• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Human endogenous retroviruses and cancer

    2017-01-13 01:54:49MarGonzalezCaoPaolaIdumaNikiKarachaliouMariacarmelaSantarpiaJuliBlancoRafaelRosell
    Cancer Biology & Medicine 2016年4期

    María Gonzalez-Cao, Paola Iduma, Niki Karachaliou, Mariacarmela Santarpia, Julià Blanco,4, Rafael Rosell,5,6

    1Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain;2AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona 08028, Spain;3Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, 98122, Italy;4UVIC-UCC, Catalunya 08500, Spain;5Cancer Biology &Precision Medicine Program, Catalan Institute of Oncology, Germans Trias I Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, 08916, Spain;6Fundación Molecular Oncology Research, Barcelona 08028, Spain

    Human endogenous retroviruses and cancer

    María Gonzalez-Cao1, Paola Iduma2, Niki Karachaliou1, Mariacarmela Santarpia3, Julià Blanco2,4, Rafael Rosell1,5,6

    1Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain;2AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona 08028, Spain;3Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, 98122, Italy;4UVIC-UCC, Catalunya 08500, Spain;5Cancer Biology &Precision Medicine Program, Catalan Institute of Oncology, Germans Trias I Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, 08916, Spain;6Fundación Molecular Oncology Research, Barcelona 08028, Spain

    Human endogenous retroviruses (HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K (HML6) and HERV-K (HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K (HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are twoedged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors.

    HERVs; cancer; interferon; immunotherapy

    Introduction

    Retroviruses are a subgroup of viruses characterized by their ability to integrate their genome into host-cell DNA. Retroviruses are double-stranded positive-sense RNA viruses that use reverse transcriptase enzyme to transcribe their RNAs to DNAs. The resultant DNA is later integrated into host DNA through viral integrase enzyme. Viral-integrated DNA (proviral DNA) is translated and transcribed to proteins as part of host genome using the genetic machinery of infected cell1-3.

    The genomic structure of retroviruses is composed of gene gag, pol/pro, and env flanked by two long terminal repeats (LTRs). These open reading frames (ORFs) encode structural and functional viral proteins, and LTRs encode promoter and polyadenylation signals4.

    Most retroviruses, such as HIV-1, cause infectious diseases in humans. Some of them can also cause cancer in animals and humans. For instance, Rous sarcoma virus incorporates proto-oncogene c-Src into the viral genome, and v-Src triggers tumor formation in hosts5.

    Endogenous retroviruses (ERVs) were described in the late 1960s as retroviral sequences integrated in genome of some animals millions of years ago, following the integration of viral genome into germinal cells6,7. ERVs are commonly inactive and unable to replicate; they play an important role in species evolution. Among the most relevant example is the discovery of the major role of env gene of HERV-W syncytin in the development of syncytiotrophoblast of placenta8.

    Human ERVs (HERVs) account for 8% of the human genome; they are classified as class I or II depending on whether their sequences are homologous to mammalian type C retroviruses or mammalian type B and D retroviruses, respectively7. These HERV genomes are not replicationcompetent because of the acquisition of mutations or loss of relevant genes during host evolution9. Furthermore, HERV transcription is controlled by epigenetic mechanisms10. Therefore, uncontrolled HERV activation may induce relevant physiological consequences11. HERV MER41.AIM2 regulates the transcription of gene absent in melanoma 2(AIM2) that encodes a sensor of free cytosolic DNA for immune response to viral infections12.

    Potentially, HERVs could cause diseases, such as autoimmune disease or cancer, through several mechanisms. HERV-related cancer could be induced by the activation of HERV sequences through hypomethylation; expression of oncogenes, such as HERV-encoded Rec and NP9; inactivation of tumor suppressor genes via mutational insertion; homologous recombination; transcription of close oncogenes or growth factors via LTRs; and induction of syncytial formation by Env protein that could aid the dissemination and progression of cancer cells. However, such induction has not been clearly demonstrated. Evidence supports a possible role of HERVs in human cancer because many proteins from HERVs, such as the proteins from HERV-K MHL1 and MLH2 in melanoma and other tumors, are found in certain tumors. The causative role is uncertain, but its important role in the development of a cross-effective immune response against cancer is recently demonstrated. Consequently, the relationship between virus and cancer attracts interest. In this paper, we summarize the current knowledge on this topic.

    HERVs: structure and function

    Similar to any integrated retrovirus, a complete HERV sequence is flanked by two LTRs that are genetic regulatory sequences. The ORF gag, pro/pol, and env are present between the LTRs and codified structural and functional viral proteins. LTRs can regulate the transcription of HERV and host genes because LTRs contain a transcriptional promoter and enhancer core13.

    Integrated HERV sequences accumulate mutations or recombination events that eliminate the infectious capacity of retrovirus. One LTR is commonly lost by recombination of two LTRs (“single LTR”), thereby losing its capacity for replication14. HERVs also exhibit important alterations in their ORFs that cause their replication defective, thereby losing their capacity to move into the genome15.

    HERVs are classified into 22 families according to their sequence identity; their nomenclature refers to the first-letter amino-acid core of the tRNA of the primary binding site used by HERV to start reverse transcription16. HERV-K is the most recent HERV family obtained from humans at around three million years ago. HERV-Ks are formed by 11 subgroups (HML-1-HML-11); the most-studied cancer is HERV-K (HML-2), which is the only one with intact fulllength ORFs17.

    HERV and cancer

    Expression of HERVs in cancer cells

    Many studies have identified the expression of HERV protein in cancer tissues, but its causative role in cancer development remains controversial. Several factors, such as UV radiation, estrogen hormone, and smoking, have been proposed as a cause of HERV protein expression in cancer tissues. Furthermore, intrinsic activation of the MAPK and p16INK4A-CDK4 pathways lead to HERV protein expression in melanoma18.

    HERV-K Env protein has been identified in melanoma by immunohistochemistry using HERV-K Env-specific monoclonal antibody 6H519. The antigen HERV-K-MEL is expressed in 85% of malignant melanocytes from normal nevi and dysplastic lesions to metastatic melanoma. The expression of HERV-K Env in melanomas is higher than that in benign lesions, especially in metastatic tumors19. HERV-K Env is also found in other tumors, such as breast cancer, ovarian cancer, teratocarcinoma, sarcoma, and bladder cancer20-24. Transcripts from HERV-E (CT-RCC) are expressed in von Hippel-Lindau (VHL)-deficient renal carcinomas25. Regulation of HERV activation in renal cell carcinoma by VHL gene is of particular interest. When VHL transgenes are introduced into VHL-deficient carcinoma cell lines, HERV-E expression is suppressed. This result demonstrates that VHL controls provirus activity25.

    High plasma levels of the mRNA of various HERV env genes (HERV-K, HERV-R, and HERV-H) have been found in primary breast cancer patients comparing with normal controls26-28. The levels of these genes decrease during treatment with adjuvant chemotherapy, thereby suggesting a close relation with clinical cancer evolution and a possible role for identification of the persistence of microscopic disease in primary breast cancer patients29. Anti-HERV-E, anti-HERV-K (HML-2), and anti-ERV3 antibodies are also detected in more than 30% of ovarian cancer patients30. The levels of these antibodies are higher in patients with lymphnode-positive breast tumors28. In addition, the presence of serum antibodies against HERV-K proteins in stages I-III melanoma patients has also been described and is a prognostic factor for poor survival31.

    Possible mechanisms of oncogenesis

    The association between cancer and ERV was first observed in a high incidence of thymic lymphomas in mice, which specifically involves AKR, HRS, and C58 strains. Over the years, subsequent studies demonstrated a viral etiology,which probably results from enhanced-mediated insertional activation of a proto-oncogene. Young et al.32described the potential of Rag1-mouse-associated retroviruses (RARVs) to replicate in T and B lymphocyte-deficient Rag1 mice compared with purified macrophages from B6 wild type. They observed that almost 67% of the mice show signs of morbidity, and all mice present large tumors and anemia. Tumor analysis revealed high expression of eMLV Env and pol DNA copy numbers; therefore, RARVs had infected cells that cause lymphomas.

    HERVs can transform benign cells through different mechanisms (Figure 1). First, HERVs possess two LTRs that recruit transcription factors from the infected cell for retroviral gene transcription. These LTRs can also enhance transcription of host cell genes, which leads to uncontrolled cell proliferation. A high transcription of the colony stimulation factor receptor 1 in Hodgkin’s lymphoma is caused by reduced expression of transcriptional co-repressor CBFA2T3 (also called MTG16 or ETO2) that inhibits the activity of LTR THE1B in normal cells. Reduced CBFA2T3 expression is caused by the CpG methylation of this gene’s locus33.

    Figure 1 Mechanisms of oncogenesis. LTRs recruit transcription factors from the infected cell for retroviral gene transcription. These LTRs can also enhance transcription of the host cell genes, leading to uncontrolled tumor cell proliferation. Some HERVs encode potentially oncogenic proteins like Np9 and Rec that interact with transcription factors and activate immunosuppressor pathways, promoting oncogenesis. HERVs can also induce chromosomal translocations in somatic cells that could lead to tumor proliferation. HERVs also can promote an immunosuppressive response that may lead to cancer formation and spreading, because the Env protein has an immunosuppressive domain (ISD).

    As a second oncogenic mechanism, some HERVs, such as HERV-K types I and II, encode potentially oncogenic proteins, such as Np9 and Rec, which interact with transcription factors, including promyelocytic leukemia zinc finger, and activate immunosupressor pathways, such as the beta-catenin pathway34. Conversely, the transcription factor MITF, which is commonly over-activated in melanoma cells, is necessary for the transcriptional activity of the LTR of HERV-K, as demonstrated when forced MITF expression in non-melanoma HEK293 cells activates the HERV-K35.

    HERV-induced chromosomal translocation in somatic cells is a third oncogenic mechanism. In prostate cancer, HERV-K and oncogene E26 transformation-specific displays fusion(36), and insertion polymorphisms of HERV-K are correlated with the risk of developing lung adenocarcinoma in non-smokers37.

    Finally, HERVs can also promote an immunosuppressive response that may lead to cancer formation and spreading. Env protein contains an immunosuppressive domain, which is confirmed in animal models as a cause of tumor growth for tumor cells harboring the insertion of Moloney MLV (which is not recognized by the animal’s immune system) and in env knockdown in B16 melanoma cells and Neuro-2a neuroblastoma cell lines38.

    In conclusion, several potential mechanisms could be used by HERVs for cancer development in animals. Patients with altered immune vigilance system against viruses show increased cancer risk. When there are alterations in key elements of the innate immune system, such as pattern recognition receptors (PRRs), RIG-1, Toll-like receptors (TLRs), or AIM2, increased cancer risk is probably caused by uncontrolled HERV expression. TLR9 or TLR3 deficiency leads to the development of acute lymphoblastic leukemia39. Furthermore, a correlation exists between mutations in retroviral restriction factor SAMHD1 and human cancer40,41.

    HERVs as targets for cancer treatment

    The frequent overexpression of HERV proteins in cancer cells has been proposed as a target for immunotherapy. Several studies and case reports have described responses to Bacillus Calmette-Guerin (BCG), yellow fever vaccine, or following a febrile process in melanoma patients42,43. Although the mechanism of action is unclear, homology between BCG sequence and yellow fever virus vaccine and the sequence of HERV-K-MEL protein was described44. A case-control study demonstrated that people who received BCG vaccine during childhood or suffered from acute infection present a lower risk of melanoma than those inother members of the population45. Immunoreactivity against melanoma is observed in vitro using sera from Rhesus macaques that received yellow fever vaccine. Furthermore, yellow fever vaccine has been proposed as a profilactic vaccine against melanoma (European Patent EP1586330A1).

    Proteins codified by the env gene of HERVs, such as HERV-K and HERV-H, are immunogenic, and humoral and cellular responses are detectable against HERVs. Antibodies against HERV-K inhibit cancer cell growth in vitro and in animal models46. Tumors expressing antigens from HERV env genes are recognized by CD8+ lymphocytes25.

    In ovarian22and breast cancer patients47, the activity of a dendritic vaccine combined with HERV-K Env antigens has been demonstrated in vitro. Other cellular vaccines are prepared using HERV-K Env-specific chimeric antigen receptor (CAR) T-cell vaccines using the Sleeping Beauty system for introducing HERV-K Env-specific CAR derived from mouse monoclonal antibody into T cells48. Recombinant cellular vaccines using the modified vaccine virus Ankara expressing HERV-K Env glycoprotein (MVAHERV-K Env)49were also developed, and activity is demonstrated in vitro and in animal models. However, possible secondary effects in humans are concerned. In particular, vaccinating against HERVs antigens could be unsafe because these HERV proteins could play a role in the physiological functions of host.

    Recently, a new treatment strategy has been proposed using the combination of histone deacetylase inhibitor (HDACi) and checkpoint inhibitors, such as anti-CTLA-4 antibody ipilimumab50. This method is based on the possible reactivation of HERV gene transcription using HDACi or DNA methyltransferase inhibitors that eliminate the epigenetic repression of HERV transcription. HERV expression activates the innate sensor response (PRRs) of single RNA strand (RIG1 and MDA5) and double RNA strand (TLR3) in cytosol that activates the interferon (IFN) type I response by secondary STAT1 activation51. PRR binding to their ligands activates the signaling pathways dependent on adaptor protein mitochondrial antiviral signaling protein (otherwise known as IPS-1). Consequently, this occurrence leads to the activation of the TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) that induces IFN-regulatory factor-3 and 7 (IRF-3 and IRF-7), NF-KB-dependent gene expression, and subsequent production of IFN-beta. IFN-beta, when linked to its membrane receptor (IFNAR1/2), activates IRF9 and STATs, thereby the transcriptional activation of IFN-stimulated genes with cytokine production and increased expression of major histocompatibility complex type I on cancer cells, which potentially increase cancer cell recognition by CD8 T cells50,52,53(Figure 2). When a checkpoint inhibitor is used in combination, these drugs activate CD8 T cells and increase the IFN-γ gamma production by lymphocytes that increase the transcription of IFN-stimulated genes in tumor cells50.

    Synergy between epigenetic drugs and immunotherapy has also been proposed54. In HDACi-treated animal models, this phenomenon promotes the production of CD8 effector cells and increases antitumor activity55. Combining hypomethylating agents with anti-CTLA-4 antibodies also increases antitumor activity56.

    Conclusions

    The discovery of HERV expression in several tumors results in novel cancer treatment strategies based mainly on manipulating immune response against these proteins that are selectively expressed in tumor cells and not transcribed in normal cells.

    Figure 2 Retranscription of HERVs would activate the innate response of sensors (pattern-recognition receptors or PRRs) of single RNA strand (RIG1 and MDA5) in cytosol of the cancer cells. This activates the signaling pathways leading to activation of TRAF family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) that causes induction of the IFN-regulatory factor-3 and 7 (IRF-3 and IRF-7), NF-KB-dependent gene expression and subsequent production of IFN beta. This results in transcriptional activation of interferon stimulated genes with the production of cytokines, and increased expression of MHC type I on cancer cells”

    Immunotherapy for cancer treatment has recently achieved significant results. Several antibodies blocking checkpoint inhibitors, such as anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab and pembrolizumab) drugs, have been approved for treating advanced tumors, includingmelanoma and non-small cell lung cancer. Nevertheless, the efficacy of this strategy could be increased when combined with other drugs or radiotherapy. Combining drugs that block checkpoint inhibitors with epigenetic drugs is a promising approach. These drug combinations are based on preclinical model results on antitumoral immune responses targeting proteins derived from HERV genes in cancer cells.

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Yu P. The potential role of retroviruses in autoimmunity. Immunol Rev. 2016; 269: 85-99.

    2.Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012; 10: 395-406.

    3.Weiss RA. The discovery of endogenous retroviruses. Retrovirology. 2006; 3: 67.

    4.Coffin JM, Hughes SH, Varmus HE. The Interactions of Retroviruses and their Hosts. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997.

    5.Martin GS. The road to Src. Oncogene. 2004; 23: 7910-7.

    6.Weiss R. Spontaneous virus production from "non-virus producing" Rous sarcoma cells. Virology. 1967; 32: 719-23.

    7.Griffiths DJ. Endogenous retroviruses in the human genome sequence. Genome Biol. 2001; 2: REVIEWS1017.

    8.Denner J. Expression and function of endogenous retroviruses in the placenta. APMIS. 2016; 124: 31-43.

    9.Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology. 2016; 13: 7.

    10.Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014; 15: 415-22.

    11.Flockerzi A, Ruggieri A, Frank O, Sauter M, Maldener E, Kopper B, et al. Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project. BMC Genomics. 2008; 9: 354.

    12.Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016; 351: 1083-7.

    13.Jern P, Sperber GO, Ahlsén G, Blomberg J. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol. 2005; 79: 6325-37.

    14.Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 2011; 8: 90.

    15.Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology. 2004; 1: 32.

    16.Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol. 2000; 74: 3715-30.

    17.Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006; 7: 149-73.

    18.Li ZW, Sheng T, Wan XH, Liu TS, Wu H, Dong JL. Expression of HERV-K correlates with status of MEK-ERK and p16INK4A-CDK4 pathways in melanoma cells. Cancer Invest. 2010; 28: 1031-7.

    19.Krishnamurthy J, Rabinovich BA, Mi TJ, Switzer KC, Olivares S, Maiti SN, et al. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma. Clin Cancer Res. 2015; 21: 3241-51.

    20.Schiavetti F, Thonnard J, Colau D, Boon T, Coulie PG. A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res. 2002; 62: 5510-6.

    21.Zhao J, Rycaj K, Geng SS, Li M, Plummer JB, Yin BN, et al. Expression of human endogenous retrovirus type K envelope protein is a novel candidate prognostic marker for human breast cancer. Genes Cancer. 2011; 2: 914-22.

    22.Rycaj K, Plummer JB, Yin BN, Li M, Garza J, Radvanyi L, et al. Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin Cancer Res. 2015; 21: 471-83.

    23.Boller K, K?nig H, Sauter M, Mueller-Lantzsch N, L?wer R, L?wer J, et al. Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology. 1993; 196: 349-53.

    24.Cegolon L, Salata C, Weiderpass E, Vineis P, Palù G, Mastrangelo G. Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer. 2013; 13: 4.

    25.Cherkasova E, Scrivani C, Doh S, Weisman Q, Takahashi Y, Harashima N, et al. Detection of an Immunogenic HERV-E Envelope with Selective Expression in Clear Cell Kidney Cancer. Cancer Res. 2016; 76: 2177-85.

    26.Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol. 2008; 82: 9329-36.

    27.Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin BN, Rycaj K, et al. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int J Cancer. 2014; 134: 587-95.

    28.Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin BN, Frerich K, et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 2012; 104: 189-210.

    29.Rhyu DW, Kang YJ, Ock MS, Eo JW, Choi YH, Kim WJ, et al. Expression of human endogenous retrovirus env genes in the blood of breast cancer patients. Int J Mol Sci. 2014; 15: 9173-83.

    30.Wang-Johanning F, Liu JS, Rycaj K, Huang M, Tsai K, Rosen DG,et al. Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer. 2007; 120: 81-90.

    31.Hahn S, Ugurel S, Hanschmann KM, Strobel H, Tondera C, Schadendorf D, et al. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses. 2008; 24: 717-23.

    32.Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. Resurrection of endogenous retroviruses in antibodydeficient mice. Nature. 2012; 491: 774-8.

    33.Warming S, Liu PT, Suzuki T, Akagi K, Lindtner S, Pavlakis GN, et al. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Kruppel-like zinc finger protein. Blood. 2003; 101: 1934-40.

    34.Lin DY, Huang CC, Hsieh YT, Lin HC, Pao PC, Tsou JH, et al. Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf). J Biomed Sci. 2013; 20: 98.

    35.Katoh I, Mírová A, Kurata S, Murakami Y, Horikawa K, Nakakuki N, et al. Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia. 2011; 13: 1081-92.

    36.Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao XH, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007; 448: 595-9.

    37.Kahyo T, Tao H, Shinmura K, Yamada H, Mori H, Funai K, et al. Identification and association study with lung cancer for novel insertion polymorphisms of human endogenous retrovirus. Carcinogenesis. 2013; 34: 2531-8.

    38.Mangeney M, Heidmann T. Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc Natl Acad Sci U S A. 1998; 95: 14920-5.

    39.Yu HR, Huang HC, Kuo HC, Sheen JM, Ou CY, Hsu TY, et al. IFN-α production by human mononuclear cells infected with varicellazoster virus through TLR9-dependent and -independent pathways. Cell Mol Immunol. 2011; 8: 181-8.

    40.Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013; 152: 714-26.

    41.Wen WX, Soo JSS, Kwan PY, Hong E, Khang TF, Mariapun S, et al. Germline APOBEC3B deletion is associated with breast cancer risk in an Asian multi-ethnic cohort and with immune cell presentation. Breast Cancer Res. 2016; 18: 56.

    42.Tran T, Burt D, Eapen L, Keller OR. Spontaneous regression of metastatic melanoma after inoculation with tetanus-diphtheriapertussis vaccine. Curr Oncol. 2013; 20: e270-3.

    43.Maurer H, McIntyre OR, Rueckert F. Spontaneous regression of malignant melanoma. Pathologic and immunologic study in a ten year survivor. Am J Surg. 1974; 127: 397-403.

    44.Mastrangelo G, Krone B, Fadda E, Buja A, Grange JM, Rausa G, et al. Does yellow fever 17D vaccine protect against melanoma? Vaccine. 2009; 27: 588-91.

    45.Krone B, K?lmel KF, Henz BM, Grange JM. Protection against melanoma by vaccination with Bacille Calmette-Guérin (BCG) and/or vaccinia: an epidemiology-based hypothesis on the nature of a melanoma risk factor and its immunological control. Eur J Cancer. 2005; 41: 104-17.

    46.Kraus B, Fischer K, Büchner SM, Wels WS, L?wer R, Sliva K, et al. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLoS One. 2013; 8: e72756.

    47.Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan PS, Sastry KJ, et al. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 2008; 68: 5869-77.

    48.Zhou FL, Krishnamurthy J, Wei YC, Li M, Hunt K, Johanning GL, et al. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology. 2015; 4: e1047582.

    49.Kraus B, Fischer K, Sliva K, Schnierle BS. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system. Virol J. 2014; 11: 58.

    50.Chiappinelli KB, Strissel PL, Desrichard A, Li HL, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015; 162: 974-86.

    51.Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q, Albertsen H, et al. Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci U S A. 1999; 96: 14007-12.

    52.Sato S, Li K, Kameyama T, Hayashi T, Ishida Y, Murakami S, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity. 2015; 42: 123-32.

    53.Feng H, Liu H, Kong RQ, Wang L, Wang YP, Hu W, et al. Expression profiles of carp IRF-3/-7 correlate with the upregulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol. 2011; 30: 1159-69.

    54.Weintraub K. Take two: Combining immunotherapy with epigenetic drugs to tackle cancer. Nat Med. 2016; 22: 8-10.

    55.Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016; 7: 7390-402.

    56.Covre A, Coral S, Nicolay H, Parisi G, Fazio C, Colizzi F, et al. Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology. 2015; 4: e1019978.

    Cite this article as:Gonzalez-Cao M, Iduma P, Karachaliou N, Santarpia M, Blanco J, Rosell R, et al. Human endogenous retroviruses and cancer. Cancer Biol Med. 2016; 13: 483-8. doi: 10.20892/j.issn.2095-3941.2016.0080

    María Gonzalez-Cao

    E-mail: mgonzalezcao@oncorosell.com

    Received September 22, 2016; accepted November 1, 2016.

    Available at www.cancerbiomed.org

    Copyright ? 2016 by Cancer Biology & Medicine

    亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 99久久99久久久精品蜜桃| av天堂久久9| 中文精品一卡2卡3卡4更新| 免费av中文字幕在线| 夫妻午夜视频| 国产成人av激情在线播放| 美女福利国产在线| 99久久综合免费| 欧美 亚洲 国产 日韩一| 一二三四在线观看免费中文在| 天堂俺去俺来也www色官网| 纯流量卡能插随身wifi吗| 精品人妻一区二区三区麻豆| 日韩视频在线欧美| 80岁老熟妇乱子伦牲交| 午夜福利在线免费观看网站| 超色免费av| 亚洲美女黄色视频免费看| 国产国语露脸激情在线看| 久久久久国产一级毛片高清牌| 久久久国产一区二区| 久久久久精品国产欧美久久久 | 亚洲美女黄色视频免费看| 精品亚洲成a人片在线观看| 一二三四在线观看免费中文在| 美国免费a级毛片| 99久久综合免费| 久久久久久免费高清国产稀缺| 亚洲精品一区蜜桃| 一区二区日韩欧美中文字幕| 男女床上黄色一级片免费看| 国产免费现黄频在线看| a级毛片在线看网站| 交换朋友夫妻互换小说| 大陆偷拍与自拍| 成人免费观看视频高清| 少妇裸体淫交视频免费看高清 | 日韩 亚洲 欧美在线| 久久久精品区二区三区| 国产高清视频在线播放一区 | 国产亚洲精品第一综合不卡| kizo精华| 亚洲九九香蕉| 天天躁夜夜躁狠狠久久av| 18禁国产床啪视频网站| av天堂在线播放| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 欧美人与善性xxx| 久久99一区二区三区| 亚洲熟女精品中文字幕| 汤姆久久久久久久影院中文字幕| 日韩av在线免费看完整版不卡| 两性夫妻黄色片| 欧美日韩福利视频一区二区| 又粗又硬又长又爽又黄的视频| 欧美大码av| 男男h啪啪无遮挡| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 国产一区有黄有色的免费视频| 国产成人一区二区三区免费视频网站 | 九色亚洲精品在线播放| 免费观看a级毛片全部| 欧美在线一区亚洲| 日韩人妻精品一区2区三区| 欧美精品一区二区大全| 久久九九热精品免费| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 亚洲自偷自拍图片 自拍| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 国产又色又爽无遮挡免| 精品久久久久久久毛片微露脸 | 一区二区日韩欧美中文字幕| 黑丝袜美女国产一区| 欧美精品一区二区免费开放| 亚洲国产中文字幕在线视频| 麻豆乱淫一区二区| 性高湖久久久久久久久免费观看| 波多野结衣一区麻豆| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 久久女婷五月综合色啪小说| 美女扒开内裤让男人捅视频| 国产精品99久久99久久久不卡| 午夜福利乱码中文字幕| 亚洲精品久久久久久婷婷小说| 亚洲欧洲精品一区二区精品久久久| 国产精品免费视频内射| 国产在线免费精品| 国产麻豆69| 99九九在线精品视频| 涩涩av久久男人的天堂| 婷婷色麻豆天堂久久| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 免费高清在线观看日韩| 欧美日韩福利视频一区二区| 久久久久久久精品精品| 男女午夜视频在线观看| 在线看a的网站| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 成年人免费黄色播放视频| 视频区图区小说| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 美女大奶头黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 超色免费av| 女警被强在线播放| 中文字幕最新亚洲高清| 无限看片的www在线观看| 韩国精品一区二区三区| 赤兔流量卡办理| 成在线人永久免费视频| 成人亚洲欧美一区二区av| 亚洲成人国产一区在线观看 | 中文字幕人妻熟女乱码| 国产男人的电影天堂91| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 国产亚洲av高清不卡| avwww免费| 你懂的网址亚洲精品在线观看| 99精品久久久久人妻精品| www.精华液| 午夜91福利影院| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕在线视频| 99久久99久久久精品蜜桃| 亚洲欧美激情在线| 涩涩av久久男人的天堂| 九草在线视频观看| 婷婷色麻豆天堂久久| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 51午夜福利影视在线观看| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久 | 欧美亚洲日本最大视频资源| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区久久| 欧美成人精品欧美一级黄| 女人被躁到高潮嗷嗷叫费观| 日韩一卡2卡3卡4卡2021年| 国产一区二区 视频在线| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 久久人妻福利社区极品人妻图片 | 亚洲自偷自拍图片 自拍| 好男人电影高清在线观看| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 99九九在线精品视频| 妹子高潮喷水视频| 青春草视频在线免费观看| 中文字幕人妻丝袜制服| 国产成人一区二区三区免费视频网站 | 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 无遮挡黄片免费观看| 亚洲,欧美,日韩| 成人亚洲精品一区在线观看| 亚洲av美国av| 亚洲九九香蕉| 十分钟在线观看高清视频www| 好男人视频免费观看在线| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美,日韩| 在线观看免费日韩欧美大片| 精品一区在线观看国产| 老司机在亚洲福利影院| 国产精品久久久av美女十八| 99国产综合亚洲精品| 中文字幕人妻熟女乱码| 一级毛片女人18水好多 | 香蕉国产在线看| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 夫妻午夜视频| 999久久久国产精品视频| 国产女主播在线喷水免费视频网站| 国产一区二区 视频在线| av在线app专区| 又大又爽又粗| 五月天丁香电影| 国产成人一区二区在线| 亚洲av男天堂| 精品少妇一区二区三区视频日本电影| 免费女性裸体啪啪无遮挡网站| av天堂久久9| 精品人妻1区二区| 日韩一本色道免费dvd| 亚洲 欧美一区二区三区| 搡老岳熟女国产| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 亚洲成人手机| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲成人手机| 男人舔女人的私密视频| 大香蕉久久网| 国产国语露脸激情在线看| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 国产精品.久久久| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 色94色欧美一区二区| 精品一区二区三区四区五区乱码 | 极品少妇高潮喷水抽搐| 美女高潮到喷水免费观看| 精品国产一区二区久久| 男人爽女人下面视频在线观看| 精品人妻一区二区三区麻豆| 五月开心婷婷网| 久久久精品区二区三区| 国产精品久久久av美女十八| 人人妻人人爽人人添夜夜欢视频| 日本a在线网址| 精品欧美一区二区三区在线| 一本综合久久免费| 午夜影院在线不卡| 最近最新中文字幕大全免费视频 | 啦啦啦啦在线视频资源| 尾随美女入室| 制服诱惑二区| 91精品伊人久久大香线蕉| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费| 午夜激情久久久久久久| 一边摸一边抽搐一进一出视频| 国产午夜精品一二区理论片| 午夜av观看不卡| 丝袜美足系列| 亚洲人成网站在线观看播放| 人人妻人人澡人人看| 在线 av 中文字幕| 国产欧美日韩一区二区三 | 在线观看免费午夜福利视频| 午夜两性在线视频| 永久免费av网站大全| 中文字幕高清在线视频| 久久天堂一区二区三区四区| 国产黄频视频在线观看| 日韩制服骚丝袜av| 国产精品免费大片| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 免费在线观看完整版高清| 国产免费福利视频在线观看| 又大又黄又爽视频免费| 高潮久久久久久久久久久不卡| 黄色视频在线播放观看不卡| 男人舔女人的私密视频| 啦啦啦 在线观看视频| 又大又黄又爽视频免费| 人妻人人澡人人爽人人| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 9色porny在线观看| 精品人妻一区二区三区麻豆| 国产福利在线免费观看视频| 国产片内射在线| 亚洲av综合色区一区| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 亚洲一区中文字幕在线| kizo精华| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 国产精品香港三级国产av潘金莲 | 国产成人a∨麻豆精品| 在线观看一区二区三区激情| av网站免费在线观看视频| av一本久久久久| 少妇 在线观看| 精品一区二区三卡| 国产成人精品久久二区二区91| 欧美黄色淫秽网站| 真人做人爱边吃奶动态| 国产日韩欧美视频二区| 日韩欧美一区视频在线观看| 精品免费久久久久久久清纯 | 女人久久www免费人成看片| 精品一区二区三区四区五区乱码 | 国产淫语在线视频| 亚洲人成电影观看| 国产成人精品久久二区二区免费| 精品国产一区二区三区四区第35| 亚洲一区二区三区欧美精品| 男女高潮啪啪啪动态图| 亚洲精品在线美女| 少妇被粗大的猛进出69影院| 飞空精品影院首页| 亚洲精品一二三| 别揉我奶头~嗯~啊~动态视频 | 日韩制服骚丝袜av| 王馨瑶露胸无遮挡在线观看| 国产成人系列免费观看| 电影成人av| 50天的宝宝边吃奶边哭怎么回事| 18禁观看日本| 亚洲一码二码三码区别大吗| 天堂8中文在线网| 超碰97精品在线观看| 99国产精品99久久久久| 亚洲成人免费电影在线观看 | 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 国产91精品成人一区二区三区 | 一本一本久久a久久精品综合妖精| 观看av在线不卡| 亚洲,一卡二卡三卡| 欧美av亚洲av综合av国产av| 久久精品成人免费网站| 日日摸夜夜添夜夜爱| 亚洲成人免费av在线播放| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 成人影院久久| 妹子高潮喷水视频| 亚洲av电影在线进入| 少妇的丰满在线观看| 无限看片的www在线观看| www.熟女人妻精品国产| 国产精品久久久久成人av| 精品一品国产午夜福利视频| 亚洲精品自拍成人| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 久久亚洲国产成人精品v| 天天操日日干夜夜撸| www.熟女人妻精品国产| 一区二区三区激情视频| 成年人免费黄色播放视频| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看 | 99国产精品一区二区三区| 欧美性长视频在线观看| 精品人妻1区二区| 天天操日日干夜夜撸| 男女高潮啪啪啪动态图| 日韩一区二区三区影片| 免费高清在线观看日韩| 高清av免费在线| 麻豆乱淫一区二区| 欧美激情 高清一区二区三区| 日本av免费视频播放| av在线播放精品| 成人午夜精彩视频在线观看| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 午夜福利乱码中文字幕| 亚洲av成人精品一二三区| 精品久久久精品久久久| 国产真人三级小视频在线观看| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 另类亚洲欧美激情| 观看av在线不卡| 亚洲中文日韩欧美视频| av在线老鸭窝| 国产有黄有色有爽视频| 国产精品三级大全| 老司机靠b影院| av有码第一页| av一本久久久久| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 免费少妇av软件| 国产一区有黄有色的免费视频| 国产精品av久久久久免费| 亚洲综合色网址| 国产精品久久久久久精品电影小说| 亚洲精品一二三| 丝袜人妻中文字幕| 校园人妻丝袜中文字幕| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 亚洲欧美日韩高清在线视频 | 精品福利永久在线观看| 久久青草综合色| 久久久精品免费免费高清| 777米奇影视久久| 亚洲 国产 在线| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 极品少妇高潮喷水抽搐| 国产亚洲精品久久久久5区| 天堂8中文在线网| 美女中出高潮动态图| 日本wwww免费看| 黄网站色视频无遮挡免费观看| 成人亚洲精品一区在线观看| 欧美少妇被猛烈插入视频| 丝袜喷水一区| 性色av一级| 91精品三级在线观看| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 在线精品无人区一区二区三| 大码成人一级视频| 精品福利观看| 久久久精品免费免费高清| 精品熟女少妇八av免费久了| 好男人视频免费观看在线| 男人添女人高潮全过程视频| 精品熟女少妇八av免费久了| 成年人午夜在线观看视频| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 人体艺术视频欧美日本| 人人澡人人妻人| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 黄色片一级片一级黄色片| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 国产精品麻豆人妻色哟哟久久| 少妇人妻 视频| 日韩中文字幕欧美一区二区 | 熟女少妇亚洲综合色aaa.| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频 | 国产精品一区二区精品视频观看| av在线老鸭窝| 国产一区二区三区av在线| 午夜两性在线视频| 男女下面插进去视频免费观看| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 国产97色在线日韩免费| 悠悠久久av| 国产成人影院久久av| 色婷婷久久久亚洲欧美| 成在线人永久免费视频| 丁香六月欧美| 大香蕉久久网| 国产1区2区3区精品| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 精品人妻一区二区三区麻豆| 欧美日韩福利视频一区二区| 欧美日韩黄片免| 国产成人影院久久av| 在线 av 中文字幕| 电影成人av| 亚洲中文日韩欧美视频| 人妻一区二区av| 婷婷丁香在线五月| av在线老鸭窝| av网站在线播放免费| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 欧美日韩黄片免| 日韩av在线免费看完整版不卡| 婷婷色综合www| 国产福利在线免费观看视频| av电影中文网址| 亚洲av日韩精品久久久久久密 | 精品久久久精品久久久| 老汉色av国产亚洲站长工具| av天堂久久9| 国产精品久久久人人做人人爽| 午夜激情久久久久久久| 欧美精品高潮呻吟av久久| 首页视频小说图片口味搜索 | 老司机午夜十八禁免费视频| 91字幕亚洲| 国产成人一区二区三区免费视频网站 | 一二三四社区在线视频社区8| 99九九在线精品视频| 电影成人av| 女人被躁到高潮嗷嗷叫费观| 91麻豆av在线| 久久精品国产亚洲av涩爱| 欧美乱码精品一区二区三区| 亚洲一区二区三区欧美精品| 嫩草影视91久久| 一边亲一边摸免费视频| 国产在线视频一区二区| 热99国产精品久久久久久7| 又大又爽又粗| 亚洲国产精品国产精品| av一本久久久久| 国产亚洲欧美在线一区二区| 亚洲国产精品成人久久小说| 中文字幕人妻熟女乱码| 青春草视频在线免费观看| 午夜免费鲁丝| 51午夜福利影视在线观看| 丰满饥渴人妻一区二区三| 老司机午夜十八禁免费视频| 国产精品国产av在线观看| 免费一级毛片在线播放高清视频 | 看免费成人av毛片| 亚洲精品日本国产第一区| 后天国语完整版免费观看| 日本91视频免费播放| 国产视频首页在线观看| 国产高清不卡午夜福利| 久久人人爽人人片av| 国产国语露脸激情在线看| 日韩电影二区| 久久 成人 亚洲| 天天操日日干夜夜撸| 欧美成人精品欧美一级黄| 大码成人一级视频| 老汉色av国产亚洲站长工具| 在线 av 中文字幕| 欧美日韩一级在线毛片| 亚洲精品久久成人aⅴ小说| 日日摸夜夜添夜夜爱| 人成视频在线观看免费观看| 久久久久久久国产电影| 男女边吃奶边做爰视频| 色94色欧美一区二区| 国产黄色视频一区二区在线观看| 人人妻人人澡人人看| a级片在线免费高清观看视频| 丰满迷人的少妇在线观看| 国产精品av久久久久免费| 亚洲成人免费电影在线观看 | 免费看不卡的av| 亚洲成人手机| 国产成人影院久久av| 精品亚洲成a人片在线观看| 亚洲av电影在线观看一区二区三区| 天天添夜夜摸| 亚洲中文字幕日韩| 中文字幕色久视频| 成年人免费黄色播放视频| a级毛片黄视频| 国产欧美日韩综合在线一区二区| 久久精品aⅴ一区二区三区四区| 日日爽夜夜爽网站| 一级,二级,三级黄色视频| 欧美+亚洲+日韩+国产| 男女国产视频网站| 美女脱内裤让男人舔精品视频| 亚洲精品第二区| e午夜精品久久久久久久| 亚洲av美国av| 久久精品亚洲熟妇少妇任你| 欧美日韩一级在线毛片| av视频免费观看在线观看| 99九九在线精品视频| 国产精品偷伦视频观看了| 午夜影院在线不卡| 高清不卡的av网站| 久久久久久久久久久久大奶| 亚洲国产精品国产精品| 久久热在线av| 免费女性裸体啪啪无遮挡网站| 国产成人欧美| 国产亚洲午夜精品一区二区久久| 看十八女毛片水多多多| 国产精品国产三级国产专区5o| 一本色道久久久久久精品综合| 十八禁网站网址无遮挡| 9热在线视频观看99| 亚洲欧洲国产日韩| 宅男免费午夜| 一本大道久久a久久精品| 如日韩欧美国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 99国产精品99久久久久| 亚洲精品久久久久久婷婷小说| 丁香六月天网| 国产99久久九九免费精品| 亚洲国产欧美一区二区综合| 精品人妻1区二区| 国产成人av激情在线播放| 纵有疾风起免费观看全集完整版| av线在线观看网站| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区黑人| 亚洲 国产 在线| 久久国产精品人妻蜜桃| 国产成人精品久久二区二区91| 伊人久久大香线蕉亚洲五| 亚洲av电影在线观看一区二区三区| 成年美女黄网站色视频大全免费| 999久久久国产精品视频| 在线观看国产h片| 成年美女黄网站色视频大全免费| 狠狠精品人妻久久久久久综合| 欧美大码av| 亚洲av日韩在线播放| 91字幕亚洲| 亚洲情色 制服丝袜| 精品福利永久在线观看| 精品亚洲成a人片在线观看| 久久精品久久精品一区二区三区| 亚洲av欧美aⅴ国产| 亚洲伊人色综图| 精品少妇久久久久久888优播| 色精品久久人妻99蜜桃| 国产一区有黄有色的免费视频|