• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-scale modelling framework to guide management of plant invasions in a transboundary context

    2017-01-17 06:35:54JoMartinsDavidRichardsonRenatoHenriquesElizabeteMarchanteliaMarchantePauloAlvesMirijamGaertnerJoHonradoandJoanaVicente
    Forest Ecosystems 2016年4期

    Jo?o Martins,David M.Richardson,Renato Henriques,Elizabete Marchante,Hélia Marchante,5, Paulo Alves,Mirijam Gaertner,7,Jo?o P.Honradoand Joana R.Vicente

    A multi-scale modelling framework to guide management of plant invasions in a transboundary context

    Jo?o Martins1*,David M.Richardson2,Renato Henriques3,Elizabete Marchante4,Hélia Marchante4,5, Paulo Alves1,6,Mirijam Gaertner2,7,Jo?o P.Honrado1,6and Joana R.Vicente1,6

    Martinset al.Forest Ecosystems(2016) 3:17

    DOI 10.1186/s40663-016-0073-8

    Background:Attention has recently been drawn to the issue of transboundary invasions,where species introduced and naturalized in one country cross international borders and become problematic in neighbouring countries. Robust modelling frameworks,able to identify the environmental drivers of invasion and forecast the current and future potential distribution of invasive species,are needed to study and manage invasions.Limitations due to the lack of species distribution and environmental data,or assumptions of modelling tools,often constrain the reliability of model predictions.

    Methods:We present a multiscale spatial modelling framework for transboundary invasions,incorporating robust modelling frameworks(Multimodel Inference and Ensemble Modelling)to overcome some of the limitations. The framework is illustrated using Hakea sericea Schrad.(Proteaceae),a shrub or small tree native to Australia and invasive in several regions of the world,including the Iberian Peninsula.Two study scales were considered:regional scale(western Iberia,including mainland Portugal and Galicia)and local scale(northwest Portugal).At the regional scale,the relative importance of environmental predictors sets was evaluated and ranked to determine the main general drivers for the species distribution,while the importance of each environmental predictor was assessed at the local scale.The potential distribution of H.sericea was spatially projected for both scale areas.

    Results:Model projections for western Iberia suggest that a large area is environmentally suitable in both Portugal and Spain.Climate and landscape composition sets were the most important determinants of this regional distribution of the species.Conversely,a geological predictor(schist lithology)was more important in explaining its local-scale distribution.

    Conclusions:After being introduced to Portugal,H.sericea has become a transboundary invader by expanding in parts of Galicia(Spain).The fact that a larger area is predicted as environmentally suitable in Spain raises concerns regarding its potential continued expansion.This highlights the importance of transboundary cooperation in the early management of invasions.By reliably identifying drivers and providing spatial projections of invasion at multiple scales,this framework provides insights for the study and management of biological invasions,including the assessment of transboundary invasion risk.

    Drivers of invasion,Hakea sericea,Multimodel inference,Transboundary invasion management,Species distribution models

    Background

    Invasion by alien species is a major threat to ecosystems worldwide.Many invasive species cause substantial changes to ecosystem structure and functioning(Vilà et al.2011),provision of ecosystem services(Vilà et al. 2010)and the broader economy(Pimentel et al.2005; Vilà et al.2010).Some invasive species potentially promote irreversible regime shifts(Gaertner et al.2014), and cause biotic homogenization synergistically with other drivers of global change(Thuiller 2007).Therefore,biological invasions as a global change process,and a worldwide problem,must be managed through international cooperation.

    The concept of transboundary pollution,where pollution originating in a given country negatively impacts the environment in another country,has long been a part of environmental sciences,with a history of application and evaluation of practical measures which show that international cooperation is key in dealing with this problem(United Nations 1997;EEA 1999,EEA 2015). The parallel concept of transboundary invasions,where a species introduced in a given country expands into neighbouring countries has so far received much less attention,despite being discussed in recent publications (e.g.Hulme 2015;Roques et al.2016)and legislation calling for concerted action between countries(European Parliament and Council of the European Union 2014). Therefore,progress in this area demands that traditional risk assessment methodologies be expanded to include multiple countries(Hulme 2015).In this paper we apply species distribution models to predict invasion patterns in a transboundary context.

    Despite the conceptual similarities to other international environmental issues and concerns,biological invasions are a very special case,and several particularities of the phenomenon need to be taken into consideration before addressing it.The invasion process involves several stages(transport,introduction,establishment, and spread),with sequential barriers(e.g.geographical, survival,reproductive,dispersion)that must be overcome by a species in order to reach,survive and spread in a new non-native territory(Richardson et al.2000; Blackburn et al.2011).The success of invasive species in a new territory depends on their invasiveness(i.e.features of the organism that define its ability to invade), and on the invasibility of the local ecological systems (i.e.characteristics of those systems that determine the susceptibility to invasion;Richardson et al.2011).Invasion patterns and processes exhibit spatial dependence, and the relative importance of different sets of environmental factors(e.g.climate,landscape composition and structure,disturbances)to explain species distributions varies across spatial scales(Rouget and Richardson 2003; Pearson et al.2004;Guisan and Thuiller 2005;Vicente et al.2014).Consequently,attempts to understand and predict invasion processes must always consider the spatial scale(s)of the study system(Pauchard and Shea 2006;Theoharides and Dukes 2007),and produce more informative predictions of invasion than traditional models(Vicente et al.2011).

    Species distribution models(SDMs)statistically relate the distribution of a given species with environmental factors,improving the understanding and prediction of the potential distribution of species in a specific territory (Elith and Leathwick 2009).SDMs have been widely used in the field of biological invasions(e.g.Peterson 2003;Broennimann et al.2007;Vicente et al.2010,2011; Fernandes et al.2014).Despite their usefulness,a recurrent difficulty in applying SDMs is the likelihood of model overfitting due to a high ratio between the number of environmental predictors and the often-scarce species occurrence data(Guisan and Thuiller 2005).To overcome this problem,information-theoretic approaches such as Multimodel Inference(Burnham and Anderson 2002)can be applied.Multimodel Inference allows the comparison of different hypotheses on invasion predictors, by comparing and ranking a series of competing models that reflect different hypotheses for explaining the species’distribution,and by measuring each model’contribution to explain the observed data.Additionally,weighting each model by its importance to explain the original dataset (i.e.model averaging)allows us to obtain a consensus spatial projection(Vicente et al.2010).Overall,this procedure paves the way for more accurate models and projections while testing the effect of a larger set of environmental predictors.

    Another important difficulty when applying species distribution models arises as different modelling techniques can produce very different outputs,even when models are calibrated with the same occurrence and environmental data(Pearson et al.2006).A panoply of modelling techniques is currently available(Araújo and New 2007;e.g.Guisan et al.2002;Olden et al.2008), confounding the choice of the most appropriate technique to reach a given goal.To avoid variability in predictions,ensemble-forecasting modelling can be applied, by fitting a series of models using multiple techniques and then combining the predictions into a consensus prediction(weighted by the accuracy of the different methods;Araújo and New 2007).

    The shortage of data on the distribution of invasive species can to some extent be overcome by supplementing data from research and monitoring programs with data acquired from citizen science initiatives(Crall et al. 2010).However,data from citizen science programs,as exemplified by the web mapping platform available at www.invasoras.pt(invasoras.pt 2014),are often collected only in the form of presence records,making itnecessary to generate pseudo-absence records,following the most consensual procedures to avoid biasing the accuracy of model predictions(Wisz and Guisan 2009).

    We propose a modelling framework to identify and rank multiscale environmental predictors of transboundary distribution of invasive species based on scarce occurrence data(a common limitation in biodiversity modelling studies;Lomba et al.2010;Vicente et al. 2011).This allows the use of data from a more invaded country(Portugal in our example)to predict areas of potential risk in neighbouring countries with slight or no current invasion(Spain in our example),provided that model transferability principles are observed(Elith and Leathwick 2009).In the proposed framework,the first step is to identify areas of high invasion risk or of particular conservation importance at a regional scale (western Iberian Peninsula in our study case).The second step involves zooming in to the areas selected in step 1(northwest Portugal in our study)in order to obtain more fine-grained predictions of potential invasion and to rank its driving factors.A key feature of the approach is that the different scales of analysis are connected in that equivalent variables are used,each analysis does not try to be a scaled version of the other, allowing the use of more suited techniques and predictors for each scale.We illustrated the framework for the transboundary invasion byHakea sericeaSchrad.,an invasive shrub invading mainland Portugal and currently spreading to neighbouring areas in Spain.We obtained spatial projections of potential distribution for both scales,and implications for transboundary management of invasive species are discussed.

    Methods

    Study areas

    The proposed framework was applied in two nested geographic areas(Fig.1):a regional-scale area including Portugal and Galicia,covering ca.133 000 km2,and a local area in the Minho region,Northwest Portugal,covering ca.2972 km2.The use of nested areas,with different grain and extent,allows for the identification of the main factors underlying species distributions at multiple spatial scales(e.g.see Lomba et al.2010;Vicente et al. 2011,2014).

    The regional-scale area,located in the western part of the Iberian Peninsula,includes the transition between the Eurosiberian and the Mediterranean biogeographic regions of Europe,with Galicia and northwest Portugal representing the Eurosiberian areas(Rivas-Martínez et al.2004).The large variability in topography,geology, soils and land cover,along with the transitional biogeographic situation,results in a highly heterogeneous area in terms of environmental and socio-ecological contexts.

    The Minho region,in northwest Portugal,is a particularly well-studied and data-rich area for both invasive species occurrence and environmental data(e.g.Vicente et al.2010,2011;Fernandes et al.2014).It is located within the area predicted as suitable for the study species by the regional scale model(see below),hence its choice for the fine-scale component of this work.This area has high climatic heterogeneity,with gradients that constrain not only native biodiversity(e.g.Lomba et al. 2010)but also invasive plant species richness(Vicente et al.2010)and the potential distribution of individual invaders,with climate acting as the primary driver (Vicente et al.2011).To allow for the identification of potentially important non-climatic predictors,a climatically homogeneous area(Fig.2c)was selected within the region,as performed in Vicente et al. (2010);see“Model Calibration”section.

    Study species and occurrence data

    Hakea sericeaSchrad.(silky hakea;Proteaceae)is a woody shrub or small tree that is native to southeastern Australia where it occurs in areas of dry sclerophyll forest and heathlands on coastal regions and adjacent ranges,from south-eastern Queensland to south-eastern New South Wales(Barker et al. 1999).This fire-adapted species is invasive in New Zealand,mainland Portugal and islands(Madeira), and South Africa(Rejmánek and Richardson 2013). The invasion dynamics of the species have been intensively studied in South African fynbos vegetation (e.g.van Wilgen and Richardson 1985;Richardson et al.1987;Le Maitre et al.2008).Invasion byH. sericeain fynbos causes major changes to the fuel characteristics of this fire-prone shrubland vegetation (van Wilgen and Richardson 1985).Due to the capacity to sustain and promote fire,invasion byH.sericeacan lead to severe ecological and socioeconomic regime shifts(Gaertner et al.2014).Although such major impacts have yet to be quantified outside South African fynbos,H.sericeahas the potential to become more widespread and abundant in Southern Europe and other areas with Mediterranean-type climate,as suggested by its aggressive invasiveness in South Africa.

    H.sericeais a serotinous species,whose seeds are retained in woody fruits.Once mature,the fruit’s thick woody walls offer protection to the seeds against heat(Brown and Whelan 1999)and granivores (Groom and Lamont 1997).This,together with a slow decrease in germination rates over time(Richardson et al. 1987;Brown and Whelan 1999),results in a large canopystored seed bank formed by seeds produced in a given year and viable seeds from previous years, which are released only after the death of the plant(Richardson et al.1987).Therefore,an event such as a wildfire can result in the sudden release of a very large number of seeds.

    Hakea sericeahas been cultivated in Portugal as a hedge plant at least since the 1930s,and is known to have naturalized in natural vegetation in the 1940s (Espírito Santo and Arsénio 1999).It has become highly invasive in some areas(Marchante et al.2014) and has spread to at least one location in northwest Spain(Pulgar Sa?udo 2006),thereby becoming a transboundary invasion.Hakea sericeais listed in Portuguese legislation as an invasive species(Ministério do Ambiente 1999),and is considered a potential invader in Spain(Ministerio de Agricultura Alimentacion y Medio Ambiente 2011).Brunel et al. (2010)considerH.sericeaas an emerging invasive alien plant in the Mediterranean Basin,with a potentially severe impact on the environment.

    Occurrence records forH.sericeawere obtained from previous field surveys,from published studies(Vicente et al.2010),and from the citizen science web platform invasoras.pt(2014).A total of 53 presence records for the regional scale(10 km×10 km grid cells)and 108 records for the local scale(37 presences and 71 absences;1 km×1 km grid cells)were obtained and used to calibrate the models.

    Analytical framework

    The proposed multi-scale modelling framework was applied to assess the transboundary invasion byHakea sericeaas described in Fig.2.

    Starting from an initial dataset of 65 environmental predictors(step a),a subset of 16 predictors was selected (step b)and classified into four groups that reflect different types of environmental factors(see below).The four groups of predictors were used to calibrate competing models in a multimodel inference analysis usingH. sericeapresence records and multiple sets of randomly selected pseudo-absences(Wisz and Guisan 2009;see below).The models were then used(step c)to determine which environmental sets were most important in explaining the distribution ofH.sericeain the regional study area and to perform a spatial projection of the species’distribution(step d).This projection supported the selection of the local study area,by applying a downscaling procedure for the local scale area using the regional scale models(step c).Since a larger number of occurrence records were available for the local area(including confirmed absences),it was possible to apply ensemble modelling using thebiomod2package(Thuiller et al. 2009,2015),implemented in the R software(R Development Core Team 2014;step c).The ensemble modelling was also used to obtain an importance score for each environmental predictor,and to project the potential spatial distribution of the species for the local study area (step d).

    Statistical procedures throughout the whole workflow were performed using R 3.1.0(R Development Core Team 2014).Spatial operations were performed using ArcMap 10.2(ESRI 2014)and QGIS 2.2(QGIS Development Team 2014).Further methodological details on model development are provided in the following sections.

    Model calibration,evaluation and spatial projection

    Predictor selection

    For the regional scale,we started with 65 environmental predictors reflecting four main types of environmental conditions:climate,landscape composition,landscapestructure and lithology.Based on ecological expert knowledge of the species and the study area,and applying a pairwise Spearman correlation analysis(to avoid multicollinearity),a final dataset of 16(Spearman correlation≤0.7)environmental predictors(four per type)was obtained(Table 1).To allow comparability across scales, a dataset with equivalent predictors was obtained for the local scale.At this scale,data on fire history was available,and so a predictor reflecting burnt area was added to the final dataset.The following set of variables was available:maximum burnt area of each cell in the last 10 years,average fire recurrence,and total number of fires,all of which presented correlation values (Spearman rho)above 0.9 among them.As such,the first variable was selected,as it provides information on both the burnt area and an indication of fire recurrence when the cell is completely burned more than once(by having a value over 100%).The 17 predictor dataset was tested using a pairwise Spearman correlation analysis,and all predictors with Spearman correlation≤0.7 were selected,retaining those predictors with the greatest ecological relevance for the species.A final dataset of 13 predictors was obtained for the local-scale area,including at least two predictors from each set from the regionalscale,and the fire predictor(Table 1).

    Regional scale model

    Multimodel Inference was applied to determine the relative importance of a set of predictors(see Appendix II for the list of predictors used in each model)on the distribution of the test species,by calibrating Generalized Linear Models(GLMs,calibrated with Poisson variance and log link function),using the Akaike Information Criterion(AIC)to assess how much each model was supported by the initial occurrence data.An adaptation of AIC for small sample sizes(AICc)was used; for each candidate model,the AICcdifference was calculated(Δi=AICcinitial–AICcminimum),allowing the comparison among all competing models.Finally, the Δi values were used to derive Akaike weights(wi), representing the likelihood that a given model is the best approximating model,given the model and data sets.To assess explanatory accuracy,Nagelkerke’s R2was calculated(Nagelkerke 1991).The wivalues wereused as weights to obtain an average model,for spatial projection of the outputs.

    Table 1Predictors used in model calibration by predictor class,their description and ecological rationale for the selection

    To calibrate the regional model,pseudo-absences were randomly selected in the study area.To avoid the model being skewed due to the pseudo-absence selection,a bootstrapping procedure,where the full presence set was used together with a random set of pseudo-absences (with the same size as the presence set),was applied to calibrate the GLMs.This process was repeated 5000 times(each time with a different pseudo-absence set). The AICcand related values were calculated for each repetition,and averaged over the 5000 repetitions. Furthermore,a null competing model(random model) was calibrated assuming that the considered hypotheses have no effect over the species’distribution.

    Model evaluation was performed through the widely used Area Under the Receiver Operating Characteristic curve(ROC-AUC),as well as with the recently developed Boyce Index(Hirzel et al.2006),implemented in the ecospat R package(Broennimann et al.2015).The model predictions were finally converted into presence/ absence using a ROC plot-based approach(threshold value corresponding to the point where the ROC curve is closest to the(0,1)coordinates as discussed in Liu et al.(2005).ROC plot was performed using the pROC R package(Robin et al.2011).

    Finally,the projected average model was used for the selection of the local-scale area,by applying direct downscaling(e.g.Araújo et al.2005;Fernandes et al. 2014).This was performed using models calibrated at the regional scale(10 km×10 km grid)to perform a spatial projection at the local scale(1 km×1 km grid), and using this projection to predict potential presence areas at the local scale.

    Local scale model

    A single class of model(GLMs)was applied at the regional scale,while ensemble models were used at the local scale,developed using the biomod2 package(Thuiller et al.2009,2015;see Additional file 1 for details on ensemble modelling and its implementation)implemented in R.A total of 310 models for H.sericea were calibrated/ fitted,using the 10 modelling techniques available in biomod2:GLM generalised additive models(GAM;Hastie and Tibshirani 1990),multivariate adaptive regression splines(MARS;Friedman 1991),classification tree analysis (CTA;Breiman et al.1984),mixture discriminant analysis (MDA;Hastie et al.1994),artificial neural networks (ANN;Ripley 1996),generalised boosted models (GBM;Ridgeway 1999),random forests(Breiman 2001),Surface Range Envelope(SRE;Busby 1991)and MaxEnt(Phillips et al.2004).

    Model evaluation was performed using the AUC metric using a cross-validation procedure(80%of the data used for calibration/20%for evaluation),with 30 repetitions.

    The final model was obtained by an ensemble of the predictions of models with AUC above 0.7,using a weighting approach(Thuiller et al.2015).A final evaluation of the ensemble model performance was based both on the AUC value and on the Boyce Index.

    The importance of each predictor was estimated for the ensemble model prediction using the“variables_importance”function available in biomod2(Thuiller et al.2015).

    Results

    Potential distribution ofHakea sericea

    Figure 3 presents the potential distribution,based on the model results,for both the regional(a)and local(b) scales.The regional scale prediction was obtained by projecting the average model over the study area and converting this into a binary presence/absence prediction.At local scale the prediction was obtained from the projection of the ensemble of models from biomod2.Of a total of 1330 grid cells at the regional scale,304 (22.9%)were identified as having suitable conditions for H.sericea(Fig.3a).These potential presences are located mostly in the western part of the study area,especially in the western half of central and northern Portugal(250 grid cells),extending northward to southwest Galicia (Spain,54 grid cells–versus a single currently documented occurrence).Overall,the projection of the averaged regional model held very good predictive power (AUC=0.882;Boyce Index=0.713;Liu et al.2005; Hirzel et al.2006).

    Only 180 cells(6.1%)were predicted as potential presence of H.sericea in the local study area(Fig.3b).The majority of these predicted presences are located in the northwest corner of the area,characterised by the presence of schist lithology(see Fig.1c).The evaluation of model performance again indicates a high predictive power(AUC=0.9;Boyce Index=0.958;Liu et al.2005; Hirzel et al.2006).

    Multi-scale drivers of the distribution ofHakea sericea

    Table 2 indicates the importance of each set of predictors(for the regional scale)and each predictor(for the local scale).The importance of each set at the regional scale is reflected by the wiof the model calibrated with a given set of predictors,while the local scale predictor importance is an output of biomod2.

    The best performance for the regional study area was obtained with the climatic model(M1,wi=0.820, Table 2).The second best model,as supported by the occurrence information,was related with landscape composition(M2,wi=0.174).The null model presented the lowest values of wi(M5,wi=1.91×10?6).

    Discussion

    Overcoming scarce occurrence data in invasive species distribution modelling

    Scarcity of occurrence data is often a constraint for the calibration of Species Distribution Models,reducing the number of predictors that may be used with confidence (Guisan and Thuiller 2005).This can represent an important limitation to the study and management of biological invasions(Crall et al.2010).Citizen science programs offer a way of overcoming this problem,by having the interested public participating in data collection.However,while these programs are useful,the resulting data often comprise presence records only, thus yielding unbalanced datasets(Crall et al.2010).

    While ideally situations of low data availability would be addressed by increased sampling,this is not always possible due to economic,temporal or other constraints, and the shortage of high-quality species occurrence data requires the development of improved modelling frameworks,with targeted modifications to deal with specific problems(Lomba et al.2010;Vicente et al.2011).For example,the lack of confirmed absence records makes it necessary to use randomly selected pseudo-absences to fit Generalized Linear Models,which require both presence and absence information.To overcome any possible bias created by the random selection of pseudoabsences,the modelling framework was improved through the application of a bootstrapping procedure with a large number of random iterations(5000).Moreover,multimodel inference helped to mitigate the limitation on the number of predictors used to fit the models. Multimodel Inference also provided a way of ranking the importance of predictor sets to explain the distribution of the test species and to generate a robust spatial prediction of regional potential distribution (Vicente et al.2010).

    While useful in situations of deficient species occurrence datasets,the use of a single modelling technique is not ideal;it is well known that different modelling techniques can yield very different results,even when using the same data(Pearson et al.2006).In cases where more occurrence data is available,as for our local-scale study area,ensemble forecasting may be safely applied(Araújo and New 2007).Applying ensemble modelling allowed us not only to project the potential distribution ofH. sericeabased on a consensus approach,but also to rank the relative importance of the individual environmental predictors,instead of a rank by predictor types obtained with multimodel inference.In our local area,the ranking obtained withbiomod2identified the presence of foliatedmetamorphic rocks as the most important predictor explaining the current distribution ofH.sericea.This was followed in importance by a climatic predictor,confirming the importance of climate conditions in determining the distribution of species(Pearson et al.2002), even in relatively small areas but with very heterogeneous climate conditions(Vicente et al.2010).

    Measurements of the model’s predictive power indicated high accuracy in both the multimodel inference and the ensemble forecasting outputs.By combining the strengths offered by these different modelling approaches,and taking spatial scale into consideration,our framework provides the means of overcoming common difficulties related to data quality and modelling techniques.Such problems include:the risk of over-fitting due to lack of occurrence records(Guisan and Thuiller 2005;addressed here by using Multimodel Inference); uncertainty in model outputs from different techniques (Pearson et al.2006;addressed here by applying ensemble modelling);variation in the importance of different drivers across spatial scales(Rouget and Richardson 2003;Pearson et al.2004;Guisan and Thuiller 2005; addressed here by using nested study areas);and difficulty in identifying drivers of distribution masked by stronger gradients(Vicente et al.2010;dealt with by selecting a local study area based on downscaled predictions of regional distribution models).

    As different techniques and variables,better suited for each scale,were used in each analysis,it is important to note that the local-scale analysis cannot be considered a“scaling”of the regional scale,and vice-versa,and it is better interpreted as two different but linked and complementary analyses.With this caveat,our modelling framework enabled us to identify the main sets of drivers of invasion by an aggressive plant species at a coarse spatial scale,and then to rank the importance of individual predictors at a finer scale.It also provided robust spatial predictions of potential distribution for the species at both scales.Considering that prevention is the most cost-effective approach for managing invasive species(Davies and Sheley 2007),the spatial projections obtained in this study provide the means for guiding prevention efforts in environmentally suitable but not yet invaded areas(e.g.large areas of Galicia),thereby providing guidance to efforts directed at surveillance, rapid response and mitigation that are needed to manage transboundary invasions(Hulme 2015).The multiscale nature of our framework means that it may be applied in a workflow where major environmental effects are first identified at a regional scale,and then smaller areas of particular concern(i.e.local scale) are modelled to identify detailed areas and predictors, thus providing insights to inform more directed control efforts(Vicente et al.2010).

    Table 2Results of Multimodel Inference(MMI)for the regional study area,and importance of each predictor calculated with biomod2 for the local-scale study area

    Implications for managing plant invasion in a transboundary context–Hakeasericea in the Iberian Peninsula as an illustration

    Invasive species management,including prevention and/ or control plans,can only be effective if the entire potential distribution of the species in the invaded region is considered(Wilson et al.2007).In many cases this demands a transboundary approach,when the potential distribution of an invasive species covers two or more neighbouring countries or federal regions,a situation common in many ecological settings(Dallimer and Strange 2015).With this transboundary focus,our work responds to recent calls for the consideration of unaided invasion pathways in the study of invasion(Hulme 2015).This is illustrated in our study by the potential distribution ofH.sericea,which includes Portugal, where the species is already widespread and considered an aggressive invader,but also Spain,where it is only considered a species with invasive potential.While,to our knowledge,there is only a single reported occurrence of the species in Spain(Pulgar Sa?udo 2006),thespatial projection of our models indicates a considerably larger potential distribution,highlighting the need for investing in surveillance as well as in collaborative prevention and management between the two countries.This is in agreement with the demands of recent European legislation on invasive species(European Parliament and Council of the European Union 2014),demonstrating how modelling frameworks such as ours can offer valuable input for policy and management decisions.

    The results obtained regarding the invasion byH.sericeain our study area demonstrate the kind of insights a modelling approach such as ours can offer for the transboundary management of an invasive species.Alien species with their native range in areas with mild climates, as is the case ofH.sericea(Barker et al.1999),are often limited in newly invaded areas by their frost sensitivity, and for that reason are absent at high elevations(Vicente et al.2010).Under climate change scenarios,this constraint is expected to be relaxed in the future(Walther 2002)which means that these areas may become more susceptible to invasion.At the same time,the importance of landscape composition predictors,at both regional and local scales,suggests that future shifts in land use could further drive expansion(or contraction)ofH.sericea’s range in mountainous areas,where some of the most important protected areas in the region occur.

    Previous field observations by the authors in Portugal suggest that the species has a preference for areas with schistose bedrock,an observation corroborated by the results presented here.The ability to produce proteoid roots means thatH.sericeais well adapted to phosphorus-poor soils(Sousa et al.2007).This may have contributed to its ability to invade by outcompeting native vegetation in areas where phosphorus availability is a key limiting factor,such as those derived from some schists,arenites and large floodplain deposits(Salminen et al.2005).Felsic rocks in northern Portugal,such as most of the granites,are rich in phosphorus minerals (Neiva et al.2000).Soils that evolved from these rocks are often juvenile soils or,in some cases,they are still in an early stage of development,mainly in higher areas, where weathering mantles are common.The phosphorus minerals from this rocks,mainly apatite,under wet conditions and under low pH values(typical in granite weathering mantles),release phosphorus by slowly weathering of several phosphorus minerals(such as fluoroapatite),in a well know geochemical alteration process(Bernasconi et al.2011).Therefore,it is expected that these areas have higher concentrations of phosphorous than lower areas dominated by schistose bedrocks, where soils are often thicker,older and more rich in organic matter.According to the theory of soil development,total soil P and available amounts of mineral P tend to decrease with time(Walker and Syers 1976; Wardle et al.2004;Menge et al.2012).For this reason, areas around granitic rocks tend to be less vulnerable toH.sericeainvasion.The fact that several endemic plants of conservation concern,such as the DipsacaceaeSuccisa pinnatifidaLange,have a similar preference for areas with schistose bedrock and open scrub vegetation further highlights the need for effective management ofH.sericea.

    While the ranking of predictor importance for the local scale area did not indicate fire as being one of the most important predictors,previous studies have shown an important relationship betweenHakea sericeaand fire,as this species has been observed to cause changes in fire-related variables in some environments(van Wilgen and Richardson 1985),and is at the same time a fire-adapted serotinous species(Groom and Lamont 1997;Brown and Whelan 1999)that releases a large number of seeds after fires.These are mainly dispersed over short distances(Le Maitre et al.2008),suggesting that fire may be more important in driving local invasion dynamics in the invasive range.The current local invasion ofH.sericeain Spain is thought to have been triggered by a major fire(Pulgar Sa?udo 2006).Exposure to intense natural fires(following a period of fire exclusion)was shown to trigger the invasion of an ecologically-similar serotinous shrub in the Proteaceae family(Banksia ericifolia)in South African fynbos (Geerts et al.2013).The low importance of fire in our models is therefore puzzling,and may be attributable to the particular variable that was used in the model to indicate fire(see discussion in the section on“Predictor selection”above).More work is needed to elaborate the role of fire as a driver ofH.sericeainvasions at different spatial scales in the Iberian Peninsula.

    Conclusions

    By identifying the potential distribution and its main determinant factors for a given invader,even based on scarce occurrence data,the framework presented here provides the foundation for prioritizing the early management of invasions over large regions.In fact,it allows using the data from a heavily invaded country to predict potential risk areas in a neighbouring country with little or no invasion,provided that model transferability principles are observed(Elith and Leathwick 2009).It is then possible to use the second step of the framework to zoom in areas of particular risk or ecological interest. This may be combined with additional knowledge about the biology of the target species to direct specific management interventions.For example,forH.sericeaspecial attention should be given to wildfire occurrence and post-fire invasion dynamics in schistose areas,with management targeted at preventing ecological regime shifts (Gaertner et al.2014).

    Appendix 1

    Table 3Predictors classified into each environmental set,their format and sources for each scale

    Appendix 2

    Table 4Predictors used in each of the models calibrated for multimodel inference(MMI)to evaluate the relative importance of each set of predictors in determining the distribution of Hakea sericea

    Appendix 3

    Table 5Results of Multimodel Inference for the Regional and Local study areas,detailing number of model parameters(k),Akaike weights(wi),the AICc differences(Δi),and Nagelkerke’s R squared(R2)

    Additional file

    Additional file 1:Ensemble modelling.(DOCX 16 kb)

    Acknowledgements

    This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and by National Funds through FCT-Foundation for Science and Technology under the project PTDC/AAGMAA/4539/2012/FCOMP-01-0124-FEDER-027863(IND_CHANGE).J.Vicente is supported by POPH/FSE funds and by National Funds through FCTFoundation for Science and Technology through Post-doctoral grant SFRH/BPD/84044/2012.D.M.Richardson acknowledges support from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation(grant 85417).

    Availability of data

    Data from the invasoras.pt project is available at http://www.invasoras.uc.pt/ mapa-de-avistamentos.

    Authors’contributions

    JM,JV,JH conceived the study.JM,JV,JH,PA,EM,HM,RH collected the data. JM,JV,RH performed statistical analysis.All authors helped to draft

    manuscript.All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no competing interests.

    Author details

    1InBIO/CIBIO-Centro de Investiga??o em Biodiversidade e Recursos Genéticos,Universidade do Porto-Campus Agrário de Vair?o,Rua Padre Armando Quintas,n°7,4485-661 Vair?o,Portugal.2Centre for Invasion Biology,Department of Botany and Zoology,Stellenbosch University, Matieland 7602,South Africa.3Institute of Earth Sciences(ICT/University of Minho/CCT),Minho,Portugal.4Centre for Functional Ecology,Department of Life Sciences,University of Coimbra,3000-456 Coimbra,Portugal.

    5Departamento de Ambiente,Escola Superior Agrária de Coimbra,Instituto Politécnico de Coimbra,Bencanta,3045-601 Coimbra,Portugal.6Faculdade de Ciências da Universidade do Porto,Edifício FC4(Biologia),Rua do Campo Alegre,s/n,4169-007 Porto,Portugal.7Environmental Resource Management Department,Westlake Conservation Office,Ou Kaapse Weg,Tokai,7966 City of Cape Town,South Africa.

    Received:20 March 2016 Accepted:28 June 2016

    Araújo MB,New M(2007)Ensemble forecasting of species distributions.Trends Ecol Evol 22:42–47.doi:10.1016/j.tree.2006.09.010

    Araújo MB,Thuiller W,Williams PH,Reginster I(2005)Downscaling European species atlas distributions to a finer resolution:implications for conservation planning.Glob Ecol Biogeogr 14:17–30.doi:10.1111/j.1466-822X.2004.00128.x

    Barker RM,Haegi L,Barker WR(1999)Hakea sericea.Flora of Australia Online, http://www.environment.gov.au/biodiversity/abrs/online-resources/flora. Accessed 29 Aug 2014

    Bernasconi SM,Bauder A,Bourdon B,Brunner I,Bünemann E,Christl I,Derungs N, Edwards P,Farinotti D,Frey B,Frossard E,Furrer G,Gierga M,G?ransson H, Gülland K,Hagedorn F,Hajdas I,Hindshaw R,Ivy-Ochs S,Jansa J,Jonas T, Kiczka M,Kretzschmar R,Lemarchand E,Luster J,Magnusson J,Mitchell EAD, Venterink HO,Pl?tze M,Reynolds B et al(2011)Chemical and biological gradients along the Damma Glacier soil chronosequence(Switzerland). Vadose Zone J10:867–883

    Blackburn TM,Py?ek P,Bacher S,Carlton JT,Duncan RP,Jaro?ík V,Wilson JRU, Richardson DM(2011)A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339.doi:10.1016/j.tree.2011.03.023

    Breiman L,Friedman J,Stone CJ,Olshen RA(1984)Classification and regression trees.CRC press,New York

    Breiman L(2001)Random forests.Mach Learn 45:5–32

    Broennimann O,Petitpierre B,Randin C(2015)Ecospat:Spatial Ecology Miscellaneous Methods.Department of Ecology and Evolution(DEE)&Institute of Earth Surface Dynamics(IDYST),University of Lausanne,Switzerland

    Broennimann O,Treier UA,Müller-Sch?rer H,Thuiller W,Peterson AT,Guisan A (2007)Evidence of climatic niche shift during biological invasion.Ecol Lett 10:701–709.doi:10.1111/j.1461-0248.2007.01060.x

    Brown CL,Whelan RJ(1999)Seasonal occurrence of fire and availability of germinable seeds in Hakea sericea and Petrophile sessilis.J Ecol 87:932–941. doi:10.1046/j.1365-2745.1999.00401.x

    Brunel S,Schrader G,Brundu G,Fried G(2010)Emerging invasive alien plants for the Mediterranean Basin.EPPO Bull 40:219–238.doi:10.1111/j.1365-2338.2010. 02378.x

    Burnham K,Anderson D(2002)Model selection and multimodel inference: A practical information-theoretic approach,2nd edn.Springer,New York

    Busby JR(1991)BIOCLIM-a bioclimate analysis and prediction system.Plant Prot Q 6:8–9

    Crall AW,Newman GJ,Jarnevich CS,Stohlgren TJ,Waller DM,Graham J(2010) Improving and integrating data on invasive species collected by citizen scientists.Biol Invasions 12:3419–3428.doi:10.1007/s10530-010-9740-9

    Dallimer M,Strange N(2015)Why socio-political borders and boundaries matter in conservation.Trends Ecol Evol 30:132–139.doi:10.1016/j.tree.2014.12.004

    Davies KW,Sheley RL(2007)A conceptual framework for preventing the spatial dispersal of invasive plants.Weed Sci 55:178–184.doi:10.1614/WS-06-161

    Dufour A,Gadallah F,Wagner HH,Guisan A,Buttler A(2006)Plant species richness and environmental heterogeneity in a mountain landscape:effects of variability and spatial configuration.Ecography 29:573–584.doi:10.1111/j. 0906-7590.2006.04605.x

    EEA(European Environment Agency)(1999)Transboundary air pollution. Environment in the European Union at the turn of the century-Environmental assessment report No 2.pp 133–154EEA(European Environment Agency)(1999)Transboundary air pollution.Environment in the European Union at the turn of the century-Environmental assessment report No 2.pp 133–154.

    EEA(European Environment Agency)(2015)The European environment—state and outlook 2015—synthesis report.European Environmental Agency, Copenhagen

    Elith J,Leathwick JR(2009)Species distribution models:Ecological explanation and prediction across space and time.Annu Rev Ecol Evol Syst 40:677–697. doi:10.1146/annurev.ecolsys.110308.120159

    Espírito Santo MD,Arsénio P(1999)O género Hakea Schrad.em Portugal. 1oEncontro sobre Invasoras Lenhosas.SPCF/ADERE,Gerês,pp 58–65

    ESRI(2014)ArcGIS Desktop:release 10.2.Environmental Systems Research Institute,Redlands

    European Parliament and Council of the European Union(2014)Regulation(EU) no 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species

    Fernandes RF,Vicente JR,Georges D,Alves P,Thuiller W,Honrado JP(2014) A novel downscaling approach to predict plant invasions and improve local conservation actions.Biol Invasions 16:2577–2590.doi:10.1007/ s10530-014-0688-z

    Friedman JH(1991)Multivariate adaptive regression splines.Ann Stat 19:1–67

    Gaertner M,Biggs R,Te Beest M,Hui C,Molofsky J,Richardson DM(2014)Invasive plants as drivers of regime shifts:identifying high-priority invaders that alter feedback relationships.Divers Distrib 20:733–744.doi:10.1111/ddi.12182

    Geerts S,Moodley D,Gaertner M,Le Roux JJ,McGeoch MA,Muofhe C, Richardson DM,Wilson JRU(2013)The absence of fire can cause a lag phase:The invasion dynamics of Banksia ericifolia(Proteaceae).Austral Ecol 38:931–941.doi:10.1111/aec.12035

    Groom PK,Lamont BB(1997)Fruit-seed relations in Hakea:serotinous species invest more dry matter in predispersal seed protection.Aust J Ecol 22:352–355.doi:10.1111/j.1442-9993.1997.tb00682.x

    Guisan A,Edwards T Jr,Hastie T(2002)Generalized linear and generalized additive models in studies of species distributions:setting the scene.Ecol Modell 157:89–100.doi:10.1016/S0304-3800(02)00204-1

    Guisan A,Thuiller W(2005)Predicting species distribution:offering more than simple habitat models.Ecol Lett 8:993–1009.doi:10.1111/j.1461-0248.2005. 00792.x

    Hastie TJ,Tibshirani RJ(1990)Generalized additive models.CRC Press,London

    Hastie T,Tibshirani R,Buja A(1994)Flexible discriminant analysis by optimal scoring.J Am Stat Assoc 89:1255–1270

    Hirzel AH,Le Lay G,Helfer V,Randin C,Guisan A(2006)Evaluating the ability of habitat suitability models to predict species presences.Ecol Modell 199:142–152.doi:10.1016/j.ecolmodel.2006.05.017

    Hulme PE(2015)Invasion pathways at a crossroad:policy and research challenges for managing alien species introductions.J Appl Ecol 52:1418–1424.doi:10.1111/1365-2664.12470

    invasoras.pt(2014)Plantas Invasoras em Portugal.http://www.invasoras.uc.pt/ mapa-de-avistamentos/.Accessed 24/08/2014

    Le Maitre DC,Krug RM,Hoffmann JH,Gordon AJ,Mgidi TN(2008)Hakea sericea: Development of a model of the impacts of biological control on population dynamics and rates of spread of an invasive species.Ecol Model 212:342–358.doi:10.1016/j.ecolmodel.2007.11.011

    Le Maitre DC,Richardson DM,Chapman RA(2004)Alien plant invasions in South Africa:driving forces and the human dimension.S Afr J Sci 100:103–112. doi:10.1007/978-1-4612-1926-2_8

    Liu C,Berry PM,Dawson TP,Pearson RG(2005)Selecting thresholds of occurrence in the prediction of species distributions.Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Lomba A,Pellissier L,Randin C,Vicente J,Moreira F,Honrado J,Guisan A(2010) Overcoming the rare species modelling paradox:A novel hierarchical framework applied to an Iberian endemic plant.Biol Conserv 143:2647–2657. doi:10.1016/j.biocon.2010.07.007

    Marchante H,Morais M,Freitas H,Marchante E(2014)Guia Prático para a Identifica??o de Plantas Invasoras em Portugal.Imprensa da Universidade de Coimbra,Coimbra

    Menge DN,Hedin LO,Pacala SW(2012)Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.PLoS One 7: e42045.doi:10.1371/journal.pone.0042045

    Ministerio de Agricultura Alimentacion y Medio Ambiente(2011)Real Decreto 1628/2011,de 14 de noviembre,por el que se regula el listado y catálogo espa?ol de especies exóticas invasoras.BOLETíN OFICIAL DEL ESTADO 298 Sec.I.132711–132735

    Ministério do Ambiente(1999)Decreto-Lei n.o565/99 de 21 de Dezembro.Diário da República-I Série n.°295 9100–9115

    Nagelkerke N(1991)A note on a general definition of the coefficient of determination.Biometrika 78:691–692.doi:10.1093/biomet/78.3.691

    Neiva A,Silva M,Antunes I,Ramos J(2000)Phosphate minerals of some granitic rocks associated quartz veins from northern and central Portugal.J Czech Geol Soc 45:3–4

    Olden JD,Lawler JJ,Poff NL(2008)Machine learning methods without tears: a primer for ecologists.Q Rev Biol 83:171–193.doi:10.1086/587826

    Pauchard A,Shea K(2006)Integrating the study of non-native plant invasions across spatial scales.Biol Invasions 8:399–413.doi:10.1007/s10530-005-6419-8

    Pearson R,Dawson T,Berry P,Harrison P(2002)SPECIES:A spatial evaluation of climate impact on the envelope of species.Ecol Modell 154:289–300. doi:10.1016/S0304-3800(02)00056-X

    Pearson RG,Dawson TP,Liu C(2004)Modelling species distributions in Britain:a hierarchical integration of climate and land-cover data.Ecography(Cop)27: 285–298.doi:10.1111/j.0906-7590.2004.03740.x

    Pearson RG,Thuiller W,Araújo MB,Martinez-Meyer E,Brotons L,McClean C,Miles L,Segurado P,Dawson TP,Lees DC(2006)Model-based uncertainty in species range prediction.J Biogeogr 33:1704–1711.doi:10.1111/j.1365-2699. 2006.01460.x

    Peterson AT(2003)Predicting the geography of species’invasions via ecological niche modeling.Q Rev Biol 78:419–433.doi:10.1086/378926

    Phillips SJ,Dudík M,Schapire RE(2004)A maximum entropy approach to species distribution modeling.Proceedings of the twenty-first international conference on Machine learning,Canada,p 83

    Pimentel D,Zuniga R,Morrison D(2005)Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288.doi:10.1016/j.ecolecon.2004.10.002

    Pino J,Font X,Carbó J,Jové M,Pallarès L(2005)Large-scale correlates of alien plant invasion in Catalonia(NE of Spain).Biol Conserv 122:339–350. doi:10.1016/j.biocon.2004.08.006

    Pulgar Sa?udo í(2006)Aportaciones a la flora del sur de Galicia(NO Espa?a).Bot Complut 30:113–116

    QGIS Development Team(2014)Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.http://qgis.osgeo.org accessed 13 Mar 2016

    R Development Core Team(2014)R:A Language and Environment for Statistical Computing.Foundation for Statistical Computing,Vienna,Austria

    Rejmánek M,Richardson D(2013)Trees and shrubs as invasive alien species–2013 update of the global database.Divers Distrib 19:1093–1094. doi:10.1111/ddi.12075

    Richardson D,Py?ek P,Carlton JT(2011)A compendium of essential concepts and terminology in invasion ecology.In:Richardson DM(ed)Fifty Years of Invasion Ecology:The Legacy of Charles Elton.Wiley-Blackwell,Oxford, pp 409–420

    Richardson D,Py?ek P,Rejmánek M,Barbour MG,Panetta FD,West CJ(2000) Naturalization and invasion of alien plants:concepts and definitions.Divers Distrib 6:93–107.doi:10.1046/j.1472-4642.2000.00083.x

    Richardson DM,Wilgen BW,Mitchell DT(1987)Aspects of the reproductive ecology of four Australian Hakea species(Proteaceae)in South Africa. Oecologia 71:345–354.doi:10.1007/BF00378706

    Ridgeway G(1999)The state of boosting.Comput Sci Stat 31:172–181

    Ripley BD(1996)Pattern recognition and neural networks.Cambridge University Press,Cambridge

    Rivas-Martínez S,Penas A,Díaz TE(2004)Biogeographic map of Europe. Cartographic Service,University of León,Spain

    Robin X,Turck N,Hainard A et al(2011)pROC:an open-source package for R and S+to analyze and compare ROC curves.BMC Bioinformatics 12: 77.doi:10.1186/1471-2105-12-77

    Roques A,Auger-Rozenberg M-A,Blackburn TM,Garnas J,Py?ek P,Rabitsch W, Richardson DM,Wingfield MJ,Liebhold AM,Duncan RP(2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years.Biol Invasions 18(in press) doi:10.1007/s10530-016-1080-y

    Rouget M,Richardson DM(2003)Understanding patterns of plant invasion at different spatial scales:quantifying the roles of environment and propagule pressure.In:Child LE,Brock JH,Brundu G et al(eds)Plant invasions: ecological threats and management solutions.Backhuys Publishers,Leiden, pp 3–15

    Salminen R,Plant JA,Reeder S(2005)Geochemical atlas of Europe.Part 1, Background information,methodology and maps.Geological survey of Finland,Espoo,p 526

    Song I-J,Hong S-K,Kim H-O,Byun B,Gin Y(2005)The pattern of landscape patches and invasion of naturalized plants in developedareas of urban Seoul.Landsc Urban Plan 70:205–219.doi:10.1016/j. landurbplan.2003.10.018

    Sousa MF,Fa?anha AR,Tavares RM,Lino-Neto T,Gerós H(2007)Phosphate transport by proteoid roots of Hakea sericea.Plant Sci 173:550–558. doi:10.1016/j.plantsci.2007.08.006

    Theoharides KA,Dukes JS(2007)Plant invasion across space and time:factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273.doi:10.1111/j.1469-8137.2007.02207.x

    Thuiller W(2007)Biodiversity:Climate change and the ecologist.Nature 448: 550–552.doi:10.1038/448550a

    Thuiller W,Georges D,Engler R(2015)biomod2:Ensemble platform for species distribution modeling.http://cran.r-project.org/web/packages/biomod2/ biomod2.pdf.Accessed 19 May 2015

    Thuiller W,Lafourcade B,Engler R,Araújo M(2009)BIOMOD-a platform for ensemble forecasting of species distributions.Ecography 32:369–373. doi:10.1111/j.1600-0587.2008.05742.x

    United Nations(1997)Glossary of Environment Statistics.United Nations,New York

    van Wilgen B,Richardson D(1985)The effects of alien shrub invasions on vegetation structure and fire behaviour in South African fynbos shrublands:a simulation study.J Appl Ecol 22:955–966.doi:10.2307/2403243

    Vicente J,Alves P,Randin C,Guisan A,Honrado J(2010)What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal.Ecography 33:1081–1092.doi:10.1111/ j.1600-0587.2010.6380.x

    Vicente JR,Gon?alves J,Honrado JP,Randin CF,Pottier J,Broennimann O,Lomba A,Guisan A(2014)A framework for assessing the scale of influence of environmental factors on ecological patterns.Ecol Complex 20:151–156. doi:10.1016/j.ecocom.2014.10.005

    Vicente J,Randin CF,Gon?alves J,Metzger MJ,Lomba ?,Honrado J,Guisan A (2011)Where will conflicts between alien and rare species occur after climate and land-use change?A test with a novel combined modelling approach.Biol Invasions 13:1209–1227.doi:10.1007/s10530-011-9952-7

    Vilà M,Basnou C,Py?ek P,Josefsson M,Genovesi P,Gollasch S,Nentwig W, Olenin S,Roques A,Roy D,Hulme PE,DAISIE partners(2010)How well do we understand the impacts of alien species on ecosystem services?A pan-European,cross-taxa assessment.Front Ecol Environ 8:135–144.doi:10.1890/ 080083

    Vilà M,Espinar JL,Hejda M,Hulme PE,Jaro?ík V,Maron JL,Pergl J,Schaffner U, Sun Y,Py?ek P(2011)Ecological impacts of invasive alien plants:a metaanalysis of their effects on species,communities and ecosystems.Ecol Lett 14:702–708.doi:10.1111/j.1461-0248.2011.01628.x

    Walther G(2002)Weakening of climatic constraints with global warming and its consequences for evergreen broad-leaved species.Folia Geobot 37:129–139. doi:10.1007/bf02803195

    Walker TW,Syers JK(1976)The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Wardle DA,Walker LR,Bardgett RD(2004)Ecosystem properties and forest decline in contrasting long-term chronosequences.Science(Wash DC)305: 509–513

    Wilson JRU,Wilson JRU,Richardson DM,Proche? ?,Amis MA,Henderson L, Thuiller W(2007)Residence time and potential range:crucial considerations in modelling plant invasion.Divers Distrib 13:11–12.doi:10.1111/j.1472-4642. 2006.00302.x

    Wisz MS,Guisan A(2009)Do pseudo-absence selection strategies influence species distribution models and their predictions?An information-theoretic approach based on simulated data.BMC Ecol 9:8.doi:10.1186/1472-6785-9-8

    *Correspondence:joaofilipepm@gmail.com

    1InBIO/CIBIO-Centro de Investiga??o em Biodiversidade e Recursos

    Genéticos,Universidade do Porto-Campus Agrário de Vair?o,Rua Padre Armando Quintas,n°7,4485-661 Vair?o,Portugal

    Full list of author information is available at the end of the article

    久久国产亚洲av麻豆专区| 在线观看一区二区三区激情| 在线观看免费日韩欧美大片 | 18禁在线无遮挡免费观看视频| 久久精品国产鲁丝片午夜精品| 久久久国产一区二区| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区 | 色视频在线一区二区三区| 精品久久久久久久久亚洲| 久久精品熟女亚洲av麻豆精品| 我要看黄色一级片免费的| 精品午夜福利在线看| 黄色日韩在线| 国产伦理片在线播放av一区| 老熟女久久久| 久久99热这里只频精品6学生| 久久国产乱子免费精品| av在线app专区| 精品少妇内射三级| 人妻制服诱惑在线中文字幕| 欧美成人精品欧美一级黄| 精品久久久久久电影网| 日韩精品有码人妻一区| 91aial.com中文字幕在线观看| 大话2 男鬼变身卡| 少妇猛男粗大的猛烈进出视频| 最新的欧美精品一区二区| 亚洲欧美日韩东京热| 欧美成人午夜免费资源| 大码成人一级视频| 一本久久精品| 久久久国产精品麻豆| 最新的欧美精品一区二区| 亚洲精品国产av成人精品| 美女xxoo啪啪120秒动态图| 2022亚洲国产成人精品| 三上悠亚av全集在线观看 | 亚洲av在线观看美女高潮| 中文字幕精品免费在线观看视频 | 人人妻人人爽人人添夜夜欢视频 | 国产视频内射| 久久久久久人妻| 亚洲av综合色区一区| 免费看av在线观看网站| 狂野欧美白嫩少妇大欣赏| 亚洲国产色片| 黄色毛片三级朝国网站 | 一级毛片aaaaaa免费看小| 亚洲久久久国产精品| 女性生殖器流出的白浆| 欧美最新免费一区二区三区| 亚洲电影在线观看av| 一个人看视频在线观看www免费| 成人免费观看视频高清| 中国美白少妇内射xxxbb| av视频免费观看在线观看| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 久久狼人影院| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩av片在线观看| 亚洲中文av在线| 五月天丁香电影| 卡戴珊不雅视频在线播放| 欧美日韩精品成人综合77777| 天天操日日干夜夜撸| 热re99久久国产66热| 国产免费又黄又爽又色| 国产欧美日韩精品一区二区| 丰满迷人的少妇在线观看| av福利片在线| 大话2 男鬼变身卡| 国产在线男女| 一区在线观看完整版| 91精品国产九色| 亚洲欧洲精品一区二区精品久久久 | 亚洲一区二区三区欧美精品| 国产精品一区二区在线观看99| 亚洲av成人精品一区久久| 国产视频首页在线观看| 伊人亚洲综合成人网| 亚洲精华国产精华液的使用体验| 亚洲av不卡在线观看| 只有这里有精品99| 久久久欧美国产精品| 久久精品熟女亚洲av麻豆精品| 久久婷婷青草| 国产精品蜜桃在线观看| 少妇猛男粗大的猛烈进出视频| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 亚洲怡红院男人天堂| 亚洲精华国产精华液的使用体验| 亚洲av在线观看美女高潮| 久久久久久人妻| 免费观看性生交大片5| 国产精品无大码| 免费看日本二区| a级毛色黄片| 天堂俺去俺来也www色官网| 黄色视频在线播放观看不卡| 91精品国产国语对白视频| 夜夜骑夜夜射夜夜干| 亚洲第一区二区三区不卡| videos熟女内射| 久久精品久久久久久噜噜老黄| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 在线播放无遮挡| 亚洲人成网站在线播| 日韩 亚洲 欧美在线| 国产男人的电影天堂91| 精品一区二区免费观看| 精品久久久久久久久亚洲| 成人18禁高潮啪啪吃奶动态图 | 99久久精品热视频| 乱系列少妇在线播放| 男女边摸边吃奶| 亚洲电影在线观看av| 欧美精品高潮呻吟av久久| 狂野欧美激情性xxxx在线观看| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 六月丁香七月| av免费在线看不卡| 日韩制服骚丝袜av| 免费观看a级毛片全部| 欧美日韩国产mv在线观看视频| 免费观看的影片在线观看| 亚洲av不卡在线观看| 99热这里只有是精品50| 国产精品国产av在线观看| 欧美 亚洲 国产 日韩一| 午夜老司机福利剧场| 性色av一级| av在线老鸭窝| 国产伦精品一区二区三区四那| 日本黄色日本黄色录像| 午夜福利在线观看免费完整高清在| 日产精品乱码卡一卡2卡三| 男人舔奶头视频| 狂野欧美白嫩少妇大欣赏| 欧美 日韩 精品 国产| 成年女人在线观看亚洲视频| av专区在线播放| 五月天丁香电影| 久久精品国产亚洲av天美| 少妇被粗大的猛进出69影院 | 极品人妻少妇av视频| 日本爱情动作片www.在线观看| 国产老妇伦熟女老妇高清| 久久久久久久国产电影| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 少妇人妻 视频| 99热国产这里只有精品6| 精品一区二区免费观看| 在线亚洲精品国产二区图片欧美 | 午夜免费男女啪啪视频观看| 国产探花极品一区二区| 亚洲精品自拍成人| 最近最新中文字幕免费大全7| 免费观看无遮挡的男女| 秋霞在线观看毛片| 久久这里有精品视频免费| 永久网站在线| 精品国产一区二区久久| 黄色怎么调成土黄色| 99热全是精品| av视频免费观看在线观看| 在线天堂最新版资源| 美女主播在线视频| 国产精品女同一区二区软件| 国产 精品1| 久久久国产欧美日韩av| 国产成人freesex在线| 日本免费在线观看一区| 欧美亚洲 丝袜 人妻 在线| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 美女内射精品一级片tv| 少妇 在线观看| 九九爱精品视频在线观看| 久久毛片免费看一区二区三区| 欧美最新免费一区二区三区| 一区二区三区精品91| 亚洲美女视频黄频| 国产亚洲欧美精品永久| 免费av中文字幕在线| 成人影院久久| 免费观看性生交大片5| 国产片特级美女逼逼视频| 国产无遮挡羞羞视频在线观看| 国产色爽女视频免费观看| 美女中出高潮动态图| 中文资源天堂在线| 国产在线男女| www.av在线官网国产| 中文天堂在线官网| 日韩伦理黄色片| 国产国拍精品亚洲av在线观看| 啦啦啦视频在线资源免费观看| 免费在线观看成人毛片| 国产日韩欧美在线精品| 国产高清不卡午夜福利| 精品熟女少妇av免费看| 亚洲av中文av极速乱| 精品一区二区免费观看| 久久影院123| 啦啦啦视频在线资源免费观看| 性色av一级| 又黄又爽又刺激的免费视频.| 少妇的逼水好多| 亚洲中文av在线| 日本av免费视频播放| 91久久精品国产一区二区三区| 高清av免费在线| 久久ye,这里只有精品| 精品一区二区三区视频在线| 中文字幕亚洲精品专区| 免费人成在线观看视频色| 日韩,欧美,国产一区二区三区| 这个男人来自地球电影免费观看 | 国产一区二区在线观看日韩| 丰满乱子伦码专区| 精品一区二区三区视频在线| 欧美成人午夜免费资源| 人妻一区二区av| 亚洲电影在线观看av| 欧美日韩在线观看h| 2018国产大陆天天弄谢| 曰老女人黄片| 在线观看一区二区三区激情| 中文字幕人妻丝袜制服| 日本wwww免费看| 六月丁香七月| 国产高清三级在线| 波野结衣二区三区在线| 亚洲精品乱码久久久久久按摩| 亚洲欧洲日产国产| 乱系列少妇在线播放| 日本91视频免费播放| 肉色欧美久久久久久久蜜桃| 人人妻人人澡人人看| 国内精品宾馆在线| 两个人免费观看高清视频 | 男人爽女人下面视频在线观看| 又黄又爽又刺激的免费视频.| av.在线天堂| 免费看光身美女| 美女脱内裤让男人舔精品视频| 亚州av有码| 精品一区二区三区视频在线| 国产高清三级在线| 久久女婷五月综合色啪小说| 久久精品久久久久久噜噜老黄| 国产成人免费无遮挡视频| 97在线人人人人妻| 波野结衣二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,一卡二卡三卡| 男人狂女人下面高潮的视频| 欧美+日韩+精品| 日韩,欧美,国产一区二区三区| av.在线天堂| 桃花免费在线播放| 国产亚洲欧美精品永久| 亚洲国产精品成人久久小说| 99热这里只有是精品50| 国产成人精品久久久久久| 一级毛片 在线播放| 久久青草综合色| 三上悠亚av全集在线观看 | 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 久久久久久久精品精品| 久久人人爽人人片av| 精品一区二区三卡| a级毛片在线看网站| 亚洲精品国产成人久久av| 日韩 亚洲 欧美在线| 久久午夜综合久久蜜桃| 老司机亚洲免费影院| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版| 97在线视频观看| 亚洲成人一二三区av| 色视频www国产| 午夜影院在线不卡| 国产精品伦人一区二区| h视频一区二区三区| 午夜av观看不卡| 男女啪啪激烈高潮av片| 日本av手机在线免费观看| 丁香六月天网| 三级国产精品欧美在线观看| 777米奇影视久久| 国产片特级美女逼逼视频| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 七月丁香在线播放| 卡戴珊不雅视频在线播放| av在线app专区| 国产av码专区亚洲av| 丰满人妻一区二区三区视频av| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| 日本午夜av视频| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 亚洲av二区三区四区| videos熟女内射| 欧美精品一区二区大全| √禁漫天堂资源中文www| 国产片特级美女逼逼视频| 久热久热在线精品观看| 女人久久www免费人成看片| 日本与韩国留学比较| √禁漫天堂资源中文www| 一级毛片 在线播放| 日日爽夜夜爽网站| 久久午夜福利片| 99热6这里只有精品| 久久久久久久久久久免费av| 久久久国产精品麻豆| 啦啦啦在线观看免费高清www| 精品人妻熟女av久视频| 久久婷婷青草| 婷婷色麻豆天堂久久| 成人国产av品久久久| 亚洲综合色惰| 免费观看性生交大片5| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利网站1000一区二区三区| av播播在线观看一区| 亚洲色图综合在线观看| 日本黄色片子视频| 伊人久久精品亚洲午夜| 少妇人妻久久综合中文| 国产精品久久久久久av不卡| 三级国产精品片| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 欧美少妇被猛烈插入视频| 老司机亚洲免费影院| 老熟女久久久| 永久网站在线| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 亚洲精品aⅴ在线观看| 亚洲国产精品一区三区| 久久精品国产a三级三级三级| 欧美精品一区二区大全| 国产综合精华液| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | 永久免费av网站大全| av一本久久久久| 最近的中文字幕免费完整| 少妇高潮的动态图| 欧美国产精品一级二级三级 | 国产熟女午夜一区二区三区 | 少妇人妻精品综合一区二区| 纵有疾风起免费观看全集完整版| 简卡轻食公司| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 亚洲成色77777| 国产免费视频播放在线视频| 成人亚洲欧美一区二区av| 观看美女的网站| 欧美变态另类bdsm刘玥| 啦啦啦在线观看免费高清www| 中文字幕久久专区| av一本久久久久| kizo精华| 亚洲国产精品一区三区| 亚洲国产日韩一区二区| 18禁在线无遮挡免费观看视频| 日韩熟女老妇一区二区性免费视频| 美女福利国产在线| 插逼视频在线观看| 麻豆成人午夜福利视频| 两个人的视频大全免费| 国产精品99久久99久久久不卡 | 在线观看三级黄色| 80岁老熟妇乱子伦牲交| 免费大片18禁| 女人久久www免费人成看片| 精品少妇内射三级| 免费观看av网站的网址| 热99国产精品久久久久久7| 两个人的视频大全免费| 秋霞在线观看毛片| 观看av在线不卡| 欧美日韩亚洲高清精品| 亚洲国产精品专区欧美| 少妇精品久久久久久久| xxx大片免费视频| 国产日韩欧美在线精品| 男女国产视频网站| 国产成人一区二区在线| 亚洲,一卡二卡三卡| 国产黄片美女视频| 国产黄片视频在线免费观看| 日韩电影二区| 日韩精品有码人妻一区| 精品人妻熟女av久视频| av有码第一页| 校园人妻丝袜中文字幕| 涩涩av久久男人的天堂| 2022亚洲国产成人精品| 一区二区三区免费毛片| 久久毛片免费看一区二区三区| 亚洲综合色惰| 国产一级毛片在线| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 国产亚洲91精品色在线| 国产视频内射| 日韩一本色道免费dvd| 一本一本综合久久| 国产精品一区二区三区四区免费观看| av一本久久久久| 97在线人人人人妻| 亚洲精品乱码久久久久久按摩| 人妻人人澡人人爽人人| 久久av网站| 色哟哟·www| 亚洲av成人精品一区久久| 久久久久久伊人网av| 免费黄网站久久成人精品| 成人黄色视频免费在线看| 亚洲国产色片| 欧美区成人在线视频| 91精品国产国语对白视频| 欧美高清成人免费视频www| 国产成人91sexporn| 最近的中文字幕免费完整| 成人亚洲精品一区在线观看| 国产精品人妻久久久影院| 美女国产视频在线观看| 六月丁香七月| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 国产爽快片一区二区三区| 久久精品久久久久久久性| 一区二区三区免费毛片| 亚洲欧美日韩卡通动漫| 国产男人的电影天堂91| 精品少妇内射三级| 亚洲国产最新在线播放| 如何舔出高潮| a级片在线免费高清观看视频| av网站免费在线观看视频| 精品国产国语对白av| 久久久久久久亚洲中文字幕| 久久青草综合色| 91精品伊人久久大香线蕉| 国产成人精品一,二区| 亚洲av国产av综合av卡| 人人澡人人妻人| 久久婷婷青草| 男女免费视频国产| 能在线免费看毛片的网站| 久久av网站| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 欧美区成人在线视频| 一二三四中文在线观看免费高清| 亚洲精品日本国产第一区| av福利片在线观看| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 成人美女网站在线观看视频| 伦理电影大哥的女人| av天堂久久9| 亚洲精品第二区| 免费观看性生交大片5| 欧美变态另类bdsm刘玥| 在线观看三级黄色| 精品卡一卡二卡四卡免费| 国产 精品1| 三级经典国产精品| 美女主播在线视频| 国产中年淑女户外野战色| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 成人国产麻豆网| 春色校园在线视频观看| 成人午夜精彩视频在线观看| 九九久久精品国产亚洲av麻豆| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放 | 亚洲丝袜综合中文字幕| 插逼视频在线观看| 自拍偷自拍亚洲精品老妇| 在现免费观看毛片| 免费观看在线日韩| 一区二区三区乱码不卡18| 两个人的视频大全免费| 日本av手机在线免费观看| 中文字幕人妻丝袜制服| 久久国内精品自在自线图片| 免费高清在线观看视频在线观看| 中国国产av一级| 亚洲性久久影院| 在线精品无人区一区二区三| 大片免费播放器 马上看| 九草在线视频观看| 99久国产av精品国产电影| 久久久精品免费免费高清| 亚洲精品日韩av片在线观看| 国产精品一二三区在线看| 熟女电影av网| 最近手机中文字幕大全| 日韩熟女老妇一区二区性免费视频| av女优亚洲男人天堂| 插逼视频在线观看| 在现免费观看毛片| 日本色播在线视频| 欧美精品亚洲一区二区| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 精品视频人人做人人爽| 啦啦啦视频在线资源免费观看| 日本免费在线观看一区| 欧美精品国产亚洲| 免费在线观看成人毛片| 亚洲av男天堂| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区 | 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 人妻人人澡人人爽人人| 在线观看av片永久免费下载| 美女视频免费永久观看网站| 最近最新中文字幕免费大全7| 亚洲丝袜综合中文字幕| 少妇猛男粗大的猛烈进出视频| 男的添女的下面高潮视频| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 亚洲精品国产成人久久av| av天堂中文字幕网| 国产片特级美女逼逼视频| 国产一区二区在线观看日韩| 国产淫语在线视频| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 人妻系列 视频| 最近最新中文字幕免费大全7| 午夜视频国产福利| 激情五月婷婷亚洲| 99精国产麻豆久久婷婷| 国产乱来视频区| 亚洲av成人精品一二三区| 国产精品国产av在线观看| 午夜免费鲁丝| 纵有疾风起免费观看全集完整版| 99热这里只有精品一区| 少妇的逼好多水| 三级经典国产精品| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 尾随美女入室| 在现免费观看毛片| 国产欧美日韩综合在线一区二区 | 99热网站在线观看| 另类亚洲欧美激情| 亚洲va在线va天堂va国产| 午夜av观看不卡| 免费人成在线观看视频色| 91精品伊人久久大香线蕉| freevideosex欧美| 国产在线一区二区三区精| 成人漫画全彩无遮挡| 国产免费福利视频在线观看| 三上悠亚av全集在线观看 | 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 菩萨蛮人人尽说江南好唐韦庄| a级片在线免费高清观看视频| 大香蕉97超碰在线| 日本av免费视频播放| 久久精品熟女亚洲av麻豆精品| 91在线精品国自产拍蜜月| 高清黄色对白视频在线免费看 | 建设人人有责人人尽责人人享有的| 国产在线一区二区三区精| 日韩精品有码人妻一区| 欧美日韩av久久| 在线观看av片永久免费下载| 妹子高潮喷水视频| 少妇人妻久久综合中文| 欧美3d第一页| 日本黄色日本黄色录像| av国产久精品久网站免费入址| 制服丝袜香蕉在线| 99热6这里只有精品| 91精品一卡2卡3卡4卡| 国产av一区二区精品久久| 久久久久精品久久久久真实原创| 欧美一级a爱片免费观看看| 久久久久久久久久久久大奶|