郭 龍,張春媚,高 勇,趙忠?guī)r
(吉林大學(xué)中日聯(lián)誼醫(yī)院 重癥醫(yī)學(xué)科,吉林 長(zhǎng)春130033)
ARDS發(fā)病機(jī)制的相關(guān)信號(hào)通路研究進(jìn)展
郭 龍,張春媚,高 勇,趙忠?guī)r*
(吉林大學(xué)中日聯(lián)誼醫(yī)院 重癥醫(yī)學(xué)科,吉林 長(zhǎng)春130033)
急性呼吸窘迫綜合征(ARDS)是一種進(jìn)行性缺氧性呼吸衰竭的危重癥疾病。目前ARDS的發(fā)病機(jī)制在很大程度上仍然不明,但越來(lái)越多的證據(jù)表明多種信號(hào)通路及相關(guān)的蛋白可調(diào)節(jié)急性肺損傷的炎癥反應(yīng)。參與ARDS潛在的信號(hào)通路可能包括PI3K/Akt/mTOR信號(hào)通路、p38MAPK和ERK信號(hào)通路、TLR信號(hào)通路、STAT3信號(hào)通路、Wnt/β-catenin通路、HIF2α等。在本綜述中,我們總結(jié)了近期相關(guān)ARDS的信號(hào)通路,為進(jìn)一步研究其臨床發(fā)病機(jī)制提供依據(jù)。
急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)是一種急性、彌漫性、炎癥性肺損傷,肺血管通透性增加,肺質(zhì)量增加,通氣肺組織減少。出現(xiàn)低氧血癥,兩肺斑片狀致密影,混合靜脈血增加,生理性死腔增大和肺順應(yīng)性降低。急性期的形態(tài)特點(diǎn)是彌漫性肺泡損傷(即水腫、炎癥、肺透明膜或出血)[1]。
目前解釋ARDS的發(fā)病機(jī)制包括炎癥反應(yīng)介導(dǎo)的損傷、凝血和纖溶失衡、氧化還原不平衡、細(xì)胞凋亡、水通道蛋白作用、遺傳因素等的影響。各種發(fā)病機(jī)制錯(cuò)綜復(fù)雜,ARDS的發(fā)病機(jī)制在很大程度上仍然不明,但越來(lái)越多的證據(jù)表明多種信號(hào)通路均可參與到發(fā)病機(jī)制中,相關(guān)的蛋白分子參與不同的信號(hào)通路調(diào)節(jié)炎癥反應(yīng),導(dǎo)致ARDS的發(fā)生。本文就ARDS發(fā)病機(jī)制中的幾個(gè)相關(guān)信號(hào)通路作一闡述。
PI3K信號(hào)轉(zhuǎn)導(dǎo)通路在細(xì)胞的增殖、凋亡、遷移、膜泡轉(zhuǎn)運(yùn)和細(xì)胞的惡性轉(zhuǎn)化等眾多病理生理過程中起重要作用。在PI3K家族介導(dǎo)的眾多信號(hào)轉(zhuǎn)導(dǎo)途徑中,以PI3K/Akt/PKB信號(hào)轉(zhuǎn)導(dǎo)途徑對(duì)凋亡的調(diào)節(jié)作用尤其重要。研究發(fā)現(xiàn)急性肺損傷時(shí)可激活PI3K/Akt/mTOR信號(hào)通路的細(xì)胞凋亡信號(hào)分子和凋亡相關(guān)的蛋白調(diào)節(jié)肺組織的上皮細(xì)胞凋亡。Zhang等研究發(fā)現(xiàn)脂多糖誘導(dǎo)大鼠肺泡Ⅱ型上皮細(xì)胞時(shí)可上調(diào)PI3K/Akt信號(hào)通路中Nedd4-2蛋白和磷酸化Akt及cAMP/cCMP的表達(dá),而顯著增加肺水腫和肺組織損傷的面積[2]。同時(shí),He等研究發(fā)現(xiàn)胰島素可通過調(diào)節(jié)PI3K/mTORC2信號(hào)通路改善急性肺損傷時(shí)肺水腫的炎癥程度[3]。表明PI3K/Akt/mTOR信號(hào)通路可調(diào)節(jié)肺臟的炎癥程度,調(diào)節(jié)肺損傷的發(fā)生,阻斷該信號(hào)通路中的相關(guān)分子的表達(dá)可能會(huì)阻斷急性肺損傷的發(fā)生,這些研究為人們防治ARDS提供了新型的藥物靶點(diǎn)。
促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAPK)鏈?zhǔn)钦婧松镄盘?hào)傳遞網(wǎng)絡(luò)中的重要途徑之一,在基因表達(dá)調(diào)控和細(xì)胞質(zhì)功能活動(dòng)中發(fā)揮關(guān)鍵作用。在哺乳動(dòng)物機(jī)體中,已經(jīng)發(fā)現(xiàn)五種不同的MAPK信號(hào)轉(zhuǎn)導(dǎo)通路。其中ERK1/2信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)控細(xì)胞生長(zhǎng)和分化,JNK和p38 MAPK信號(hào)轉(zhuǎn)導(dǎo)通路在炎癥與細(xì)胞凋亡等應(yīng)激反應(yīng)中發(fā)揮重要作用。Zhang等研究發(fā)現(xiàn)脂多糖誘導(dǎo)大鼠發(fā)生ARDS時(shí),細(xì)胞質(zhì)中p38MAPK和細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)蛋白明顯上調(diào),同時(shí)p-p38MAPK和pERK的蛋白表達(dá)水平明顯增加,大鼠的肺濕重/干重比率及血漿中的炎性細(xì)胞因子水平均明顯上升,而肺組織的超氧化物歧化酶(SOD)的水平明顯減少[4]。同樣地,許多研究者亦發(fā)現(xiàn)脂多糖能明顯提高急性呼吸窘迫綜合征的大鼠肺組織中ERK1/2、p38和p50/p65的磷酸化水平,而增加肺組織的炎性反應(yīng)[5-7],亦有研究發(fā)現(xiàn)脂多糖通過p38MAPK和ERK信號(hào)通路誘導(dǎo)人胎肺成纖維細(xì)胞[8]、小鼠肺組織[9-11]的炎癥反應(yīng)。此外,Liu等研究發(fā)現(xiàn)致命毒素通過降解肺血管內(nèi)皮細(xì)胞MKK3的降解而滅活p38MAPk信號(hào)通路可減少肺內(nèi)皮屏障功能的損害[12]。應(yīng)激活化蛋白激酶(SAPK)又名c-Jun氨基末端激酶(JNK)是MAPK信號(hào)通路的一個(gè)重要分支。Lai等研究發(fā)現(xiàn)抑制大鼠肺組織中的JNK,可明顯減輕肺組織的損傷程度,表明JNK信號(hào)通路參與到急性呼吸窘迫綜合征的發(fā)病機(jī)制[13]。然而,在臨床實(shí)踐中,目前尚未發(fā)現(xiàn)令人滿意的抑制MAPK信號(hào)通路激活的治療方法。雖然許多研究表明抑制MAPK信號(hào)通路可減輕肺組織的損傷,但這些研究需待進(jìn)一步的臨床實(shí)驗(yàn)。
Toll樣受體(TLR)是一種可調(diào)節(jié)病原體識(shí)別并激活先天免疫,同時(shí)激活并放大多種組織的炎癥反應(yīng)的模式識(shí)別抗體。TLR識(shí)別相應(yīng)的病原體后,在MyD88依賴性的信號(hào)轉(zhuǎn)導(dǎo)過程中,可激活核因子-κB(NF-κB),激活的NF-κB移位到細(xì)胞核,與特異性序列結(jié)合,誘導(dǎo)相關(guān)炎性因子的轉(zhuǎn)錄,產(chǎn)生大量TNF-α、IL-1β、IL-6等炎性因子,誘導(dǎo)免疫反應(yīng),殺傷病原體。在細(xì)胞實(shí)驗(yàn)中顯示,Lin等研究發(fā)現(xiàn)脂多糖刺激人肺內(nèi)皮細(xì)胞A549后凋亡因子增強(qiáng),F(xiàn)as/FasL信號(hào)上調(diào),細(xì)胞內(nèi)活性氧(ROS)和活性氧介導(dǎo)的NF-κB的活化和炎癥細(xì)胞因子的釋放,參與急性肺損傷[14]。Lopez等研究者發(fā)現(xiàn)肺組織內(nèi)皮細(xì)胞的NF-κB的表達(dá)量增加可加重肺組織的損傷程度,且肺組織的炎癥損傷與細(xì)胞凋亡相關(guān)[15]。在動(dòng)物實(shí)驗(yàn)中,Kim等研究發(fā)現(xiàn)脂多糖誘導(dǎo)小鼠可增加基質(zhì)金屬蛋白酶-9(MMP-9)的表達(dá),可上調(diào)急性肺損傷肺泡灌洗液的TNF-α、IL-6、NO和NF-κB的磷酸化表達(dá)水平[16]。Xiao等研究發(fā)現(xiàn)脂多糖可增加小鼠肺組織的NF-κB的磷酸化水平和NF-κB與DNA結(jié)合活性,同時(shí)增加肺泡灌洗液的TNF-α、IL-1β、IL-6的表達(dá)水平[17]??傊?,TLR信號(hào)通路在器官和組織炎癥損傷中具有重要意義。出現(xiàn)肺損傷時(shí)TLR信號(hào)通路中的相關(guān)分子,如NF-κB可明顯激活,從而增加體內(nèi)外的炎性細(xì)胞因子的水平。肺損傷中靶向TLR信號(hào)通路相關(guān)藥物的臨床應(yīng)用還未報(bào)道。抑制TLR信號(hào)通路減輕微生物引起肺組織炎癥的臨床實(shí)驗(yàn)仍需進(jìn)一步研究。
STAT3是一種信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活的胞質(zhì)蛋白,可由多種細(xì)胞因子或生長(zhǎng)因子誘導(dǎo),活化的STAT3蛋白進(jìn)入細(xì)胞核,結(jié)合于靶基因DNA調(diào)控區(qū),調(diào)控包括TNF-α、iNOS和IL-6等基因的啟動(dòng)子區(qū)域的特定的核苷酸序列誘導(dǎo)基因的表達(dá),參與細(xì)胞的免疫調(diào)節(jié)等生物學(xué)過程。Zhao等研究發(fā)現(xiàn)拮抗STAT3時(shí)可抑制巨噬細(xì)胞和急性肺損傷模型肺泡灌洗液細(xì)胞的信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(STAT3)的激活,而可減輕炎性程度,表明STAT3信號(hào)通路參與急性肺損傷和急性呼吸窘迫綜合征的發(fā)病機(jī)制[18]。Li等研究者發(fā)現(xiàn)大鼠ARDS時(shí),可激活STAT3分子,肺組織的IL-2、IL-6、IL-10和IL-17的分泌明顯增加[19]。Carnesecchi等研究發(fā)現(xiàn)肺泡上皮細(xì)胞的NOX1通過STAT3信號(hào)通路調(diào)節(jié)小鼠呼吸窘迫綜合征的病理生理過程[20]。以上結(jié)果表明,STAT3信號(hào)通路的激活參與肺損傷導(dǎo)致的炎癥反應(yīng),但是否拮抗該分子的表達(dá)可抑制炎癥反應(yīng)的發(fā)生,需要進(jìn)一步研究來(lái)闡明。
Wnt是一個(gè)分泌蛋白家族并調(diào)控不同的發(fā)育過程 。Wnt蛋白通過自分泌或旁分泌作用與位于細(xì)胞膜上的受體相結(jié)合,激活細(xì)胞內(nèi)信號(hào)通路調(diào)節(jié)靶基因的表達(dá),對(duì)細(xì)胞的增殖、分化、遷移、極性化和凋亡起到重要作用。Wnt/β-catenin信號(hào)通路的激活可促進(jìn)小鼠骨髓來(lái)源的間充質(zhì)干細(xì)胞分化成Ⅱ型肺泡上皮細(xì)胞而抵抗肺臟的氧化應(yīng)激[21]。同樣地,Cai等研究發(fā)現(xiàn)通過過度表達(dá)小鼠骨髓間充質(zhì)干細(xì)胞的β-catenin來(lái)激活Wnt/β-catenin通路可改善呼吸窘迫綜合征時(shí)的上皮細(xì)胞的損害[22]。而Li等研究發(fā)現(xiàn)脂多糖可激活大鼠肺泡巨噬細(xì)胞的JNK信號(hào)通路而抑制Wnt/β-catenin信號(hào)通路誘導(dǎo)急性肺損傷[23]。結(jié)果表明激活該信號(hào)通路可改善肺泡上皮的通透性,進(jìn)一步減輕肺部急性炎癥損傷。
低氧條件下,人體存在著一類介導(dǎo)低氧適應(yīng)性反應(yīng)的轉(zhuǎn)錄因子,能激活許多低氧反應(yīng)性基因的表達(dá)而維持氧穩(wěn)態(tài),成為低氧誘導(dǎo)因子(HIF-2)。血管內(nèi)皮細(xì)胞鈣黏蛋白(VE-cadherin)是一種維持血管內(nèi)皮細(xì)胞完整性不可少的物質(zhì)。Silva等研究發(fā)現(xiàn)缺氧誘導(dǎo)急性肺損傷中的HIF2α信號(hào)激活,降低VE-cadherin的磷酸化,從而維持黏膜連接的完整性,減弱黏膜通透性,減輕急性肺損傷[24]。Gong等研究發(fā)現(xiàn)HIF2α激活可增加血管內(nèi)皮蛋白酪氨酸磷酸酶(VE-PTP)的表達(dá),減少VE-cadherin的磷酸化,增加黏合鏈接的完整性,阻止內(nèi)皮屏障功能的損失[25]。結(jié)果表明HIF2α增加內(nèi)皮細(xì)胞屏障的完整性,部分通過VE-PTP表達(dá)和血管內(nèi)皮細(xì)胞鈣黏蛋白維持血管粘膜的完整性,減弱急性肺損傷。因而,HIF2α可能會(huì)成為肺損傷治療的靶點(diǎn)。尋找針對(duì)HIF2α的藥物有望治療急性肺水腫,但仍需進(jìn)一步的臨床實(shí)驗(yàn)以證實(shí)。
總之,目前研究認(rèn)為急性呼吸窘迫綜合征時(shí)各種肺內(nèi)外致病因素通過激活相關(guān)信號(hào)轉(zhuǎn)導(dǎo)通路和分子產(chǎn)生廣泛的損傷作用,如炎癥反應(yīng)、細(xì)胞凋亡、微循環(huán)障礙、肺泡水腫液的清除等。有關(guān)肺損傷的信號(hào)通路的研究大都是PI3K/Akt/mTOR信號(hào)通路、p38MAPK和ERK信號(hào)通路、TLR信號(hào)通路、STAT3信號(hào)通路等幾種信號(hào)通路,但亦有研究發(fā)現(xiàn),VEGF信號(hào)通路[26],apelin-APJ信號(hào)通路[27]參與了ARDS時(shí)肺血管通透性及肺水腫的發(fā)生,但目前相關(guān)的研究仍較少,尚需進(jìn)一步的研究。ARDS發(fā)生機(jī)制并不能用單獨(dú)的信號(hào)通路來(lái)解釋。肺損傷發(fā)生時(shí)可能會(huì)出現(xiàn)多種信號(hào)通路的激活或多種信號(hào)通路相互作用發(fā)生“串話”導(dǎo)致炎癥反應(yīng)。干預(yù)肺損傷的潛在的信號(hào)通路有助于在未來(lái)的研究中找到更多防治ARDS的突破點(diǎn)。
[1]Ranieri VM,Rubenfeld GD,Thompson BT,et al.Acute respiratory distress syndrome:the Berlin Definition[J].JAMA,2012,307(23):2526.
[2]Zhang JL,Zhuo XJ,Lin J,et al.Maresin1 stimulates alveolar fluid clearance through the alveolar epithelial sodium channel Na,K-ATPase via the ALX/PI3K/Nedd4-2 pathway[J].Lab Invest,2017,97(5):543.
[3]He J,Qi D,Wang DX,et al.Insulin upregulates the expression of epithelial sodium channel in vitro and in a mouse model of acute lung injury:role of mTORC2/SGK1 pathway[J].Exp Cell Res,2015,331(1):164.
[4]Zhang LP,Li JG.Glabridin reduces lipopolysaccharide-induced lung injury in rats by inhibiting p38 mitogen activated protein kinase/extracellular regulated protein kinases signaling pathway[J].Zhonghua Yi Xue Za Zhi,2016,96(48):3893.
[5]Li Y,Zeng Z,Cao Y,et al.Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways[J].Sci Rep,2016,6:27911.
[6]Yan C,Guan F,Shen Y,et al.Bigelovii A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Blocking NF-??B and CCAAT/Enhancer-Binding Protein Pathways[J].Mediators Inflamm,2016,2016:9201604.
[7]Zhu WW,Kong GQ,Ma MM,et al.Short communication:Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats[J].J Dairy Sci,2016,99(1):53.
[8]Song Z,Zhao X,Liu M,et al.Recombinant human brain natriuretic peptide attenuates LPS-induced cellular injury in human fetal lung fibroblasts via inhibiting MAPK and NF-κB pathway activation[J].Mol Med Rep,2016,14(2):1785.
[9]Huang X,Kong G,Li Y,et al.Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice[J].Biomed Pharmacother,2016,84:447.
[10]Kong G,Huang X,Wang L,et al.Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx[J].Int Immunopharmacol,2016,36:51.
[11]Zhang Y,Liang D,Dong L,et al.Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury[J].Respir Res,2015,16:43.
[12]Liu T,Warburton RR,Hill NS,et al.Anthrax lethal toxin-induced lung injury and treatment by activating MK2[J].J Appl Physiol (1985),2015,119(4):412.
[13]Lai JB,Qiu CF,Chen CX,et al.Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats[J].Chin Med J (Engl),2016,129(14):1719.
[14]Lin WC,Chen CW,Huang YW,et al.Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis[J].Sci Rep,2015,5:12463.
[15]Lopez B,Maisonet TM,Londhe VA.Alveolar NF-κB signaling regulates endotoxin-induced lung inflammation[J].Exp Lung Res,2015,41(2):103.
[16]Kim KY,Lee HS,Seol GH.Eucalyptol suppresses matrix metalloproteinase-9 expression through an extracellular signal-regulated kinase-dependent nuclear factor-kappa B pathway to exert anti-inflammatory effects in an acute lung inflammation model[J].J Pharm Pharmacol,2015,67(8):1066.
[17]Xiao M,Zhu T,Zhang W,et al.Emodin ameliorates LPS-induced acute lung injury,involving the inactivation of NF-κB in mice[J].Int J Mol Sci,2014,15(11):19355.
[18]Zhao J,Yu H,Liu Y,et al.Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury[J].Am J Physiol Lung Cell Mol Physiol,2016,311(5):L868.
[19]Li Q,Hu X,Sun R,et al.Resolution acute respiratory distress syndrome through reversing the imbalance of Treg/Th17 by targeting the cAMP signaling pathway[J].Mol Med Rep,2016,14(1):343.
[20]Carnesecchi S,Dunand-Sauthier I,Zanetti F,et al.NOX1 is responsible for cell death through STAT3 activation in hyperoxia and is associated with the pathogenesis of acute respiratory distress syndrome[J].Int J Clin Exp Pathol,2014,7(2):537.
[21]Liu AR,Liu L,Chen S,et al.Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells,confers resistance to oxidative stress,and promotes their migration to injured lung tissue in vitro[J].J Cell Physiol,2013,228(6):1270.
[22]Cai SX,Liu AR,Chen S,et al.Activation of Wnt/β-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice[J].Stem Cell Res Ther,2015,6:65.
[23]Li B,Zeng M,He W,et al.Ghrelin protects alveolar macrophages against lipopolysaccharide-induced apoptosis through growth hormone secretagogue receptor 1a-dependent c-Jun N-terminal kinase and Wnt/β-catenin signaling and suppresses lung inflammation[J].Endocrinology,2015,156(1):203.
[24]Silva PL,Rocco PR,Pelosi P.FG-4497:a new target for acute respiratory distress syndrome?[J].Expert Rev Respir Med,2015,9(4):405.
[25]Gong H,Rehman J,Tang H,et al.HIF2α signaling inhibits adherens junctional disruption in acute lung injury[J].J Clin Invest,2015,125(2):652.
[26]Shimizu Y,Camp SM,Sun X,et al.Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor-induced vascular permeability[J].Pulm Circ,2015,5(4):707.
[27]Fan XF,Xue F,Zhang YQ,et al.The Apelin-APJ axis is an endogenous counterinjury mechanism in experimental acute lung injury[J].Chest,2015,147(4):969.
吉林省科技廳白求恩基金項(xiàng)目(3D516M853430)
*通訊作者
1007-4287(2017)09-1457-04
2016-12-05)