的結果,選擇熱質量損失最?。?50 ℃以下)而物料水蒸氣又能夠很快蒸發(fā)(100 ℃以上)的溫度段,作為熱壓溫度范圍,同時又考慮到提高生產(chǎn)率,所以熱壓保壓時間1~3 min,總時間在5 min以內(nèi),熱壓溫度100~140 ℃范圍內(nèi)較合適,熱壓壓力大小則根據(jù)生產(chǎn)實際經(jīng)驗及設備參數(shù)確定。
圖3 秸稈添加膠黏劑前后的熱重試驗結果Fig.3 Thermo-gravimetric test results of straw before and after coating adhesive
2.2 正交試驗結果與分析
選擇主要檢測指標密度ρ、內(nèi)結合強度M、靜曲強度I和2 h吸水厚度膨脹率TS作為正交試驗分析的目標值,正交試驗的結果見表2。
表2 正交試驗結果Table 2 Results of orthogonal test
對試驗的結果進行極差分析見表3。由表3可知,對秸稈人造板的密度、內(nèi)結合強度、靜曲強度和2 h后的吸水厚度膨脹率影響最大的因素都是熱壓壓力,膠黏劑的添加比和膠黏劑的類型影響次之,而熱壓溫度和熱壓時間相對影響較小??紤]到實際生產(chǎn)效率和耗能,一般取熱壓溫度100~120 ℃為宜,而熱壓時間控制在3 min以內(nèi)。試驗因素A即無機膠凝材料和有機膠凝材料的配比對性能指標的影響試驗可以發(fā)現(xiàn),A3和A4均使得密度、內(nèi)結合強度和靜曲強度取得較大值,使2 h厚度膨脹率最低,可見,無機膠凝材料除了使秸稈人造板具有較好的耐燃性外,同時,增加密度和人造板強度。膠黏劑的添加比理論上越大越好,然而當膠黏劑的添加比超過65%時,其耐火等級達到國家建筑材料標準A級,靜曲強度降低,即脆性增加。所以在實際生產(chǎn)中膠黏劑添加比根據(jù)所要制備的秸稈板用途及性能而定,一般為50%以下,人造板成型干燥后固體有效成分質量分數(shù)為25%~30%,秸稈含量及人造板各項性能指標均能滿足建筑墻體板要求。本文驗證性試驗取最高值65%,主要是為了使性能指標跟國家標準進行對比。
結合單項優(yōu)化的結果,對秸稈人造板的最佳工藝組合進行多項優(yōu)化,并考慮到實際生產(chǎn)過程中的效率和能耗等因素,多項優(yōu)化的結果為:C4A3B4D3E3,即:熱壓壓力為80 MPa,膠黏劑中無機膠凝材料與有機膠凝材料以4:1進行混合,添加量與秸稈物料質量比為0.65:0.35,熱壓總時間控制在5 min以內(nèi),保壓時間在1~3 min,熱壓溫度控制在100~120 ℃之間為宜。
秸稈人造板的熱壓工藝曲線圖如圖4所示。采用連續(xù)升壓,三段降壓過程,降壓過程中熱壓壓力與熱壓曲線均為等段,利用兩段壓力減少段釋放板中的蒸汽壓力,以有效地防止鼓泡現(xiàn)象。熱壓溫度的控制主要是使模具與壓板保持恒溫 1 20 ℃,秸稈板的溫度主要隨著接觸壓力和時間的變化而變化。
由方差分析結果可知,熱壓壓力和膠黏劑的添加比對各項性能指標都有極顯著的影響(P<0.01),無機膠凝材料與有機膠凝材料的比例對人造板的密度,2 h后的吸水厚度膨脹率具有極顯著的影響(P<0.01),而對內(nèi)結合強度、靜曲強度的影響較顯著(P<0.05),熱壓溫度和熱壓時間對性能指標的影響相對較?。≒<0.05)。由表2可知,膠黏劑的添加比例越大,靜曲強度和內(nèi)結合強度以及密度都顯著提高,2 h后的吸水厚度膨脹率則顯著降低,這說明膠黏劑的膠合效果顯著影響秸稈板的性能指標,熱壓壓力對性能指標也具有同樣的影響規(guī)律。熱壓溫度和熱壓時間對秸稈性能指標也有一定的影響,但不是很顯著,這主要是在生產(chǎn)過程中,把秸稈含水率控制在20%左右。如果含水率較高時,就需要延長熱壓時間,或者提高熱壓溫度,促進水分的蒸發(fā)[26-28]。
2.3 顯微分析
為了探明在一定壓力下,膠黏劑與秸稈板性能指標影響的規(guī)律,對秸稈施膠前后的秸稈物料表面和熱壓成型后的板材微觀結構進行觀察分析,如圖5所示。從圖5a和5b可以看到,混膠前的玉米秸稈皮表面紋路清晰,邊界明顯,而混膠之后的秸稈皮紋路模糊不清,表面有一層白色具有一定剛度的保護層,秸稈皮邊緣有很厚的結晶體包圍,且結晶體已經(jīng)滲透到秸稈皮一定深度范圍內(nèi),說明膠黏劑除了起到粘結的作用,還與秸稈物料表層發(fā)生生化反應,使秸稈板材的內(nèi)結合力、靜曲強度等性能指標得到加強。從圖5c可以看到,秸稈物料顆粒之間靠白色結晶體連接在一起,而白色結晶體(堿化硫酸鎂)具有很高的剛度,這也是秸稈板具有較高強度的主要原因。仔細觀察不難發(fā)現(xiàn),在厚度方向上具有微小的裂紋,這主要是物料層與層之間通過膠黏劑的有機大分子連接在一起,這種連接具有一定的可分離性,這更好的解釋了秸稈板的性能指標與熱壓壓力之間的關系,即熱壓壓力的增加,有助于使物料層與層的膠接區(qū)域連接更緊密,使秸稈板的性能指標得到加強。圖5d的破壞形式主要是秸稈物料層膠接區(qū)域的分離,看不到裂紋的存在,秸稈物料通過白色結晶體緊緊鑲嵌在一起,這種結構不但使秸稈板的靜曲強度、內(nèi)結合強度提高,而且水分子不容易浸入,提高秸稈板的Ts和吸水率等指標。所以膠黏劑的添加比例越大,則膠黏劑在秸稈物料表層形成是剛度保護層越厚,能夠阻擋水分子的浸入,同時,這種阻燃性材料也會使秸稈板具有更好的阻燃性和強度[29-30]。
圖5 物料與秸稈板顯微觀察Fig.5 Microscopic observation of straw and particleboard
根據(jù)試驗結果與優(yōu)化分析,當無機膠凝材料與有機膠凝材料的比例為4:1,膠黏劑的添加比為65%時,秸稈板的防火、耐水性能最佳,熱壓壓力達到最大值80 MPa時,秸稈板的各方面性能指標最優(yōu),而熱壓溫度和熱壓時間的影響較小,為了使制備的秸稈板達到最大的性能指標,所以設定驗證性試驗的試驗條件為:熱壓壓力80 MPa,無機膠凝材料與有機膠凝材料以4:1進行混合配制膠黏劑,添加量與秸稈物料質量比為65%:35%,保持熱壓溫度為100~120 ℃之間,熱壓3 min進行驗證性試驗,并進行性能測試,測試結果如表4 所示。結果表明:在以上工藝條件下的玉米秸稈和水稻秸稈人造板,均達到或超過國家中密度纖維板的性能指標。該標準中對厚度為9~12 mm的板材的物理力學性能檢測標準為:內(nèi)結合強度≥0. 60 MPa,靜曲強度≥22 MPa,彈性模量≥2 500 MPa,2 h吸水厚度膨脹率≤12%。按照國家林業(yè)局,全國人造板標準化技術委員會《G B/T 8 6 2 5-1 9》和《G B1 8 5 8 0-2001》標準對試驗秸稈樣板進行難燃性和甲醛釋放量的檢測,由表4可以看出,甲醛釋放量為0。
表4 水稻和玉米秸稈人造板的性能指標檢測結果Table 4 Performance index test results of rice and maize straw particleboard
1)水稻秸稈和玉米秸稈經(jīng)粉碎后,采用無機膠凝材料和有機膠凝材料混合制成的膠黏劑,經(jīng)過工藝處理,可以制成達到國家標準《GB/T11718-2009》中密度纖維板要求的性能指標,而且無甲醛產(chǎn)生,不燃燒。
2)膠黏劑使秸稈物料的熱重損失降低到48%,加熱只碳化不燃燒,在340 ℃左右質量損失率最大。膠黏劑除了起到粘結的作用,還與秸稈物料表層發(fā)生生化反應,使秸稈物料之間通過白色結晶體(堿化硫酸鎂)連接在一起,從而提高秸稈板材的內(nèi)結合力、靜曲強度等性能指標。膠黏劑的添加對秸稈物料的熱重特性,秸稈板的微觀結構都產(chǎn)生很大的影響,對于提高秸稈板性能起到至關重要的作用。
3)在秸稈板的壓制過程中,熱壓壓力和膠黏劑的添加比對各項性能指標都有極顯著的影響(P<0.01),無機膠凝材料與有機膠凝材料的比例對人造板的密度,2h后的吸水厚度膨脹率具有極顯著的影響(P<0.01),而對內(nèi)結合強度、靜曲強度的影響較顯著(P<0.05),熱壓溫度和熱壓時間對性能指標的影響相對較?。≒<0.05)。
4)采用L16(45)正交試驗設計對秸稈人造板的生產(chǎn)工藝進行組合優(yōu)化試驗,本試驗的最佳生產(chǎn)工藝組合參數(shù)為:無機膠凝材料與有機膠凝材料以4∶1進行混合配制成膠黏劑,添加量與秸稈物料質量比為0.65∶0.35,熱壓壓力80 MPa,熱壓溫度為100~120 ℃之間,熱壓時間為3 min。驗證性試驗結果表明:該工藝條件下,水稻秸稈人造板和玉米秸稈人造板均達到國家中密度纖維板的性能標準。
[1] 周定國. 我國秸稈人造板產(chǎn)業(yè)的騰飛與超越[J]. 林產(chǎn)工業(yè),2016,43(1):3-8 Zhou Dingguo. Rapidly rising and transcending of the strawbased panel industry in China[J]. China Forest Products Industry,2016,43(1):3-8.(in Chinese with English abstract)
[2] 宋孝周,李 猛,張保健,等. 農(nóng)作物秸稈重組方材制備技術研究[J]. 農(nóng)機化研究,2013,40(4):231-234. Song Xiaozhou,Li meng,Zhang Baojian,et al. Preparation techniques of reconsolidated square material using crop straw[J]. Journal of Agricultural Mechanization Research,2013,40(4):231-234.(in Chinese with English abstract)
[3] 張召召,張顯權,呂海翔. 玉米秸稈皮碎料/木材纖維復合板工藝研究[J]. 森林工程,2013,29(4):128-133. Zhang Zhaozhao,Zhang Xianquan,Lü Haiyang. Study on the composite made by corn stalk skin flake mixed with wood fiber[J].Forest Engineering,2013,29(4):128-133.(in Chinese with English abstract)
[4] 黃劍鋒,陳奶榮,林巧佳,等. 基于響應面法的酚醛樹脂固化條件優(yōu)化[J]. 高分子材料科學與工程,2013,29(11):92-96. Huang Jianfeng,Chen Nairong,Lin Qiaojia,et al. Curving condition optimization of phenol-formaldehyde resin by response surface methodology[J]. Polymer Materials Science and Engineering,2013,29(11):92-96.(in Chinese with English abstract)
[5] 左迎峰,吳義強,呂建雄,等. 工藝參數(shù)對無機膠黏劑稻草板性能的影響[J]. 林業(yè)工程學報,2016,1(4):25-32. Zuo Yingfeng,Wu Yiqiang,Lü Jianxiong,et al. Effect of process parameters on the properties of rice straw board with inorganic adhesive[J]. Journal of Forestry Engineering,2016,1(4):25-32.(in Chinese with English abstract)
[6] 孫建飛,肖生岺,王昊宇,等. 工藝參數(shù)對稻殼木刨花復合包裝板性能的影響[J]. 東北林業(yè)大學學報,2015,43(2):91-97. Sun Jianfei,Xiao Shengling,Wang Haoyu,et al. Effects of process parameters on MOR and MOE of rice-husks/ wood-residues composite board for packing[J]. Journal of Northeast Forestry University,2015,43(2):91-97.(in Chinese with English abstract)
[7] 靳璇,李贏,李新,等. 秸稈預處理工藝對秸稈基人造板性能的影響[J]. 應用化學,2016,33(4):430-435. Jin Xuan,Li Ying,Li Xin,et al. Effect of pretreatment methods of rice straw on straw board properties[J]. Chinese Journal of Applied Chemistry,2016,33(4):430-435.(in Chinese with English abstract)
[8] E Kaar,W,Holtzapple M T. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover[J]. Biomass Bioenergy,2000,18:189-199.
[9] El-Kassas A M,Mourad A H I. Novel fibers preparation technique for manufacturing of rice straw based fiberboards and their characterization[J]. Materials &Design,2013,50:757-765.
[10] El-Saied H,Basta A H,Hassanen M E,et al. Behaviour of rice-byproducts and optimizing the conditions for production of high performance natural fiber polymer composites[J]. Journal of Polymers and the Environment,2012,20(3):838-847.
[11] Hou X,Sun F,Yan D,et al. Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment[J]. Journal of Cleaner Production,2014,83:454-462.
[12] Kurokochi Y,Sato M. Effect of surface structure,wax and silica on the properties of binderless board made from rice straw[J]. Industrial Crops and Products,2015,77:949-953.
[13] Mahmood H,Moniruzzaman M,Yusup S,et al. Pretreatment of oil palm biomass with ionic liquids:A new approach for fabrication of green composite board [J/OL]. Journal of Cleaner Production,2016. http://dx.doi.org/10.1016/j.jclepro.2016.02. 138
[14] McKechnie J,Pourbafrani M,Saville B A,et al. Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol[J]. Renewable Energy,2015,76:726-734.
[15] Panthapulakkal S,Zereshkian A,Sain M. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites[J]. Bioresour Technol,2006,97(2):265-72.
[16] Pourbafrani M,McKechnie J,Shen T,et al. Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production[J]. Journal of Cleaner Production,2004,78:104-111.
[17] Ruiz H A,Rodríguez-Jasso R M,Fernandes B D,et al. Hydrothermal processing,as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept:A review[J]. Renewable and Sustainable Energy Reviews,2016,21:35-51.
[18] 周定國. 農(nóng)作物秸稈人造板的研究[J]. 中國工程科學,2009,11(10):115-121. Zhou Dingguo. The development of straw-based panel[J]. Chinese Engineering Science,2009,11(10):115-121.(in Chinese with English abstract)
[19] 段海燕,賀小翠,尚大軍,等. 我國秸稈人造板工業(yè)的發(fā)展現(xiàn)狀及前景展望[J]. 農(nóng)機化研究,2009,5(5):18-22. Duan Haiyan,He Xiaocui,Shang Dajun,et al. The present status and prospect of straw board industry in China[J]. Journal of Agricultural Mechanization Research,2009,5(5):18-22.(in Chinese with English abstract)
[20] 陳 怡. 國內(nèi)秸稈人造板發(fā)展探析[J]. 林產(chǎn)工業(yè),2013,40(4):9-11,16. Chen Yi. The development of straw-based panel in China[J]. China Forest Products Industry,2013,40(4):9-11,16.(in Chinese with English abstract)
[21] Wu Tingting,Wang Xiulun,Koji Kito. Effects of pressures on the mechanical properties of corn straw bio-board[J]. Engineering in Agriculture,Environment and Food,2015,(8):123-129
[22] Li Xianjun,Cai Zhiyong,Jerrold E,et al. Selected properties of particleboard panels manufactured from rice straws of different geometries[J]. Bioresource Technology,2010,(101):4662-4666
[23] 王琪,史宇亮,李濟寧,等. 玉米秸稈板加工工藝優(yōu)化[J].農(nóng)業(yè)機械學報,2007,38(8):199-201 Wang qi,Shi Yuliang,Li Jining,et al. Manufacturing process technology optimization of corn stalk particleboard [J]. Transactions of the Chinese Society of Agricultural Machinery,2007,38(8):199-201.(in Chinese with English abstract)
[24] 何勛,王德福,唐豫桂. 玉米秸稈皮單板層積材制備工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2016,32(10):303-308 He xun,Wang Defu,Tang Yugui. Manufacturing technology optimization of laminated veneer lumber from intact corn stalk rinds[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(10):303-308.(in Chinese with English abstract)
[25] 盧杰,張顯權,張紅杰. 改性異氰酸酯樹脂膠玉米秸稈皮板工藝[J]. 東北林業(yè)大學學報,2012,40(7):142-144. Lu Jie,Zhang Xianquan,Zhang Hongjie. Production technology for corn stalk bark composites with modified isocyanate resin[J]. Journal of Northeast Forestry University,2012,40(7):142-144.(in Chinese with English abstract)
[26] 易順民,郝健,晏輝,等. 改性異氰酸酯施膠量及密度與麥秸刨花板性能的影響[J]. 西南林業(yè)大學學報,2013,33(4):94-97,106 Yi Shunmin,Hao Jian,Yan Hui,et al. Effect of modified isocyanate resin content and density of properties of wheat straw particleboard[J]. Journal of Southwest Forestry University,2013,33(4):94-97,106.(in Chinese with English abstract)
[27] 夏南,郭康權,陳賢情. 棉桿/聚丙烯薄膜定向復合板的制備工藝優(yōu)化[J]. 農(nóng)業(yè)工程學報,2015,31(22):308-314. Xia Nan,Guo Kangquan,Chen Xianqing. Fabrication technology optimization of oriented cotton stalk-polypropylene filmboard[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015,31(22):308-314.(in Chinese with English abstract)
[28] 楊輝,王鳳奇,李樾,等. 新型麥秸板膠黏劑的應用研究[J]. 林產(chǎn)工業(yè),2015,42(10):3-7. Yang Hui,Wang Fengqi,Li Yue,et al. The Application research of the new wheat-straw board adhesive[J]. China Forest Products Industry,2015,42(10):3-7.(in Chinese with English abstract)
[29] Soroushian P,Aouadi F,Chowdhury H,et al. Cementbonded straw board subjected to accelerated processing[J]. Cement and Concrete Composites,2004,26(7):797-802.
[30] Tabarsa T,Jahanshahi S,Ashori A. Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol formaldehyde adhesive[J]. Composites Part B:Engineering,2011,42(2):176-180.
Preparation and performance test of formaldehyde-free innocuous and nonflammable straw particleboard
Liu Dejun1,Dong Bin2,Li Wenbin1,Wang Bin1,Wang Xinkun1,Gao Wei1,Gong Yuanjuan1※
(1. College of Engineering,Shenyang Agricultural University,Shenyang 110866,China;2. Shenyang Huachuang Industrial Technology Co.,LTD,Shenyang 110000,China)
Consideration ofthe present market situation that the physical and mechanical properties of the straw particleboard is inferior and formaldehyde content cannot eliminated completely,we have studied the ingredient of adhesive and manufacturing process of straw particleboard. In this paper,MgSO4,MgCO3,active silicon and ALSiO4etc. were selected as inorganic gelled material,soybean pulp were alkalized and acidified of separation to acquire the bean gum,then,the bean gum and modified MDI(diphenylmethanediisocyanate) were added deionized water according to the mass ratio of 100:1 - 10 as organic gelled materials. Finally,the four types of compounded adhesive were made according to the ratio of the inorganic gelled materials to the organic gelled materials:T1(1:4),T2(1:9),T3(9:1),T4(4:1). The compounded adhesive additive proportion(AAP) were the percent of the total quality of pre-compressive materials,they were 15%,30%,45%,65% respectively for each ratio corresponding with the percent of effective solid composition in the straw particleboard of8.25%,16.5%,24.5%,35% for each ratio,respectively. The experimental levels of the pressure in the hot compression were set to 10,40,60,80MPa,and the experimental levels of the duration of hot compression were set to 1,3,6 and 10min. The compressive technological parameters of straw particleboard was optimized through L16(45) orthogonal experiment. The straw particleboard of 10±2mm thickness was compressed to two pieces with rice straw and corn stalk respectively.The test samples were cut from the compressed particleboard according to the national standard for the test of performance parameters. The optimal technological process was obtained.The ratio of inorganic gelled material to organic gelled material quality was 4:1,the additive proportion of adhesive(AAP) in the pre-compressive straw material was 65%,namely,the solid effective composition in the straw board was 35%. The optimal condition in the hot compression also included the duration of hot compression 5min,hot-pressing temperature 120 ℃,and hot-pressing pressure 80 MPa. The range analysis to the experimental results showed that the pressure,the proportion of the inorganic gelled material and additive proportion of compounded adhesive were significant influence on the performance indexes of the straw particleboard. The higher proportion of inorganic gelled material in compounded adhesive increased density,internal bonding strength and static bending strength,and decreased thickness swelling rate of water absorption except enhancement of flame resistance. Moreover,thermo-gravimetric analysis of materials and micro-observation of straw particleboard were performed. The results showed that compounded adhesive made thermal weight loss of straw material down to 48% when the straw was heated to 1000 ℃,straw coated with adhesive carbonized in the heat process and the mass loss rate was the largest at about 340 ℃. Micro-observation indicated that adhesive biochemical reacted in the surface layers of material,the straw material were connected by white crystal(alkaline magnesium sulfate) together,thus improved the internal binding force and static bending intensity and other performance index. Adhesive had great influence on the thermogravimetric characteristic of straw materials,the microstructure of straw particleboard. The straw particleboard could reach or exceed the national standard of medium density fiberboard(MDF) under the optimum technological condition. This study is significant on the development and utilization of straw resources and the production of man-made board.
straw;processing;materials properties;particleboard;inorganic gelled material;adhesive
10.11975/j.issn.1002-6819.2017.01.041
S216.2;S313
A
1002-6819(2017)-01-0301-07
劉德軍,董 彬,李文斌,王 斌,王鑫坤,高 微,宮元娟. 無醛無毒防火秸稈人造板的制備與性能試驗[J]. 農(nóng)業(yè)工程學報,2017,33(1):301-307.
10.11975/j.issn.1002-6819.2017.01.041 http://www.tcsae.org
Liu Dejun,Dong Bin,Li Wenbin,Wang Bin,Wang Xinkun,Gao Wei,Gong Yuanjuan. Preparation and performance test of formaldehyde-free innocuous and nonflammable straw particleboard[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):301-307.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.041 http://www.tcsae.org
2016-06-27
2016-11-10
農(nóng)業(yè)部公益性行業(yè)科研專項(201503134)
劉德軍,男,遼寧朝陽人,博士,碩士生導師,主要從事農(nóng)作物秸稈高值化利用技術與智能裝備研究。沈陽 沈陽農(nóng)業(yè)大學工程學院,110866。Email:ldjldj@126.com
※通信作者:宮元娟,女,遼寧瓦房店人,教授,博士生導師,主要從事秸稈高值化利用技術與智能裝備研究。沈陽 沈陽農(nóng)業(yè)大學工程學院,110866。Email:yuanjuangong@163.com