崔怡迪, 唐 洋, 韓章潤, 曾 璇, 徐玲玲, 張麗娟, 邱培菊
(中國海洋大學(xué)醫(yī)藥學(xué)院海洋藥物教育部重點(diǎn)實(shí)驗(yàn)室,山東省糖科學(xué)與糖工程重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
5-羥基川陳皮素對腫瘤細(xì)胞糖胺聚糖含量和結(jié)構(gòu)的影響*
崔怡迪, 唐 洋, 韓章潤, 曾 璇, 徐玲玲, 張麗娟, 邱培菊**
(中國海洋大學(xué)醫(yī)藥學(xué)院海洋藥物教育部重點(diǎn)實(shí)驗(yàn)室,山東省糖科學(xué)與糖工程重點(diǎn)實(shí)驗(yàn)室,山東 青島 266003)
糖胺聚糖(GAGs)位于細(xì)胞膜及胞外基質(zhì),它通過與多種生長因子受體結(jié)合來介導(dǎo)細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo),進(jìn)而調(diào)控細(xì)胞的增殖與分化。研究表明,GAGs結(jié)構(gòu)或含量變化在腫瘤發(fā)生和發(fā)展中發(fā)揮了重要作用。黃酮類化合物可影響腫瘤細(xì)胞表面GAGs合成,前期研究發(fā)現(xiàn),5-羥基川陳皮素(5HPMF)可通過干預(yù)細(xì)胞內(nèi)多種信號通路進(jìn)而抑制肺癌和結(jié)腸癌細(xì)胞增殖,然而,5HPMF如何影響GAGs結(jié)構(gòu)和含量的變化進(jìn)而介導(dǎo)信號轉(zhuǎn)導(dǎo)通路的機(jī)制還不清楚?;诖?,本研究利用BaF3細(xì)胞模型,流式細(xì)胞儀及HPLC技術(shù),首次探討了5HPMF對肺癌和結(jié)腸癌細(xì)胞GAGs含量和結(jié)構(gòu)的影響。結(jié)果表明,來源于HT29和A549細(xì)胞的GAGs可增強(qiáng)FGF1介導(dǎo)的BaF3細(xì)胞生長而5HPMF(10 μmol·L-1)則顯著地抑制其生長作用,且5HPMF可顯著地降低HCT116和A549細(xì)胞表面FGF2或FGF8介導(dǎo)的GAGs·FGF·FGFR三元復(fù)合物的熒光強(qiáng)度,但是5HPMF對GAGs中葡萄糖胺和半乳糖胺的含量及兩者比例無明顯影響,由此可推斷5HPMF可能通過影響肺癌和結(jié)腸癌細(xì)胞表面GAGs結(jié)構(gòu)而介導(dǎo)細(xì)胞內(nèi)部信號轉(zhuǎn)導(dǎo)。本研究為進(jìn)一步探討5HPMF對肺癌和結(jié)腸癌細(xì)胞表面GAGs二糖結(jié)構(gòu)的變化與活性之間的相關(guān)性奠定了實(shí)驗(yàn)基礎(chǔ)。
糖胺聚糖;5-羥基川陳皮素;熒光強(qiáng)度;FGF;FGFR
生物體內(nèi)糖胺聚糖(GAGs)根據(jù)不同的二糖重復(fù)單元分為兩大類:即硫酸軟骨素(乙酰半乳糖胺-糖醛酸)和硫酸乙酰肝素(乙酰葡萄糖胺-糖醛酸)。根據(jù)二糖重復(fù)單元硫酸修飾部位的不同,硫酸軟骨素(CS)又可分為CS-A,CS-B,CS-C,CS-D和CS-E。肥大細(xì)胞產(chǎn)生硫酸化修飾程度最高的硫酸乙酰肝素(HS)被稱之為肝素(HP)。
糖胺聚糖(GAGs)位于細(xì)胞膜及胞外基質(zhì),它可與多種生長因子受體結(jié)合,介導(dǎo)細(xì)胞內(nèi)的信號轉(zhuǎn)導(dǎo),進(jìn)而調(diào)控細(xì)胞的增殖與分化。GAGs組成和含量的變化在腫瘤發(fā)生、發(fā)展和轉(zhuǎn)移過程中發(fā)揮了重要作用,如誘導(dǎo)正常細(xì)胞變?yōu)槟[瘤細(xì)胞[1-2],調(diào)節(jié)腫瘤生長、侵潤[3],促進(jìn)腫瘤新血管生成[4],促使腫瘤發(fā)生轉(zhuǎn)移[5-6]。研究發(fā)現(xiàn),無論原發(fā)性還是轉(zhuǎn)移性腫瘤,瘤組織及病人血液中GAGs含量普遍增高,并伴有GAGs結(jié)構(gòu)的變化,這在結(jié)腸癌、直腸癌、肺癌、肝癌、乳腺癌、胃癌、前列腺癌、胰腺癌中均得到證實(shí)[7-17]。與此同時,GAGs可通過調(diào)節(jié)成纖維細(xì)胞因子(FGFs)活性介導(dǎo)重要的細(xì)胞過程,動力學(xué)實(shí)驗(yàn)表明兩分子FGFs首先結(jié)合到膜嵌合蛋白聚糖(HSPGs)的HS鏈上,進(jìn)一步招募兩分子FGFRs共同組成FGF·GAGs·FGFRs三元信號復(fù)合物,進(jìn)而介導(dǎo)細(xì)胞內(nèi)部信號轉(zhuǎn)導(dǎo)。目前,F(xiàn)GF的過表達(dá)、多態(tài)性、異位表達(dá)及其受體阻斷與很多人類腫瘤的關(guān)系已被報道,如骨髓瘤、乳腺癌、胃癌、結(jié)腸癌、膀胱癌和宮頸癌等[18-19]。
黃酮類化合物可影響GAGs合成[20-23]。5-羥基川陳皮素(5HPMF)是從橘子皮中分離得到的一種結(jié)構(gòu)新穎的多甲氧基黃酮類化合物,前期研究表明5HPMF可顯著地抑制結(jié)腸癌和肺癌細(xì)胞增殖、誘導(dǎo)細(xì)胞周期滯留、促進(jìn)細(xì)胞凋亡,并對結(jié)腸癌和肺癌細(xì)胞內(nèi)多種信號轉(zhuǎn)導(dǎo)途徑有調(diào)節(jié)作用[24-28],目前關(guān)于5HPMF對腫瘤細(xì)胞表面GAGs含量或結(jié)構(gòu)的影響未見報道。基于此,本研究將利用BaF3細(xì)胞模型,流式細(xì)胞儀及HPLC技術(shù),探討5HPMF對肺癌和結(jié)腸癌細(xì)胞GAGs含量和結(jié)構(gòu)的影響。本研究將為進(jìn)一步探討5HPMF對腫瘤細(xì)胞GAGs的影響與其抗腫瘤細(xì)胞增殖作用的相關(guān)性實(shí)驗(yàn)基礎(chǔ)。
1.1 細(xì)胞培養(yǎng)
A549人肺癌細(xì)胞和HCT116人結(jié)腸癌細(xì)胞購自中國科學(xué)院典型培養(yǎng)物保藏委員會細(xì)胞庫。兩種細(xì)胞分別培養(yǎng)在含有5%FBS、0.1mg/mL鏈霉素、100U/mL青霉素的F-12和Mycoy’s 5A培養(yǎng)基,于37℃,5%CO2培養(yǎng)條件下生長。實(shí)驗(yàn)過程中所用腫瘤細(xì)胞均為3-30代,細(xì)胞形態(tài)正常。DMSO作為溶解藥物的溶劑,終濃度為0.1%。
1.2 細(xì)胞毒性實(shí)驗(yàn)
為保證每組GAGs樣品來自同等數(shù)量的腫瘤細(xì)胞,細(xì)胞數(shù)校正方法如下:分別取對數(shù)生長期HCT116細(xì)胞和A549細(xì)胞,調(diào)整細(xì)胞濃度為4×104個/mL,接種于6孔板,每孔加入2mL培養(yǎng)基,于37℃,5%CO2條件下孵育24 h。吸去培養(yǎng)基,空白對照組加入含0.1%DMSO的培養(yǎng)基,給藥組加入含有不同濃度5HPMF的培養(yǎng)基(10、30 μmol/L)。于37℃,5%CO2條件下孵育72h。吸走上清液,每孔加入1mL胰蛋白酶消化貼壁細(xì)胞,培養(yǎng)基終止反應(yīng),制成細(xì)胞懸液。用血球計數(shù)板計數(shù),并記錄每孔細(xì)胞數(shù)量。
1.3 GAGs的提取
藥物作用72h,根據(jù)每個皿內(nèi)培養(yǎng)基的體積,調(diào)整氫氧化鈉溶液終濃度為100mmol·L-1,于4℃冰箱內(nèi)反應(yīng)6h,調(diào)整pH為6.0。每個樣品中加入0.04g蛋白酶K,搖勻,置37℃恒溫過夜反應(yīng),100℃水浴滅活,4500r/min離心15min,取上清,調(diào)整pH至6.0,加入100μL濃度為20mg/mL的糖原,混勻。加入保存于0.25mol/LNaCl緩沖液的離子交換樹脂600μL,置搖床上旋轉(zhuǎn)1.5h。自然沉降后,吸去上清。先用0.25mol/LNaCl緩沖液低鹽洗脫非GAGs雜質(zhì),再用濃度為1.0mol/LNaCl緩沖液高鹽洗脫GAGs樣品,重復(fù)兩次,每次用1mL。加入無水乙醇至高鹽洗脫液中使乙醇終濃度為80%,置于4℃冰箱醇沉過夜。4500r·min-1離心15 min,倒去上清。加入10mL 75%的乙醇洗滌沉淀。600 μL雙蒸水少量多次溶解并轉(zhuǎn)移樣品至1.5 mL EP管中,凍干備用。
1.4 GAGs單糖降解、PMP-衍生、HPLC測定單糖組成
將每組GAGs樣品分別加入40μL雙蒸水溶解,取8 μL加入500μL濃度為6 mol/L的鹽酸中并于密封的安剖瓶中反應(yīng)3h,100℃。冷卻至室溫轉(zhuǎn)移至1.5mL離心管中,離心濃縮除去鹽酸至干。用50μL雙蒸水溶解樣品,再加入50μL濃度為0.3mol/L的氫氧化鈉溶液,室溫放置10min。之后加入60 μL濃度為0.5mol·L-1的PMP渦旋均勻,于水浴70℃下反應(yīng)1h。冷卻至室溫,加入50μL濃度為0.3 mol·L-1的鹽酸,混懸。再用500μL 氯仿萃取,離心(13000r/min,5min),吸棄氯仿層,重復(fù)萃取4次,收集上層液體即為單糖PMP衍生樣品。色譜柱:EclipseXDB-C18譜柱(150mm×4.6mm×5μm,美國Agilent公司);柱溫:37℃;紫外檢測波長:245nm;流動相:0.1 mol·L-1乙酸銨緩沖液(pH=5.5):乙腈(梯度洗脫);流速:1 mL/min;進(jìn)樣體積:20μL。
1.5 FGF/FGFR介導(dǎo)的BaF3細(xì)胞增殖實(shí)驗(yàn)
BaF3細(xì)胞是一種依賴于細(xì)胞因子IL-3生長的淋巴細(xì)胞,它本身對FGF蛋白無反應(yīng)活性。當(dāng)被穩(wěn)定轉(zhuǎn)染表達(dá)FGFRs,BaF3細(xì)胞可在不含IL-3細(xì)胞因子而只含有FGF和肝素的培養(yǎng)基中生長,而只有FGF或GAGs存在時BaF3細(xì)胞將停止生長甚至死亡[29]。在本實(shí)驗(yàn)中,BaF3(FGFR2b)細(xì)胞由美國華盛頓大學(xué)的David Ornitz教授友情贈送。細(xì)胞培養(yǎng)條件為含10%FBS,1ng/mL IL-3(PeproTech Inc),2 mmol·L-1L-谷氨酰胺,青霉素(50 IU/mL),鏈霉素(50 μg/mL),50 μmol·L-1β-巰基乙醇,400 μg/mL G418的RPMI 1640培養(yǎng)基,37 ℃,5%CO2。收集BaF3細(xì)胞,離心,PBS洗3次以去掉培養(yǎng)基中IL-3細(xì)胞因子,重懸于含5%FBS、GAGs、FGFs的培養(yǎng)基中。將細(xì)胞種于96孔板(3×104細(xì)胞/孔,200 μL),37 ℃孵育40 h,再加刃天青溶液(2 mg/mL)20 μL/孔,于細(xì)胞培養(yǎng)箱中孵育16 h。在全波段酶聯(lián)免疫檢測儀上,544~595 nm波長條件下測定各孔熒光強(qiáng)度,記錄結(jié)果,并計算測定GAGs樣品對BaF3細(xì)胞的增值率。其中肝素為陽性對照(Heparin),透明質(zhì)酸(HA)為陰性對照。
1.6 GAGs·FGFs·FGFRs三元復(fù)合物熒光強(qiáng)度的檢測
取20 μL細(xì)胞懸液(細(xì)胞總數(shù)為1.5×106個),加入0.5 μgFGF因子、1 μgFGFR(IIIc)/Fc、4 μg protein A-Alexa Fluor 488,避光孵育15min,1800r/min離心2min,吸走上清, 1 mLPBS清洗兩次,500μL PBS(含10%FBS)重懸細(xì)胞,流式細(xì)胞儀于495和525nm處檢測。根據(jù)實(shí)驗(yàn)需要設(shè)置FGFR陰性對照組和ProteinA陰性對照組。
2.1 5HPMF對細(xì)胞生長的影響
GAGs總量與相應(yīng)的細(xì)胞數(shù)量密切相關(guān),因此空白對照組和5HPMF作用組細(xì)胞數(shù)相同是本實(shí)驗(yàn)的關(guān)鍵點(diǎn)。鑒于此,首先根據(jù)細(xì)胞增殖實(shí)驗(yàn)檢測5HHMF作用48 h后給藥組活細(xì)胞數(shù)與空白對照組活細(xì)胞數(shù)之間的比例,通過固定空白對照組的細(xì)胞數(shù)及培養(yǎng)皿的個數(shù),來調(diào)整5HPMF作用組的培養(yǎng)皿數(shù)。例如,對HCT116細(xì)胞而言,空白對照組的培養(yǎng)皿(15cm)數(shù)量為4個,5HPMF濃度為30μmol·L-1作用48 h后活細(xì)胞數(shù)為空位對照的25%,為保證提取GAGs前兩組具有相同的細(xì)胞數(shù),因此調(diào)整5HPMF濃度為30μmol·L-1的培養(yǎng)皿數(shù)量為10個。為降低FBS中的GAGs對實(shí)驗(yàn)結(jié)果的影響,空白對照組和5HPMF處理組總的培養(yǎng)基數(shù)量相同,均為120 mL(見表1)。
注:實(shí)驗(yàn)重復(fù)3次。The data was repeated for 3 times.
2.2 BaF3細(xì)胞模型檢測GAGs對FGF/FGFR信號通路的影響
結(jié)構(gòu)不同的GAGs可激活或抑制BaF3(FGFR2b)細(xì)胞模型中特異性的FGF/FGFR信號通路,研究表明,GAGs的硫酸化程度在此過程中起關(guān)鍵作用[26]。為探討5HPMF對結(jié)腸癌和肺癌細(xì)胞表面GAGs結(jié)構(gòu)的影響,將5HPMF作用后的GAGs,F(xiàn)GF及BaF3(FGFR2b)細(xì)胞共孵育,并利用刃天青法檢測5HPMF作用后的GAGs對FGF介導(dǎo)的BaF3(FGFR2b)細(xì)胞生長的影響。本實(shí)驗(yàn)以硫酸多糖肝素為陽性對照,非硫酸化多糖透明質(zhì)酸為陰性對照。如圖所示,肝素可顯著地增加FGF1、FGF8介導(dǎo)的BaF3(FGFR2b)細(xì)胞生長,與之相反,透明質(zhì)酸對以上FGFs介導(dǎo)的細(xì)胞生長無影響。如圖1A所示,HT29細(xì)胞來源的GAGs樣品可顯著地激活FGF1介導(dǎo)的FGFR2b信號通路,且強(qiáng)于陽性藥,而5HPMF作用后可對此信號通路產(chǎn)生不同程度的抑制作用,相比而言,A549細(xì)胞來源的GAGs可產(chǎn)生相似的效應(yīng)。如圖1B所示,HT29和A549來源的GAGs對FGF8介導(dǎo)的FGFR信號通路無明顯影響。由檢測結(jié)果可推測,5HPMF作用后可能改變了腫瘤細(xì)胞GAGs的硫酸化程度。具體結(jié)果還需進(jìn)一步驗(yàn)證。
(以上數(shù)據(jù)來源刃天青檢測方法,實(shí)驗(yàn)重復(fù)3次。 The cell proliferation was determined by resazurin assay following 40 h in culture (see “Materials and Methods”). Data are mean± range of triplicates.)
圖1 5HPMF作用后的GAGs對FGFs介導(dǎo)的BaF3細(xì)胞生長的影響
Fig.1 The effect of 5HPMF treated GAGs on the growth of BaF3cell line.
2.3 5HPMF抑制FGF2和FGF8介導(dǎo)的GAGs·FGFs·FGFRs三元復(fù)合物的形成
如圖2A-C所示,5HPMF顯著地降低了HCT116細(xì)胞表面FGF2和FGF8介導(dǎo)及A549細(xì)胞表面FGF8介導(dǎo)的GAGs·FGF·FGFR三元復(fù)合物的熒光強(qiáng)度。而對HCT116細(xì)胞表面FGF7,F(xiàn)GF9和FGF10介導(dǎo)的GAGs·FGF·FGFR三元復(fù)合物的熒光強(qiáng)度無明顯影響(見圖2D)。研究表明,GAGs與FGF2結(jié)合主要依賴于2-O-硫酸化IdoUA殘基[30],F(xiàn)GF8與GAGs的結(jié)合需要具備N-,2-O-,6-O-硫酸化取代基,并且FGFs與GAGs的結(jié)合與GAGs結(jié)構(gòu)域的長度也直接相關(guān)[31]。由檢測結(jié)果可知,5HPMF可能影響HCT116人結(jié)腸癌和A549人肺癌細(xì)胞表面GAGs的硫酸化方式或含量。具體結(jié)果還需要進(jìn)一步證實(shí)。
2.4 5HPMF對HCT116和A549細(xì)胞GAGs含量的影響
本研究利用鹽酸降解、PMP標(biāo)記、HPLC分析技術(shù)檢測了5HPMF對HCT116和HT29細(xì)胞GAGs中葡萄糖胺(GlcN)和半乳糖胺(GalN)含量的影響,由于GlcN和GalN分別是硫酸乙酰肝素(HP)和硫酸軟骨素(CS)的重要組成部分,所以GlcN和GalN的含量變化可表征相應(yīng)的HP和CS的含量變化。表2.A(HCT116人結(jié)腸癌細(xì)胞)和表2.B(A549人肺癌細(xì)胞)為HPLC測定的原始數(shù)據(jù)。由表2.C可知,A549細(xì)胞中GlcN和GalN濃度顯著高于HCT116細(xì)胞。對HCT116和A549兩種細(xì)胞而言,相對于空白對照,濃度為10μmol·L-1時,GlcN和GalN的濃度均有升高趨勢,但是濃度為30μmol·L-1時,GlcN和GalN的濃度均與空白對照相當(dāng)。并且GalN/GlcN比值呈現(xiàn)相似的變化趨勢。由此可知,5HPMF對GAGs中GlcN和GalN的含量無顯著影響,也即5HPMF對HCT116和A549兩種細(xì)胞的GAGs含量無顯著影響。
(F2代表FGF2;F8代表FGF8;R1/Fc代表FGFR1b (IIIc)/Fc;R3/Fc代表FGFR3 (IIIc)/Fc;5HPMF的濃度為30μmol·L-1,實(shí)驗(yàn)重復(fù)3次。Data are mean± range of duplicates. Cells were analyzed using the Beckman cell analyzer FC500-mpl and data were processed using Beckman CXP software.F2, FGF2; F8, FGF8; R1/Fc, FGFR1b (IIIc)/Fc; R3/Fc, FGFR3 (IIIc)/Fc; 5HPMF, 30μmol·L-1. the data ware repeated for 3 times.)
圖2 5HPMF對HCT116和A549細(xì)胞FGFs/FGFR/GAGs三元復(fù)合物熒光強(qiáng)度的影響
Fig.2 Effects of 5HPMF on FGFs/FGFR interaction with GAGs in HCT116 and A549 cell lines
黃酮類化合物具有廣泛的生物活性包括抗腫瘤,抗心腦血管病,抗細(xì)菌病毒、抗氧化、降壓、降血脂、抗衰老、提高機(jī)體免疫力、瀉下、鎮(zhèn)咳、祛痰、解痙及抗變態(tài)等。5HPMF是從中藥陳皮中分離得到的一種結(jié)構(gòu)新穎的黃酮類化合物,目前對其活性報道較少。前期研究表明5HPMF可顯著地抑制結(jié)腸癌和肺癌細(xì)胞增殖,其作用機(jī)制主要是通過改變多種調(diào)控細(xì)胞周期和細(xì)胞凋亡的重要蛋白如p21,CyclinD1,Caspase-3,PARP,Bax等水平起到抗細(xì)胞增殖的作用。據(jù)報道,黃酮類化合物可調(diào)節(jié)GAGs的合成與代謝。5HPMF通過干預(yù)細(xì)胞內(nèi)多種信號通路進(jìn)而抑制肺癌和結(jié)腸癌細(xì)胞增殖。然而,5HPMF如何影響GAGs合成進(jìn)而介導(dǎo)信號轉(zhuǎn)導(dǎo)通路的機(jī)制還不清楚。
GAGs是細(xì)胞膜和胞外基質(zhì)的重要組成成分,可與多種生長因子結(jié)合進(jìn)而介導(dǎo)細(xì)胞信號傳導(dǎo)過程。本研究以腫瘤細(xì)胞GAGs為切入點(diǎn),以5HPMF為研究對象,探討了5HPMF對肺癌和結(jié)腸癌細(xì)胞表面GAGs含量和結(jié)構(gòu)的影響,研究發(fā)現(xiàn),來源于HT29和A549細(xì)胞的GAGs可增強(qiáng)FGF1介導(dǎo)的BaF3細(xì)胞生長而5HPMF(10 μmol/L)則顯著地抑制其生長作用,且5HPMF可顯著地降低HCT116和A549細(xì)胞表面FGF2或FGF8介導(dǎo)的GAGs·FGF·FGFR三元復(fù)合物的熒光強(qiáng)度,但是5HPMF對GAGs含量無明顯影響,由此可推斷5HPMF可能通過影響肺癌和結(jié)腸癌細(xì)胞表面GAGs結(jié)構(gòu)而介導(dǎo)細(xì)胞內(nèi)部信號轉(zhuǎn)導(dǎo)。
同時,本研究建立了一種定性檢測腫瘤細(xì)胞表面GAGs結(jié)構(gòu)或含量變化的方法,該方法基于腫瘤細(xì)胞表面GAGs可與FGF/FGFR結(jié)合進(jìn)而形成GAGs·FGFs·FGFRs三元復(fù)合物,而FITC-protein A識別FGFR/Fc上的Fc片段進(jìn)而使三元復(fù)合物具備熒光特性,而GAGs結(jié)構(gòu)或含量的變化可直接影響GAGs/FGF/FGFR三元復(fù)合物的熒光強(qiáng)度。該方法的優(yōu)點(diǎn)在于:①熒光檢測敏感度較高,GAGs結(jié)構(gòu)微量變化即可反映;②重復(fù)性高,可信度高,應(yīng)用此方法我們初步判定5HPMF改變了肺癌和結(jié)腸癌細(xì)胞表面GAGs的結(jié)構(gòu),但是具體硫酸化位點(diǎn)的變化或硫酸化程度的改變還需結(jié)合還需結(jié)合LC/MS技術(shù)進(jìn)一步進(jìn)行檢測。
在本研究中采用鹽酸降解GAGs單糖而非三氟乙酸降解法,因?yàn)閬碜阅[瘤細(xì)胞的GAGs樣品量少,且含有蛋白質(zhì)等雜質(zhì),且這些雜質(zhì)在一定程度上影響樣品分析的準(zhǔn)確性。如果采用三氟乙酸這種溫和的降解條件,雖然可以得到木糖、葡萄糖、甘露糖等更多單糖組分的信息,但由于降解不完全,每種單糖的檢測限都較低。本課題主要是研究5HPMF對GAGs總量(也即HS和CS的含量)的影響,鹽酸降解特異性強(qiáng),降解產(chǎn)物只有GlcN和GalN,由于以上兩種單糖分別為HS和CS的重要組成部分,且其含量變化可表征相應(yīng)的HS和CS的含量變化,因此鹽酸降解法完全可滿足本研究的要求。GAGs一般無特征紫外吸收,所以在HPLC中無法直接檢測。經(jīng)PMP衍生后具有較強(qiáng)的紫外吸收,提高了GlcN和GalN在HPLC中的檢測靈敏度。PMP衍生的優(yōu)點(diǎn)在于溫和條件下與GAGs還原糖鏈進(jìn)行定量反應(yīng),不損失唾液酸,產(chǎn)物沒有立體異構(gòu)體,紫外吸收很強(qiáng),檢測限很低,可達(dá)pmol級,此外PMP衍生后的單糖疏水性提高,且衍生化產(chǎn)物帶電荷,分析時可使用多種分離模式。
總之,本研究闡明5HPMF抗結(jié)腸癌和肺癌細(xì)胞增殖主要是通過改變了結(jié)腸癌和肺癌細(xì)胞表面GAGs的結(jié)構(gòu)而非含量,關(guān)于5HPMF對結(jié)腸癌和肺癌細(xì)胞表面GAGs硫酸化位點(diǎn)和硫酸化程度的改變還需結(jié)合LC/MS進(jìn)一步檢測。
[1] Filmus J. Glypicans in growth control and cancer[J]. Glycobiology, 2001, 11(3): 19-23.
[2] Sanderson R D. Heparan sulfate proteoglycans in invasion and metastasis[J]. Semin Cell Dev Biol, 2001, 12(2): 89-98.
[3] Liu D, Shriver Z, Qi Y, et al. Dynamic regulation of tumor growth and metastasis by heparan sulfate glycosaminoglycans[J]. Semin Thromb Hemost, 2002, 28(1): 67-78.
[4] Iozzo R V, San A J. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena[J]. J Clin Invest, 2001, 108(3): 349-355.
[5] Smorenburg S M, Van Noorden C J. The complex effects of heparins on cancer progression and metastasis in experimental studies[J]. Pharmacol Rev, 2001, 53(1): 93-105.
[6] Varki N M, Varki A. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans[J]. Semin Thromb Hemost, 2002, 28(1): 53-66.
[7] Iozzo R V, Wight T N. Isolation and characterization of proteoglycans synthesized by human colon and colon carcinoma[J]. J Biol Chem, 1982, 257(18): 11135-11144.
[8] Lv H, Yu G, Sun L, et al. Elevate level of glycosaminoglycans and altered sulfation pattern of chondroitin sulfate are associated with differentiation status and histological type of human primary hepatic carcinoma[J]. Oncology, 2007, 72(5-6): 347-356.
[9] Takeuchi J, Sobue M, Sato E, et al. Variation in glycosaminoglycan components of breast tumors[J]. Cancer Res, 1976, 36(7 PT 1): 2133-2139.
[10] Theocharis A D, Vynios D H, Papageorgakopoulou N, et al. Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma[J]. Int J Biochem Cell Biol, 2003, 35(3): 376-390.
[11] Iida S, Suzuki K, Matsuoka K, et al. Analysis of glycosaminoglycans in human prostate by high-performance liquid chromatography[J]. Br J Urol, 1997, 79(5): 763-769.
[12] Theocharis A D, Tsara M E, Papageorgacopoulou N, et al. Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition[J]. Biochim Biophys Acta, 2000, 1502(2): 201-206.
[13] Tsara M E, Papageorgacopoulou N, Karavias D D, et al. Distribution and changes of glycosaminoglycans in neoplasias of rectum[J]. Anticancer Res, 1995, 15(5B): 2107-2112.
[14] Wegrowski Y, Maquart F X. Involvement of stromal proteoglycans in tumour progression[J]. Crit Rev Oncol Hematol, 2004, 49(3): 259-268.
[15] Wang C, Tammi M, Guo H, et al. Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers[J]. Am J Pathol, 1996, 148(6): 1861-1869.
[16] Ponting J, Howell A, Pye D, et al. Prognostic relevance of serum hyaluronan levels in patients with breast cancer[J]. Int J Cancer, 1992, 52(6): 873-876.
[17] Pan J, Qian Y, Weiser P, et al. Glycosaminoglycans and activated contact system in cancer patient plasmas[J]. Prog Mol Biol Transl Sci, 2010, 93: 473-495.
[18] Tanner Y, Grose RP. Dysregulated FGF signalling in neoplastic disorders[J]. Semin Cell Dev Biol, 2015, pii: S1084-9521(15)00209-8.
[19] Flippot R, Kone M, Magné N, et al. FGF/FGFR signalling: Implication in oncogenesis and perspectives[J]. Bull Cancer, 2015, 102(6): 516-526.
[20] Kloska A, Jakóbkiewicz-Banecka J, Narajczyk M, et al. Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reductiontherapy in Sanfilippo disease and other mucopolysaccharidoses[J]. Metab Brain Dis, 2011, 26(1): 1-8.
[21] Chatzinikolaou G, Nikitovic D, Stathopoulos EN, et al. Protein tyrosine kinase and estrogen receptor-dependent pathways regulate the synthesis and distribution of glycosaminoglycans/proteoglycans produced by two human colon cancer cell Lines[J]. Anticancer Res, 2007, 27(6B): 4101-4106.
[22] Nikitovic D, Tsatsakis AM, Karamanos NK, et al. The effects of genistein on the synthesis and distribution of glycosaminoglycans/proteoglycans by two osteosarcoma cell lines depends on tyrosine kinase and the estrogen receptor density[J]. Anticancer Res, 2003, 23(1A): 459-464.
[23] Mitropoulou T N, Tzanakakis G N, Nikitovic D, et al. In vitro effects of genistein on the synthesis and distribution of glycosaminoglycans/proteoglycans by estrogen receptor-positive and -negative human breast cancer epithelial cells[J]. Anticancer Res, 2002, 22(5): 2841-2846.
[24] Qiu P, Guan H, Dong P, et al. The inhibitory effects of 5-hydroxy-3, 6, 7, 8, 3', 4'-hexamethoxyflavone on human colon cancer cells[J]. Mol Nutr Food Res, 2011, 55(10): 1523-1532.
[25] Qiu P, Guan H, Dong P, et al. The p53-, Bax-and p21-dependent inhibition of colon cancer cell growth by 5-hydroxy polymethoxyflavones[J]. Mol Nutr Food Res, 2011, 55(4): 613-622.
[26] Qiu P, Dong P, Guan H, et al. Inhibitory effects of 5-hydroxy polymethoxyflavones on colon cancer cells[J]. Mol Nutr Food Res, 2010, 54 Suppl 2: S244-S252.
[27] Dong P, Qiu P, Zhu Y, et al. Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection[J]. J Chromatogr A, 2010, 1217(5): 642-647.
[28] Xiao H, Yang C S, Li S, et al. Monodemethylated polymethoxyflavones from sweet orange (Citrussinensis) peel inhibit growth of human lung cancer cells by apoptosis[J]. Mol Nutr Food Res, 2009, 53(3): 398-406.
[29] Pan J, Qian Y, Zhou X, et al. Chemically oversulfated glycosaminoglycans are potent modulators of contact system activation and different cell signaling pathways[J]. J Biol Chem, 2010, 285(30): 22966-22975.
[30] Kreuger J, Salmivirta M, Sturiale L, et al. Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2[J]. J Biol Chem, 2001, 276(33): 30744-30752.
[31] Loo B M, Salmivirta M. Heparin/Heparan sulfate domains in binding and signaling of fibroblast growth factor 8b[J]. J Biol Chem, 2002, 277(36): 32616-32623.
責(zé)任編輯 徐 環(huán)
The Quantitative and Qualitative Alterations of GAGs Induced by 5-Hydroxyed Nobiletin in Cancer Cells
CUI Yi-Di, TANG Yang, HAN Zhang-Yun, ZENG Xuan, XU Ling-Ling, ZHANG Li-Juan, QIU Pei-Ju
(Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266033, China; Shanclong Provincial Key Laboratory of Glycoscience and Glycoengineering, Ocean University of China, Qingdao 266003, China)
Quantitative and qualitative alterations of glycosaminoglycans (GAGs) play a critail role in the development and progression of cancer. 5-hydroxyed nobiletin (5HPMF) which was isolated from the peel of orange exhibited significantly inhibitory effect on colon cancer cells growth. So far, there are no reports about the effect on how 5HPMF modulates the synthesis and alters the fine structure of GAGs. To this end, the study focused on the determination of the quantitative and qualitative alterations of GAGs induced by 5HPMF,using BaF3 cell model, Flow cytometry and HPLC. The data shown that the GAGs obtained from HT29 and A549 cells significantly enhanced FGF1mediated cell growth in BaF3model, however, the treatment of 5HPMF(10 μmol·L-1)attenuated the effect. Moreover, 5HPMF significantly decreased the fluorescence intensity of FGF2 and FGF8 mediated ternary complex. But no significant alternation on the content of chondroitin sulfate and heparan sulfate induced by 5HPMF was observed based on the data from HPLC. Taken together, we presumed 5HPMF induced the alternation in structure rather than in content of GAGs of lung and colon cancer cells to mediate the signaling transduction. The results provide experimental foundation for further exploring the correlation between the inhibitory effect of cancer cell growth and the alteration of content and sulfation induced by 5HPMF.
glycosaminoglycans; 5-hydroxyed nobiletin; fluorescence intensity; FGF; FGFR
教育部新教師基金項(xiàng)目(20130132120006);山東省科技發(fā)展計劃項(xiàng)目(2012GSF11912&2014GGH215001)資助
2015-10-22;
2016-03-30
崔怡迪(1991-),女,碩士生。E-mail:yidi717@126.com
** 通訊作者:E-mail:grfqiupeiju@hotmail.com
R962
A
1672-5174(2017)04-066-07
10.16441/j.cnki.hdxb.20150362
崔怡迪, 唐洋, 韓章潤, 等.5-羥基川陳皮素對腫瘤細(xì)胞糖胺聚糖含量和結(jié)構(gòu)的影響[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2017, 47(4): 66-72.
CUI Yi-Di, TANG Yang, HAN Zhang-Yun, et al. The quantitative and qualitative alterations of GAGs induced by 5-Hydroxyed nobiletin in cancer cells[J]. Periodical of Ocean University of China, 2017, 47(4): 66-72.
Ministry of Education New Teacher’s Fund(20130132120006); Shandong Science and Technology Development Planning Project(2012GSF11912&2014GGH215001)