陸天豪 李樹峰
·綜 述·
聲電聯(lián)合刺激下殘余聽力的損傷及其機制
陸天豪 李樹峰
聲電聯(lián)合刺激(EAS)是一種應(yīng)用于高頻聽力嚴重損失但尚有一定低頻聽力患者的新技術(shù)。對于此類患者,單純使用助聽器不能滿足需求,而傳統(tǒng)的人工耳蝸植入則可能造成低頻殘余聽力的損失。EAS技術(shù)可以繼續(xù)使用助聽器以利用低頻區(qū)殘余聽力,同時發(fā)揮人工耳蝸在中高頻區(qū)的替代優(yōu)勢,在聽力學(xué)上比單獨使用上述二者具有明顯的優(yōu)勢。但越來越多的研究表明:一部分EAS使用者的低頻殘余聽力會發(fā)生遲發(fā)性、漸進性的下降,從而對患者造成不利影響。本文綜述近年來EAS下殘余聽力下降及其機制的相關(guān)研究進展。(中國眼耳鼻喉科雜志,2017,17:143-147)
聲電聯(lián)合刺激;低頻殘余聽力;人工耳蝸植入
聲電聯(lián)合刺激(electroacoustic stimulation, EAS)是指通過聯(lián)合使用人工耳蝸獲得中、高頻聽力和使用助聽器補償?shù)皖l殘余聽力,使耳蝸同時接受電信號和聲信號的一項新技術(shù)。該技術(shù)主要適用于中高頻聽力嚴重損失但尚有一定低頻殘余聽力的感音神經(jīng)性聾患者[1-5]。
EAS技術(shù)可以在繼續(xù)利用低頻區(qū)殘余聽力的同時發(fā)揮人工耳蝸在中高頻區(qū)的替代優(yōu)勢,在聽力學(xué)上比單獨使用上述二者具有明顯的優(yōu)勢。Mertens等[6]對接受EAS患者的長期隨訪研究表明:在術(shù)后6個月~10年的隨訪期間,患者語音感知能力和音樂鑒賞能力均得到持續(xù)性的提高,其單音節(jié)語音感知[7-8]、長句語音感知、主觀評分都較術(shù)前有了進步。Baumann等[7]、de Carvalho等[8]的研究也驗證了這一觀點。為了使EAS發(fā)揮有效的作用,低頻殘余聽力的保存至關(guān)重要。通過植入手術(shù)技術(shù)和植入體設(shè)計的改進,術(shù)后大部分患者低頻殘余聽力得以保存[9-13]。但是隨著EAS技術(shù)的開展,越來越多的臨床研究表明,接近1/3 EAS使用者的殘余聽力在術(shù)后數(shù)周到數(shù)月發(fā)生遲發(fā)性、漸進性下降[9, 14-16]。Gstoettner等[9]研究了23例EAS術(shù)后患者的殘余聽力變化,5例(21.7%)有遲發(fā)性聽力下降;在Gantz等[14]的研究中,手術(shù)后聽力的保存率可以達到98%,但是在12個月后87例患者中的5例聽力完全丟失。而當殘余聽力損傷之后,EAS使用者將喪失其相對于傳統(tǒng)人工耳蝸植入者的優(yōu)勢,并且由于EAS的短電極提供的刺激通道數(shù)量不足,可能需要再次手術(shù)更換傳統(tǒng)的全長電極植入體。
EAS對低頻殘余聽力的影響和損傷機制逐漸得到關(guān)注。電刺激對耳蝸正?;驓堄嘟Y(jié)構(gòu)和功能的影響及其機制的研究對于其他神經(jīng)植入裝置的相關(guān)研究也將具有重要的借鑒意義。本綜述對該領(lǐng)域的最新研究成果進行總結(jié)分析。
1.1 手術(shù)技巧 不同手術(shù)操作技術(shù),如耳蝸開窗方法和圓窗植入部位的選擇等,對殘余聽力保存的影響已得到廣泛重視和研究。Giordano等[17]發(fā)現(xiàn)術(shù)中螺旋韌帶的破壞會導(dǎo)致殘余聽力的下降。Adunka等[18]也通過優(yōu)化手術(shù)技巧來減小對殘存聽力的影響,包括選擇在圓窗膜下方或稍前方位置開窗和改進電極設(shè)計減少插入損傷,使低頻殘余聽力的保存率可以達到95%。Usami等[19]采用圓窗植入無創(chuàng)設(shè)計的全長電極,結(jié)合術(shù)中、術(shù)后全身應(yīng)用地塞米松,5例患者的低頻殘余聽力均完整保存。相比耳蝸開窗,圓窗植入的開窗時間更少,也更有助于前庭功能的保護[20]。Rowe等[21-22]應(yīng)用豚鼠為動物模型,比較圓窗植入和耳蝸造口的電極植入方法以及圓窗植入時分別采用肌肉、骨膜和纖維蛋白膠作為填塞物對耳蝸結(jié)構(gòu)和聽力的影響,結(jié)果顯示圓窗植入時使用肌肉和骨膜可能是低頻聽力遲發(fā)性下降的原因。
DeMason等[23]在電極插入時應(yīng)用耳蝸微音電位和聽神經(jīng)復(fù)合動作電位進行術(shù)中監(jiān)測,可以判斷電刺激植入的最佳深度和避免電極對正常毛細胞的損傷,結(jié)果顯示微音電位較聽神經(jīng)復(fù)合電位更為敏感。Pau等[24]也嘗試應(yīng)用聽性腦干反應(yīng)檢測術(shù)前、術(shù)中和術(shù)后的閾值。上述術(shù)中聽功能監(jiān)測有助于避免植入手術(shù)對耳蝸重要結(jié)構(gòu)的損傷。
1.2 植入體設(shè)計 組織學(xué)研究顯示人工耳蝸電極植入會造成圓窗周圍和耳蝸底回的損傷,當電極觸及基底膜或者骨螺旋板時損傷最為嚴重[25],而應(yīng)用可自由變換角度的彈性細電極有助于減少電極植入創(chuàng)傷[26]。Gantz等[27]在24例患者分別使用了6 mm和10 mm長度的電極,結(jié)果提示較短的電極更有利于預(yù)防耳蝸低頻聽力區(qū)域的損傷。然而即使使用較傳統(tǒng)電極更短的電極,部分患者仍然發(fā)生了遲發(fā)性的殘余聽力損失[28]。Gstoettner等[9]和Usami等[19]應(yīng)用MedEL Flex EAS電極的臨床研究,顯示患者的低頻殘余聽力術(shù)后均得以不同程度的保存。Carlson等[29]報道了126例術(shù)前有低頻殘余聽力患者植入新一代的人工耳蝸電極,包括Nucleus Contour Advance、Advanced Bionics HR90K和Med El Sonata standard H array等,其植入術(shù)后的聽力保存率達55%。Gwon等[30]設(shè)計了由多層液晶聚合物薄膜替代電極環(huán)的新型植入電極陣,可以減小電極陣的硬度,顳骨標本研究顯示沒有造成明顯的損傷,但有待進一步的動物實驗和人體研究。
1.3 新生骨和纖維組織形成 電極植入后的骨化曾被認為可能是影響殘余聽力保存的一個重要因素[31]。Li等[32]研究了12例生前行人工耳蝸植入術(shù)的顳骨標本,發(fā)現(xiàn)所有病例耳蝸中都有新生骨和纖維組織的形成,在耳蝸開窗區(qū)域尤其嚴重。這種病理改變與耳蝸側(cè)壁的損傷有明顯相關(guān)性,但與螺旋神經(jīng)元的數(shù)量以及生前的言語識別率沒有明顯相關(guān)性。Nadol等[33]也在電極植入后的患者尸檢過程中發(fā)現(xiàn)電極周圍纖維囊和軟骨的形成,在耳蝸頂區(qū)同樣可以觀察到廣泛的纖維化。上述研究對象都是傳統(tǒng)人工耳蝸植入病例。Tanaka等[34]對正常聽力的豚鼠植入人工耳蝸電極并施加慢性電刺激,結(jié)果顯示6~16 kHz處的聽力下降與血管紋的血管密度下降和骨化有密切相關(guān)性。在10周的慢性電刺激后,67%術(shù)前聽力正常的豚鼠在1 kHz區(qū)域出現(xiàn)超過10 dB的聽力損失,這一現(xiàn)象與EAS遲發(fā)性聽力損失相似。但1 kHz低頻區(qū)的聽力下降與上述血管紋的血管密度、骨化和纖維化等形態(tài)學(xué)改變均無明顯相關(guān)性。
1.4 術(shù)后感染和炎癥 Smouha等[35]的動物實驗研究表明耳蝸開窗處周圍會發(fā)生炎癥反應(yīng),并且炎癥反應(yīng)的程度和術(shù)后聽力損傷的程度呈正相關(guān)。Rajan等[36]進行了一項前瞻性的臨床研究,術(shù)前鼓室內(nèi)注射糖皮質(zhì)激素患者低頻殘余聽力的保存明顯好于未注射的患者,術(shù)后的殘余聽力也更穩(wěn)定。van de Water等[37]的動物實驗研究顯示局部應(yīng)用地塞米松的豚鼠人工耳蝸植入后的聽力損失明顯小于未應(yīng)用地塞米松組,其作用可能是通過提高抗凋亡基因、降低凋亡基因的表達實現(xiàn)的。此外,James等[38]的動物實驗研究也顯示地塞米松局部應(yīng)用對于電極插入造成的聽力下降具有保護作用,尤其是在插入困難的手術(shù)中,而且可以減輕電極引起的異物反應(yīng)。糖皮質(zhì)激素對電極插入造成的毛細胞和聽力損傷的保護作用,提示電極植入術(shù)后的炎癥反應(yīng)對殘余聽力存在不利影響。
1.5 內(nèi)耳淋巴液循環(huán)紊亂 Radeloff等[39]以豚鼠為模型,將血液通過耳蝸造口的方式注入鼓階內(nèi),并在注射前和注射后2個月內(nèi)的不同時間點測試聽神經(jīng)復(fù)合動作電位的閾值,實驗證明即使小量的血液也會導(dǎo)致暫時性或者永久性耳蝸聽力下降。
1.6 電鉆噪聲 Pau等[40]測量了顳骨標本在耳蝸造口過程中的圓窗膜記錄到的噪聲,結(jié)果顯示當鉆頭接觸到骨內(nèi)膜時其聲壓級可超過130 dB SPL,強度與電鉆直接接觸聽骨鏈相當,可能會在術(shù)中對內(nèi)耳結(jié)構(gòu)造成嚴重影響。Stromberg等[41]應(yīng)用顳骨標本的研究也顯示耳蝸造孔時噪聲可達114~128 dB SPL,足以引起噪聲性聽力損傷。
2.1 電刺激對毛細胞和螺旋神經(jīng)元的影響 EAS殘余聽力損失患者接受長期的電刺激,不能排除電刺激本身是造成遲發(fā)性殘余聽力損失的因素。動物實驗的對照研究表明,無論是正常還是噪聲致聾的豚鼠在接受慢性電刺激后會出現(xiàn)1 kHz區(qū)域的聽力下降,而不接受電刺激的豚鼠則不會出現(xiàn)[34, 42]。傳統(tǒng)人工耳蝸植入患者的毛細胞等感音結(jié)構(gòu)已經(jīng)損傷,電刺激的作用對象為螺旋神經(jīng)元。因此,以往相關(guān)研究大多僅關(guān)注電刺激對螺旋神經(jīng)元的影響,而電刺激對毛細胞等感音結(jié)構(gòu)和殘余聽力的影響相關(guān)研究相對較少。電刺激除了可以直接興奮鄰近的螺旋神經(jīng)元外,還可以引起殘余低頻區(qū)毛細胞的興奮[43]。在以往電刺激安全性相關(guān)的動物實驗研究中,沒有證據(jù)顯示人工耳蝸電刺激可以引起毛細胞和螺旋神經(jīng)元的數(shù)量減少[44-48]。值得注意的是,最近的1例EAS遲發(fā)性聽力損失患者的顳骨病理研究也顯示,其低頻區(qū)毛細胞和螺旋神經(jīng)元的數(shù)量沒有明顯減少[49]。Kopelovich等[50]針對85例EAS接受者的回顧性分析顯示,17例出現(xiàn)了遲發(fā)性殘余聽力損失,其中5例采用的是較大強度的電刺激,統(tǒng)計學(xué)分析顯示較高強度的電刺激與殘余聽力的損失存在相關(guān)性。Dillon等[51]對EAS接受者的一項回顧性分析表明,殘余聽力的遲發(fā)性下降與植入后電刺激的強度之間沒有明顯相關(guān)性??傊姶碳げ皇峭ㄟ^毛細胞和螺旋神經(jīng)元數(shù)量的減少引起殘余聽力下降的途徑。
2.2 電刺激對內(nèi)毛細胞突觸和聽神經(jīng)纖維的影響 Dodson等[52]應(yīng)用透射電鏡研究顯示,圓窗部位電刺激可以導(dǎo)致外毛細胞傳出神經(jīng)突觸減少,而不影響毛細胞數(shù)量和傳入神經(jīng)。Tanaka等[34]應(yīng)用正常聽力的豚鼠為模型植入人工耳蝸電極并施加慢性電刺激,在6~16 kHz區(qū)域和1 kHz區(qū)域均出現(xiàn)了聽力損失。但與6~16 kHz處聽力損失不同,1 kHZ低頻區(qū)的聽力下降與上述血管紋的血管密度、骨化、纖維化,毛細胞和螺旋神經(jīng)元的數(shù)量等形態(tài)學(xué)改變均無明顯相關(guān)性。同一個研究團隊的Reiss等[42]進一步應(yīng)用噪聲性耳聾后慢性電刺激豚鼠模型以模擬臨床上高頻聽力丟失仍有低頻殘余聽力的狀況,同樣出現(xiàn)了1 kHz低頻區(qū)域的聽力損失。與前述研究結(jié)果相同,該聽力損失仍然與毛細胞和螺旋神經(jīng)元的數(shù)量沒有相關(guān)性,但與內(nèi)毛細胞突觸前和突觸后受體的數(shù)量減少明顯相關(guān)。Kopelovich等[50]應(yīng)用電刺激體外培養(yǎng)的耳蝸組織,結(jié)果顯示一定強度的電刺激可以引起耳蝸傳入神經(jīng)纖維的減少而不影響螺旋神經(jīng)元和毛細胞的數(shù)量。上述研究提示EAS后延遲的聽力丟失可能與毛細胞突觸和聽神經(jīng)纖維的丟失有關(guān)。
2.3 電刺激引起內(nèi)耳超微結(jié)構(gòu)改變的機制 電刺激引起毛細胞突觸和聽神經(jīng)纖維等超微結(jié)構(gòu)改變的機制尚缺乏研究。Li等[53]的研究顯示人工耳蝸電刺激對體外培養(yǎng)螺旋神經(jīng)元神經(jīng)突的生長有排斥的導(dǎo)向作用。Shen等[54]的進一步的研究顯示電刺激能抑制體外培養(yǎng)螺旋神經(jīng)元神經(jīng)突的生長,而鈣離子通道阻滯劑可以減少這一抑制作用。這提示電刺激引起的鈣離子通道異常開放可能與其對內(nèi)耳結(jié)構(gòu)的損傷有關(guān)。Frolenkov等[55]的研究表明,電刺激可以使豚鼠單離外毛細胞發(fā)生非對稱去極化而產(chǎn)生變形,進而影響外毛細胞的微觀力學(xué)和功能。體內(nèi)試驗也表明電刺激內(nèi)耳還可引起外毛細胞的能動性增強,進而引起基底膜的運動[56]。上述電刺激引起的外毛細胞和基底膜的運動稱為電聲反應(yīng)(electrophonic response)。在體電生理學(xué)研究顯示電刺激可以改變聽神經(jīng)的放電特性,導(dǎo)致累加(buildup)和爆發(fā)(bursting)現(xiàn)象[57];也可以通過不應(yīng)期這一形式來掩蔽一定特性的聲刺激[58];同時電刺激反應(yīng)也會被一定特性的聲刺激增強[59]。上述電刺激和聲刺激的相互作用還存在非線性的特征[57-59]??梢酝茰y,聲刺激和電刺激引起的毛細胞和聽神經(jīng)反應(yīng)的疊加、掩蔽和增強等相互作用可能對低頻區(qū)毛細胞和聽神經(jīng)的結(jié)構(gòu)和功能產(chǎn)生不利影響。
EAS接受者中有一部分是噪聲引起的聽力損傷。Kopelovich等[60]對85例接受EAS刺激的患者進行了回顧性分析,其中22例出現(xiàn)了遲發(fā)性殘余聽力下降,統(tǒng)計學(xué)分析表明其與患者的噪聲性聾病史、年齡和性別有相關(guān)性。噪聲可以導(dǎo)致內(nèi)耳興奮性的損傷。近年來,內(nèi)毛細胞與蝸神經(jīng)之間的突觸(以下簡稱內(nèi)毛細胞突觸)等耳蝸超微結(jié)構(gòu)病變在聽力損傷中的作用得到越來越多的重視。動物實驗研究表明:數(shù)小時中等強度的噪聲暴露可以導(dǎo)致永久性的內(nèi)毛細胞突觸減少和蝸神經(jīng)外周末梢退化,但不引起毛細胞和螺旋神經(jīng)元數(shù)量的變化[61-62]。值得注意的是,高頻噪聲損傷后的豚鼠接受10周的EAS后,部分個體出現(xiàn)1 kHz的聽力下降,其與內(nèi)毛細胞突觸前后結(jié)構(gòu)數(shù)量的減少具有明顯的相關(guān)性;但該研究未發(fā)現(xiàn)EAS組和非EAS組之間在聽閾和內(nèi)毛細胞突觸數(shù)量之間差異有統(tǒng)計學(xué)意義,因而不能確定內(nèi)毛細胞突觸數(shù)量減少是否與EAS有關(guān)[42]。但上述研究提示EAS聽力損失可能與噪聲音性耳聾的發(fā)病機制存在一定聯(lián)系,內(nèi)毛細胞突觸減少可能在EAS聽力損失中有一定作用。
除了之前討論的2大類機制之外,老年性耳聾和潛在疾病的自然病程都會影響EAS后殘余聽力的保存。患者個體化的差異亦會對殘余聽力產(chǎn)生較大的影響。
總之,EAS接受者遲發(fā)性殘余聽力下降與術(shù)后即發(fā)的聽力損失機制不同,可能與多種因素有關(guān),包括電刺激和聲刺激在低頻區(qū)引起毛細胞和聽神經(jīng)反應(yīng)的相互作用而可能導(dǎo)致的興奮性毒性、內(nèi)毛細胞與聽神經(jīng)間突觸結(jié)構(gòu)和神經(jīng)纖維的變化、血管紋血管密度降低和內(nèi)耳開窗的填塞物等。其中EAS下內(nèi)耳超微結(jié)構(gòu)和功能改變在其中的作用有待深入研究。
[ 1 ] Gantz BJ, Turner CW. Combining acoustic and electrical hearing [J]. Laryngoscope, 2003, 113(10): 1726-1730.
[ 2 ] Kiefer J PM, Adunka O, Stürzebecher E, et al. Combined electric and acoustic stimulation of the auditory system: results of a clinical study [J]. Audiol Neurootol, 2005, 10(3): 134-144.
[ 3 ] Turner C, Gantz BJ, Reiss L. Integration of acoustic and electrical hearing [J]. J Rehabil Res Dev, 2008, 45(5): 769-778.
[ 4 ] von Ilberg C, Kiefer J, Tillein J, et al. Electric-acoustic stimulation of the auditory system. New technology for severe hearing loss [J]. ORL J Otorhinolaryngol Relat Spec, 1999, 61(6): 334-340.
[ 5 ] von Ilberg CA, Baumann U, Kiefer J, et al. Electric-acoustic stimulation of the auditory system: a review of the first decade [J]. Audiol Neurootol, 2011, 16 (Suppl 2):1-30.
[ 6 ] Mertens G, Punte AK, Cochet E, et al. Long-term follow-up of hearing preservation in electric-acoustic stimulation patients [J]. Otol Neurotol, 2014, 35(10): 1765-1772.
[ 7 ] Baumann U, Helbig S. Hearing with combined electric acoustic stimulation [J]. HNO, 2009, 57(6): 542-550.
[ 8 ] de Carvalho GM, Guimaraes AC, Duarte AS, et al. Hearing preservation after cochlear implantation: UNICAMP outcomes [J]. Int J Otolaryngol, 2013, 2013: 107186.
[ 9 ] Gstoettner W, Helbig S, Settevendemie C, et al. A new electrode for residual hearing preservation in cochlear implantation: first clinical results [J]. Acta Otolaryngol, 2009, 129(4): 372-379.
[10] Gstoettner W, Kiefer J, Baumgartner WD, et al. Hearing preservation in cochlear implantation for electric acoustic stimulation [J]. Acta Otolaryngol, 2004, 124(4): 348-352.
[11] Gstoettner WK, Helbig S, Maier N, et al. Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation [J]. Audiol Neurootol, 2006, 11(Suppl 1): 49-56.
[12] Muller J, Helms J. Cochlear implantation with preservation of residual deep frequency hearing [J]. HNO, 2005, 53(9): 753-755.
[13] Adunka OF, Pillsbury HC, Adunka MC, et al. Is electric acoustic stimulation better than conventional cochlear implantation for speech perception in quiet? [J]. Otol Neurotol, 2010, 31(7): 1049-1054.
[14] Gantz BJ, Dunn C, Oleson J, et al. Multicenter clinical trial of the Nucleus Hybrid S8 cochlear implant: final outcomes [J]. Laryngoscope, 2016, 126(4): 962-973.
[15] Gantz BJ, Hansen MR, Turner CW, et al. Hybrid 10 clinical trial: preliminary results [J]. Audiol Neurootol, 2009, 14(Suppl 1): 32-38.
[16] Santa Maria PL, Domville-Lewis C, Sucher CM, et al. Hearing preservation surgery for cochlear implantation—hearing and quality of life after 2 years [J]. Otol Neurotol, 2013, 34(3): 526-531.
[17] Giordano P, Hatzopoulos S, Giarbini N, et al. A soft-surgery approach to minimize hearing damage caused by the insertion of a cochlear implant electrode: a guinea pig animal model [J]. Otol Neurotol, 2014, 35(8): 1440-1445.
[18] Adunka OF, Pillsbury HC, Buchman CA. Minimizing intracochlear trauma during cochlear implantation [J]. Adv Otorhinolaryngol, 2010, 67: 96-107.
[19] Usami S, Moteki H, Suzuki N, et al. Achievement of hearing preservation in the presence of an electrode covering the residual hearing region [J]. Acta Otolaryngol, 2011, 131(4): 405-412.
[20] Tsukada K, Moteki H, Fukuoka H, et al. Effects of EAS cochlear implantation surgery on vestibular function [J]. Acta Otolaryngol, 2013, 133(11): 1128-1132.
[21] Rowe D, Chambers S, Hampson A, et al. Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy [J]. Hear Res, 2016, 333: 49-57.
[22] Rowe D, Chambers S, Hampson A, et al. The effect of round window sealants on delayed hearing loss in a guinea pig model of cochlear implantation [J]. Otol Neurotol, 2016, 37(8): 1024-1031.
[23] DeMason C, Choudhury B, Ahmad F, et al. Electrophysiological properties of cochlear implantation in the gerbil using a flexible array [J]. Ear Hear, 2012, 33(4): 534-542.
[24] Pau HW, Just T, Dahl R, et al. Monitoring residual hearing during cochlear implantation by intra-operative brainstem audiometry [J]. Auris Nasus Larynx, 2008, 35(2): 264-268.
[25] O'Leary MJ, Fayad J, House WF, et al. Electrode insertion trauma in cochlear implantation [J]. Ann Otol Rhinol Laryngol, 1991, 100(9 Pt 1): 695-699.
[26] Arnoldner C, Helbig S, Wagenblast J, et al. Electric acoustic stimulation in patients with postlingual severe high-frequency hearing loss: clinical experience [J]. Adv Otorhinolaryngol, 2010, 67: 116-124.
[27] Gantz BJ, Turner C, Gfeller KE, et al. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing [J]. Laryngoscope, 2005, 115(5): 796-802.
[28] Woodson EA, Reiss LA, Turner CW, et al. The Hybrid cochlear implant: a review [J]. Adv Otorhinolaryngol, 2010, 67: 125-134.
[29] Carlson ML, Driscoll CL, Gifford RH, et al. Implications of minimizing trauma during conventional cochlear implantation [J]. Otol Neurotol, 2011, 32(6): 962-968.
[30] Gwon TM, Min KS, Kim JH, et al. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion [J]. Biomed Microdevices, 2015, 17(2): 32.
[31] Clark GM, Shute SA, Shepherd RK, et al. Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing [J]. Ann Otol Rhinol Laryngol Suppl, 1995, 166: 40-42.
[32] Li PM, Somdas MA, Eddington DK, et al. Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants [J]. Ann Otol Rhinol Laryngol, 2007, 116(10): 731-738.
[33] Nadol JB, Eddington DK, Burgess BJ. Foreign body or hypersensitivity granuloma of the inner ear after cochlear implantation: one possible cause of a soft failure? [J]. Otol Neurotol, 2008, 29(8): 1076-1084.
[34] Tanaka C, Nguyen-Huynh A, Loera K, et al. Factors associated with hearing loss in a normal-hearing guinea pig model of Hybrid cochlear implants [J]. Hear Res, 2014, 316: 82-93.
[35] Smouha EE. Surgery of the inner ear with hearing preservation: serial histological changes [J]. Laryngoscope, 2003, 113(9): 1439-1449.
[36] Rajan GP, Kuthubutheen J, Hedne N, et al. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study [J]. Laryngoscope, 2012, 122(1): 190-195.
[37] van de Water TR, Dinh CT, Vivero R, et al. Mechanisms of hearing loss from trauma and inflammation: otoprotective therapies from the laboratory to the clinic [J]. Acta Otolaryngol, 2010, 130(3): 308-311.
[38] James DP, Eastwood H, Richardson RT, et al. Effects of round window dexamethasone on residual hearing in a guinea pig model of cochlear implantation [J]. Audiol Neurootol, 2008, 13(2): 86-96.
[39] Radeloff A, Unkelbach MH, Tillein J, et al. Impact of intrascalar blood on hearing [J]. Laryngoscope, 2007, 117(1): 58-62.
[40] Pau HW, Just T, Bornitz M, et al. Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation [J]. Laryngoscope, 2007, 117(3): 535-540.
[41] Str?mberg AK, Yin X, Olofsson A, et al. Evaluation of the usefulness of a silicone tube connected to a microphone in monitoring noise levels induced by drilling during mastoidectomy and cochleostomy [J]. Acta Otolaryngol, 2010, 130(10): 1163-1168.
[42] Reiss LA, Stark G, Nguyen-Huynh AT, et al. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired guinea pig model [J]. Hear Res, 2015, 327: 163-174.
[43] Kang SY, Colesa DJ, Swiderski DL, et al. Effects of hearing preservation on psychophysical responses to cochlear implant stimulation [J]. J Assoc Res Otolaryngol, 2010, 11(2): 245-265.
[44] Ni D, Shepherd RK, Seldon HL, et al. Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: Normal hearing kittens [J]. Hear Res, 1992, 62(1): 63-81.
[45] Xu J, Shepherd RK, Millard RE, et al. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study [J]. Hear Res, 1997, 105(1/2): 1-29.
[46] Coco A, Epp SB, Fallon JB, et al. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? [J]. Hear Res, 2007, 225(1-2): 60-70.
[47] Irving S, Trotter MI, Fallon JB, et al. Cochlear implantation for chronic electrical stimulation in the mouse [J]. Hear Res, 2013, 306: 37-45.
[48] Shepherd RK, Matsushima J, Martin RL, et al. Cochlear pathology following chronic electrical stimulation of the auditory nerve: II. Deafened kittens [J]. Hear Res, 1994, 81(1/2): 150-166.
[49] Quesnel AM, Nakajima HH, Rosowski JJ, et al. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology [J].Hear Res, 2016, 333: 225-234.
[50] Kopelovich JC, Reiss LAJ, Etler CP, et al. Hearing loss after activation of hearing preservation cochlear implants might be related to afferent cochlear innervation injury [J]. Otol Neurotol, 2015, 36(6): 1035-1044.
[51] Dillon MT, Bucker AL, Adunka MC, et al. Impact of electric stimulation on residual hearing [J]. J Am Acad Audiol, 2015, 26(8): 732-740.
[52] Dodson HC, Walliker JR, Bannister LH, et al. Structural effects of short term and chronic extracochlear electrical stimulation on the guinea pig spiral organ [J]. Hear Res, 1987, 31(1): 65-78.
[53] Li S, Li H, Wang Z. Orientation of spiral ganglion neurite extension in electrical fields of charge-balanced biphasic pulses and direct current in vitro [J]. Hear Res, 2010, 267(1/2): 111-118.
[54] Shen N, Liang Q, Liu Y, et al. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons [J]. Neuroscience Letters, 2016, 624: 92-99.
[55] Frolenkov GI, Kalinec F, Tavartkiladze GA, et al. Cochlear outer hair cell bending in an external electric field [J]. Biophys J, 1997, 73(3): 1665-1672.
[56] Xue S, Mountain DC, Hubbard AE. Electrically evoked basilar membrane motion [J]. J Acoust Soc Am, 1995, 97(5 Pt 1): 3030-3041.
[57] Miller CA, Abbas PJ, Robinson BK, et al. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains [J]. J Assoc Res Otolaryngol, 2006, 7(3): 195-210.
[58] Stronks HC, Versnel H, Prijs VF, et al. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig [J]. Hear Res, 2010, 259(1/2): 64-74.
[59] Miller CA, Abbas PJ, Robinson BK, et al. Auditory nerve fiber responses to combined acoustic and electric stimulation [J]. J Assoc Res Otolaryngol, 2009, 10(3): 425-445.
[60] Kopelovich JC, Reiss LA, Oleson JJ, et al. Risk factors for loss of ipsilateral residual hearing after hybrid cochlear implantation [J]. Otol Neurotol, 2014, 35(8): 1403-1408.
[61] Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure [J]. J Neurosci, 2013, 33(13): 5542-5552.
[62] Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after 'temporary' noise-induced hearing loss [J]. J Neurosci, 2009, 29(45): 14077-14085.
(本文編輯 楊美琴)
Loss of residual hearing in electroacoustic stimulation and its mechanism
LUTian-hao,LIShu-feng.
DepartmentofOtolaryngology,EyeEarNoseandThroatHospitalofFudanUniversity;ShanghaiClinicalCenterofHearingMedicine;HearingMedicineKeyLaboratoryoftheNationalHealthandFamilyPlanningCommission(NHFPC);Shanghai200031,China
LI Shu-feng, Email: shufeng.li@yahoo.com
Electroacoustic stimulation (EAS) is a new technology recently used in patients with profound middle- or high-frequency hearing loss but having residual low-frequency hearing. For this group of candidates, wearing hearing aids alone can’t meet their hearing requirements, while conventional cochlear implant could lead to the loss of residual low-frequency hearing. As for EAS, the aided residual low-frequency hearing and the substitute advantage of cochlear implantation in high-frequency hearing could be achieved simultaneously, which is far more efficient than utilizing either part of the single strategy. More and more studies have indicated that a part of recipients suffered a delayed and progressive decline in residual low frequency hearing as it has adverse effects on the patients. This review summarizes recent research work on the residual hearing loss under EAS and its related mechanisms. (Chin J Ophthalmol and Otorhinolaryngol,2017,17:143-147)
Electroacoustic stimulation; Residual low-frequency hearing; Cochlear implantation
復(fù)旦大學(xué)附屬眼耳鼻喉科醫(yī)院耳鼻喉科 上海市聽覺醫(yī)學(xué)臨床中心 國家衛(wèi)計委聽覺醫(yī)學(xué)重點實驗室 上海 200031
李樹峰(Email:shufeng.li@yahoo.com)
10.14166/j.issn.1671-2420.2017.02.021
2016-10-08)