李貝貝,白躍宏
周圍神經(jīng)損傷在臨床上較為常見,特別是支配四肢的神經(jīng)一般位置表淺,多在皮下、骨間溝或肌肉內(nèi),極易受外力作用而發(fā)生損傷[1]。由于周圍神經(jīng)解剖結(jié)構(gòu)復(fù)雜,加之神經(jīng)元本身不可再生等特點(diǎn),使得該類患者恢復(fù)期漫長(zhǎng),生活質(zhì)量下降,甚至遺留永久性功能障礙。因此及時(shí)有效的判斷神經(jīng)損傷的原因、部位及損傷程度,并據(jù)損傷程度予以恰當(dāng)治療,已成為治療周圍神經(jīng)損傷的關(guān)鍵。目前,周圍神經(jīng)損傷主要通過肌電圖、高頻超聲、磁共振等輔助檢查做出評(píng)定,本文對(duì)近年來周圍神經(jīng)損傷評(píng)定的相關(guān)研究進(jìn)展進(jìn)行綜述。
肌電圖(Electromyography,EMG)是目前評(píng)估周圍神經(jīng)損傷的主要方式,可確定周圍神經(jīng)損傷的部位、類型及程度[2],國內(nèi)外學(xué)者對(duì)此進(jìn)行了多項(xiàng)研究。
1.1 周圍神經(jīng)損傷評(píng)定 古美華等[3]采用神經(jīng)-肌電圖對(duì)35例擬診腕管綜合征患者進(jìn)行檢查,結(jié)果表明電生理檢查不僅可證實(shí)診斷, 還能較準(zhǔn)確地定位卡壓的水平, 判斷神經(jīng)受損的嚴(yán)重性。陳奕奕[4]將62例周圍神經(jīng)損傷患者的EMG結(jié)果與手術(shù)探查結(jié)果相比較,兩者完全符合率達(dá)79%,基本符合率達(dá)14.5%。Wang Cheng等[5]在探討慢性正己烷中毒所致神經(jīng)損害時(shí)選用了EMG與神經(jīng)傳導(dǎo)速度(Nerve Conduction Velocity,NCV)作為評(píng)價(jià)方式,結(jié)果清晰顯示了感覺神經(jīng)與運(yùn)動(dòng)神經(jīng)所受損害的時(shí)間及程度差異。廖夢(mèng)筠等[6]采用神經(jīng)肌電圖對(duì)60例外傷性周圍神經(jīng)損傷患者進(jìn)行EMG與NCV檢測(cè),結(jié)果表明兩者聯(lián)合檢測(cè)陽性率為93.33%,高于單一方式檢測(cè)陽性率(50.0%),且在具體檢測(cè)結(jié)果和后期病情隨訪上,兩者聯(lián)合檢測(cè)也明顯優(yōu)于單一方式檢測(cè)。Giampietro等[7]在研究指掌側(cè)固有神經(jīng)(PaPDNs)損傷的肌電圖表現(xiàn)時(shí)發(fā)現(xiàn),14名正常人中,傳統(tǒng)經(jīng)腕部刺激所得的感覺神經(jīng)動(dòng)作電位(Sensory Nerve Action Potential,SNAP)波幅明顯小于經(jīng)PaPDNs逆向刺激所得SNAP波幅,而2名神經(jīng)損傷患者中,傳統(tǒng)方式刺激所得結(jié)果為陰性,而逆向刺激所得結(jié)果為陽性,從而表明選擇性經(jīng)PaPDNs逆向刺激的診斷方式較傳統(tǒng)方式更為敏感,對(duì)PaPDNs損傷的診斷更有意義。McMillan等[8]的相關(guān)文獻(xiàn)指出肌電圖對(duì)于罕見神經(jīng)束膜瘤的診斷及鑒別診斷也有著重要意義。
1.2 周圍神經(jīng)再生評(píng)定 為了尋找評(píng)價(jià)周圍神經(jīng)損傷后再生的敏感指標(biāo),Masayoshi等[9]建立了坐骨神經(jīng)斷裂傷后縫合的大鼠模型,并在術(shù)后連續(xù)對(duì)坐骨神經(jīng)進(jìn)行運(yùn)動(dòng)神經(jīng)傳導(dǎo)速度(Motor Nerve Conduction Velocity,MCV)及形態(tài)學(xué)檢測(cè),結(jié)果表明MCV和神經(jīng)纖維平均直徑為評(píng)價(jià)坐骨神經(jīng)再生過程中功能恢復(fù)的最敏感指標(biāo)。Han等[10]采用復(fù)合肌肉動(dòng)作電位(Compound Muscle Action Potential,CMAP)與單纖維肌電圖(Single Fiber Electromyography,SFEMG)對(duì)坐骨神經(jīng)斷裂縫合術(shù)后的大鼠模型進(jìn)行連續(xù)監(jiān)測(cè),結(jié)果顯示CMAP波幅直到術(shù)后第6周才出現(xiàn)明顯升高,而SFEMG相關(guān)參數(shù),包括表示神經(jīng)肌肉功能損傷的動(dòng)作電位平均連續(xù)波間期差(Mean Continuous Difference,MCD)和代表同一運(yùn)動(dòng)單位肌纖維數(shù)的肌纖維密度(Fiber Density,F(xiàn)D),均在術(shù)后第3周開始出現(xiàn)明顯變化。表明就測(cè)定周圍神經(jīng)損傷后相關(guān)肌肉的神經(jīng)再支配而言,SFEMG與CMAP均可作為動(dòng)態(tài)監(jiān)測(cè)其進(jìn)程的工具,但SFEMG比CMAP更為敏感。
肌電圖雖然在周圍神經(jīng)損傷與再生的評(píng)定中發(fā)揮著重要作用,但其應(yīng)用常常因有創(chuàng)性而受到限制,近年來無創(chuàng)性CMAP的相關(guān)研究有望彌補(bǔ)這一缺憾。Wang等[11]采用肌電圖對(duì)坐骨神經(jīng)挫傷的大鼠模型進(jìn)行定期檢測(cè),并將所得無創(chuàng)CMAP(由雙極鉤狀電極貼附于皮膚表面進(jìn)行電刺激而獲得)及有創(chuàng)CMAP(由單極針電極經(jīng)皮膚刺入神經(jīng)周圍區(qū)域進(jìn)行電刺激而獲得)變化與坐骨神經(jīng)功能指數(shù)(SFI)變化情況進(jìn)行比較,結(jié)果提示兩者變化趨勢(shì)一致,無創(chuàng)CMAP與有創(chuàng)CMAP波幅變化無統(tǒng)計(jì)學(xué)差異,但CMAP波幅變化出現(xiàn)較晚。從而表明CMAP可用于評(píng)定鼠類周圍神經(jīng)損傷后的再生情況,同時(shí)奠定了無創(chuàng)性肌電圖在動(dòng)物周圍神經(jīng)損傷評(píng)定領(lǐng)域的基礎(chǔ)。Korte等[12]的類似研究則對(duì)動(dòng)物模型的CMAP、MCV及軸突缺失百分比(the Percentage of Axon Loss,AxL)進(jìn)行檢測(cè),結(jié)果表明階段性無創(chuàng)CMAP測(cè)量是檢測(cè)不同程度周圍神經(jīng)損傷后運(yùn)動(dòng)功能恢復(fù)的敏感指標(biāo),而MCV及AxL則能對(duì)神經(jīng)再生的相關(guān)參數(shù)(髓鞘形成、神經(jīng)纖維密度等)做出可靠評(píng)估。但目前無創(chuàng)性CMAP的應(yīng)用僅限于動(dòng)物實(shí)驗(yàn),能否應(yīng)用于臨床還有待進(jìn)一步研究。
高頻超聲具有良好的信噪比及軟組織分辨率,與電生理和磁共振檢查相比,具有無創(chuàng)傷、定位準(zhǔn)確、多層面多角度成像、實(shí)時(shí)動(dòng)態(tài)顯像和可重復(fù)性強(qiáng)等優(yōu)點(diǎn),使得其在臨床上應(yīng)用日益廣泛。
2.1 傳統(tǒng)高頻超聲 近年來,采用高頻超聲評(píng)定周圍神經(jīng)損傷的研究中[13-14],其診斷吻合率均高于90%。并且,高頻超聲可用于追蹤周圍神經(jīng)走行,檢查其形態(tài)及周圍組織損傷情況[15],明確多部位或多發(fā)神經(jīng)損傷[16],在病因診斷,尤其是神經(jīng)卡壓的病因鑒別方面具有獨(dú)特優(yōu)勢(shì)[17]。此外,高頻超聲可鑒別周圍神經(jīng)損傷的軸突斷裂與神經(jīng)斷裂[18],進(jìn)行損傷程度粗略分級(jí)[15]。國內(nèi)關(guān)于超聲明確診斷腹膜后股神經(jīng)創(chuàng)傷性神經(jīng)瘤的病例分析對(duì)超聲在周圍神經(jīng)損傷罕見類型診斷上具有提示意義[19]。另有相關(guān)研究指出高頻超聲因其無創(chuàng)、分辨率高的特點(diǎn),在小兒周圍神經(jīng)損傷的診斷方面更具優(yōu)勢(shì)[20]。除此之外,高頻超聲還為周圍神經(jīng)的實(shí)時(shí)動(dòng)態(tài)顯像研究提供了新的檢測(cè)方法。國外學(xué)者在關(guān)于屈肘運(yùn)動(dòng)中尺神經(jīng)的位置及形態(tài)變化研究中就選用了高頻超聲,其清晰顯示了屈肘30°、60°、90°和120°過程中,尺神經(jīng)受壓變扁平、向內(nèi)側(cè)移位以及與尺神經(jīng)溝相對(duì)位置改變等動(dòng)態(tài)變化情況[21]。然而,高頻超聲的這一獨(dú)特優(yōu)勢(shì)尚未充分應(yīng)用于臨床。
2.2 超聲造影 近年來,超聲造影(Contrast-Enhanced Ultrasonography,CEUS)通過對(duì)神經(jīng)周圍血流灌注情況進(jìn)行檢測(cè)可間接評(píng)定神經(jīng)受損程度或再生狀況,為周圍神經(jīng)損傷評(píng)定提供了新的視角。 Wang等[22]通過對(duì)12只健康新西蘭白兔進(jìn)行CEUS,發(fā)現(xiàn)坐骨神經(jīng)的供血?jiǎng)用}呈“快進(jìn)慢出型”表現(xiàn),故而CEUS可能是定量評(píng)價(jià)周圍神經(jīng)血流灌注情況的可行方法。其后續(xù)相關(guān)研究顯示[23],受壓神經(jīng)在壓力解除后,可通過CEUS檢測(cè)到過度灌注或者低灌注狀態(tài),而兩種不同狀態(tài)的產(chǎn)生與壓力的持續(xù)時(shí)間及神經(jīng)受壓程度有關(guān),受損嚴(yán)重的神經(jīng)常表現(xiàn)出低灌注狀態(tài),而受損輕微神經(jīng)則出現(xiàn)過度灌注。因此,周圍神經(jīng)損傷后早期CEUS檢查對(duì)于損傷程度判定及治療方式選擇有重要意義。與此同時(shí),神經(jīng)損傷后軸突再生與受損神經(jīng)血流灌注的恢復(fù)情況密切相關(guān),因此損傷后血流灌注恢復(fù)可為患者預(yù)后提供新的線索[22-23]。但如何依據(jù)血流灌注情況對(duì)神經(jīng)損傷進(jìn)行明確分級(jí)及預(yù)后判斷,目前尚未見相關(guān)文獻(xiàn)報(bào)道。
1992年,Howe等首先報(bào)道了神經(jīng)磁共振成像(Magnetic Resonance Neurography,MRN)技術(shù),經(jīng)過眾多學(xué)者的不斷研究改進(jìn),日益成熟,隨之衍生出的擴(kuò)散張量成像(Diffusion Tensor Imaging,DTI)、擴(kuò)散張量纖維束示蹤成像(Diffusion Tensor Tractography,DTT)等技術(shù)逐漸發(fā)展,成為周圍神經(jīng)損傷評(píng)定的新工具。
3.1 MRN 應(yīng)用最多的是重T2W1脂肪抑制技術(shù),它以T2為基礎(chǔ),以神經(jīng)內(nèi)部的超微結(jié)構(gòu)及不同類型組織水為基礎(chǔ),通過脂肪抑制技術(shù)將神經(jīng)周圍及內(nèi)部纖維束間的脂肪成分、肌肉信號(hào)抑制掉,從而獲得只留有神經(jīng)束內(nèi)膜內(nèi)液體的T2加權(quán)像,具有較高的空間分辨率及軟組織對(duì)比度。諸多學(xué)者采用MRN技術(shù)對(duì)臂叢神經(jīng)損傷進(jìn)行評(píng)定[24-26],結(jié)果顯示:MRN能無創(chuàng)、清晰、直觀地顯示臂叢神經(jīng)內(nèi)部結(jié)構(gòu)、走行及損傷部位、程度和范圍,其結(jié)果與術(shù)中探查結(jié)果比較,診斷符合率達(dá)86.4%,同時(shí)還可粗略進(jìn)行損傷分型以確定最佳手術(shù)方案,是一種較理想的臨床臂叢神經(jīng)檢查方法。另有研究顯示[27],高頻MRN對(duì)上肢神經(jīng)受壓病理狀態(tài),如:肘管綜合征、腕尺管綜合征、橈管綜合征、旋前圓肌綜合征等的診斷具有較高特異性。除此之外,MRN在神經(jīng)損傷后再生評(píng)估方面也具有較高敏感性。相關(guān)研究在探討細(xì)胞移植或激活劑對(duì)損傷神經(jīng)恢復(fù)的促進(jìn)作用時(shí)發(fā)現(xiàn),結(jié)果表明MRN的T1與T2值可作為神經(jīng)損傷恢復(fù)的監(jiān)測(cè)指標(biāo),其中T2值是神經(jīng)損傷評(píng)定及監(jiān)測(cè)軸突再生的敏感指標(biāo)[28-30]。
3.2 DTI 雖然MRN在周圍神經(jīng)損傷評(píng)定方面有諸多優(yōu)勢(shì),但某些神經(jīng)束間的水腫可能影響其成像的清晰度,從而降低區(qū)別Sunderland III級(jí)損傷與IV級(jí)損傷的準(zhǔn)確度,而DTI的發(fā)展可能會(huì)彌補(bǔ)這一缺憾。DTI是DWI的深化與發(fā)展,是無創(chuàng)性顯像和分析白質(zhì)纖維束的一項(xiàng)新技術(shù),它通過對(duì)脂肪及血管等的選擇性信號(hào)抑制而清晰顯示神經(jīng)內(nèi)部的微體結(jié)構(gòu)及其病理表現(xiàn)。近年來,國內(nèi)外眾多學(xué)者通過建立動(dòng)物模型,探討了DTI對(duì)周圍神經(jīng)損傷的評(píng)定價(jià)值。在評(píng)價(jià)神經(jīng)細(xì)微結(jié)構(gòu)改變方面,DTI較T2值更為敏感,是評(píng)估周圍神經(jīng)損傷變性及再生的敏感而可靠方式[31-32]。同時(shí),DTI相關(guān)參數(shù)不僅可以對(duì)周圍神經(jīng)損傷進(jìn)行鑒別,還對(duì)損傷程度有重要提示意義[33],其中FA(部分各向異性)可作為評(píng)價(jià)周圍神經(jīng)斷裂傷的敏感指標(biāo)[33],還可用于預(yù)測(cè)運(yùn)動(dòng)功能恢復(fù)[34];而徑向擴(kuò)散系數(shù)及斷裂軸突的平均直徑與預(yù)計(jì)神經(jīng)損傷的程度相關(guān)[33]。該類研究為DTI在周圍神經(jīng)的損傷與再生修復(fù)評(píng)估方面奠定了基礎(chǔ),但相關(guān)臨床實(shí)驗(yàn)尚未見報(bào)道。除此之外,DTI參數(shù)與周圍神經(jīng)損傷類型與嚴(yán)重程度的明確關(guān)系仍有待進(jìn)一步研究。
3.3 DTT DTT是在DTI基礎(chǔ)上,根據(jù)神經(jīng)解剖學(xué)描述,用種子法標(biāo)記纖維束走行,將二維白質(zhì)纖維束信息經(jīng)軟件重組為三維立體結(jié)構(gòu)的一種成像方法,它是目前唯一可以直觀顯示白質(zhì)纖維束走行方向的成像技術(shù),因而在臨床研究中體現(xiàn)出極大的應(yīng)用價(jià)值。2004年,Skorpil[35]首次將中樞神經(jīng)系統(tǒng)DTT方案應(yīng)用于三個(gè)健康人的坐骨神經(jīng),從而證實(shí)了DTT評(píng)估周圍神經(jīng)損傷的可行性。此后眾多學(xué)者對(duì)于DTT的研究主要集中在腕管綜合征診斷及較大神經(jīng)束損傷后再生的成像方面。
3.4 功能連接磁共振(Functional Connectivity MRI,fcMRI) Rupen等[36]采用fcMRI技術(shù)對(duì)正常大鼠、正中神經(jīng)斷裂后縫合大鼠、正中神經(jīng)斷裂后未縫合大鼠分別進(jìn)行大腦皮質(zhì)運(yùn)動(dòng)區(qū)及感覺區(qū)成像,并根據(jù)三組感覺區(qū)成像的細(xì)微差別首次證實(shí)了fcMRI作為一無創(chuàng)檢查技術(shù)可以在神經(jīng)損傷術(shù)后2周內(nèi)對(duì)不可再生神經(jīng)做出鑒別。
相關(guān)研究指出MRI-3D神經(jīng)容積成像技術(shù)通過對(duì)所得圖像進(jìn)行曲面多維重建及圖像融合等[37],可以對(duì)復(fù)雜解剖結(jié)構(gòu)進(jìn)行連續(xù)、清晰成像;MRI光譜學(xué)通過對(duì)某些特定代謝物質(zhì)(如31P[38]、31F[39])進(jìn)行識(shí)別與定量測(cè)定達(dá)到間接評(píng)定周圍神經(jīng)損傷的作用;MRI成像技術(shù)中特殊造影劑(如超順磁氧化鐵顆粒、Gadofluorine)的應(yīng)用大大擴(kuò)展了其應(yīng)用范圍??梢姡琈RI在周圍神經(jīng)損傷評(píng)定方面還存在著巨大潛力。與此同時(shí),顯微鏡技術(shù)的發(fā)展也提供了周圍神經(jīng)損傷評(píng)定的新視角。近年來國內(nèi)外研究者采用離體組織光透明技術(shù)與光學(xué)顯微鏡結(jié)合[40],觀察周圍神經(jīng)損傷大鼠模型的華勒變性及神經(jīng)軸突再生過程;熒光解剖顯微鏡技術(shù)可以在活體內(nèi)觀察轉(zhuǎn)基因鼠損傷隱神經(jīng)的神經(jīng)軸突生長(zhǎng)情況,避免了神經(jīng)截?cái)嗟扔袆?chuàng)過程[41]。這些方式提供了觀察受損神經(jīng)軸突再生微觀過程的新窗口,但目前此類技術(shù)的應(yīng)用依然停留在動(dòng)物實(shí)驗(yàn)領(lǐng)域。
綜上所述,周圍神經(jīng)損傷評(píng)定技術(shù)存在著較大的發(fā)展空間,為研究者更深入了解神經(jīng)損傷病理生理變化提供了可能。但相關(guān)動(dòng)物試驗(yàn)技術(shù)如何逐步應(yīng)用于臨床尚有待進(jìn)一步研究。
[1] 張華. 肌電圖在周圍神經(jīng)損傷診斷中的應(yīng)用價(jià)值[J]. 臨床神經(jīng)電生理學(xué)雜志, 2007, 16(2): 74-77.
[2] 江瀾. 外周神經(jīng)損傷康復(fù)治療及肌電圖分析[J]. 中國康復(fù), 2010, 25(4): 288-289.
[3] 古美華, 陶細(xì)姣. 肘管綜合征的神經(jīng)-肌電圖檢測(cè)[J]. 中國康復(fù), 2002, 17(3): 155-156.
[4] 陳奕奕. 肌電圖在周圍神經(jīng)損傷診斷中的應(yīng)用價(jià)值[J]. 中外醫(yī)療, 2012, (14): 182-189.
[5] Wang C, Chen S, Wang Z. Electrophysiological follow-up of patients with chronic peripheral neuropathy induced by occupational intoxication with n-hexane[J]. Cell biochemistry and biophysics, 2014, 70(1): 579-585.
[6] 廖夢(mèng)筠, 葉偉杰. 外傷性周圍神經(jīng)損傷的神經(jīng)肌電圖診斷及預(yù)后評(píng)估[J]. 中外醫(yī)療, 2015, 30(2): 192-194.
[7] Zanette G, Lauriola MF, Tamburin S. An electrodiagnostic technique for assessing palmar proper digital nerves of the hand: Normative data and clinical application[J]. Muscle & nerve, 2015, 52(6): 972-980.
[8] McMillan HJ, Torres C, Michaud J. Diagnosis and outcome of childhood perineurioma[J]. Child's nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery, 2016, 32(8): 1555-1560.
[9] Ikeda M, Oka Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration[J]. Brain and behavior, 2012, 2(4): 382-390.
[10] Han D, Lu J, Xu L. Comparison of two electrophysiological methods for the assessment of progress in a rat model of nerve repair[J]. International journal of clinical and experimental medicine, 2015, 8(2): 2392-2398.
[11] Wang Y, Wang H, Mi D. Periodical assessment of electrophysiological recovery following sciatic nerve crush via surface stimulation in rats[J]. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2015, 36(3): 449-456.
[12] Korte N, Schenk HC, Grothe C. Evaluation of periodic electrodiagnostic measurements to monitor motor recovery after different peripheral nerve lesions in the rat[J]. Muscle & nerve, 2011, 44(1): 63-73.
[13] Hollister AM, Simoncini A, Sciuk A. High frequency ultrasound evaluation of traumatic peripheral nerve injuries[J]. Neurological research, 2012, 34(1): 98-103.
[14] 郝紀(jì)錕, 鄭敏娟, 陳定章. 高頻超聲在下肢周圍神經(jīng)損傷及病變?cè)\斷中的應(yīng)用[J]. 中國臨床醫(yī)學(xué)影像雜志, 2014, 25(7): 519-521.
[15] Gruber H, Peer S, Gruber L. Ultrasound imaging of the axillary nerve and its role in the diagnosis of traumatic impairment[J]. Ultraschall in der Medizin, 2014, 35(4): 332-338.
[16] Lu M, Wang Y, Yue L, et al. Follow-up evaluation with ultrasonography of peripheral nerve injuries after an earthquake[J]. Neural regeneration research, 2014, 9(6): 582-588.
[17] Tang P, Wang Y, Zhang L. Sonographic evaluation of peripheral nerve injuries following the Wenchuan earthquake[J]. Journal of clinical ultrasound: JCU, 2012, 40(1): 7-13.
[18] Padua L, Di Pasquale A, Liotta G, et al. Ultrasound as a useful tool in the diagnosis and management of traumatic nerve lesions[J]. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 2013, 124(6): 1237-1243.
[19] Huang Y, Zhu J, Liu F. Ultrasound in diagnosis of retroperitoneal femoral nerve injury: a case report[J]. Journal of plastic, reconstructive & aesthetic surgery: JPRAS, 2013, 66(2): e50-52.
[20] Lee J, Bidwell T, Metcalfe R. Ultrasound in pediatric peripheral nerve injuries: can this affect our surgical decision making? A preliminary report[J]. Journal of pediatric orthopedics, 2013, 33(2): 152-158.
[21] Nakano K, Murata K, Omokawa S, et al. Dynamic analysis of the ulnar nerve in the cubital tunnel using ultrasonography[J]. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons[et al], 2014, 23(7): 933-937.
[22] Wang Y, Tang P, Zhang L. Quantitative evaluation of the peripheral nerve blood perfusion with high frequency contrast-enhanced ultrasound[J]. Academic radiology, 2010, 17(12): 1492-1497.
[23] Wang Y, Tang P, Zhang L. Gray-scale contrast-enhanced ultrasonography for quantitative evaluation of the blood perfusion of the sciatic nerves with crush injury[J]. Academic radiology, 2011, 18(10): 1285-1291.
[24] 鞠發(fā)軍. 3.0T磁共振對(duì)創(chuàng)傷性臂叢神經(jīng)損傷的診斷價(jià)值探討[J]. 臨床和實(shí)驗(yàn)醫(yī)學(xué)雜志, 2013, 12(21): 1737-1740.
[25] 周軍. 成人臂叢神經(jīng)損傷的磁共振成像診斷應(yīng)用[J]. 實(shí)用醫(yī)學(xué)影像雜志, 2013, 14(3): 230-232.
[26] 吳耀賢. 高分辨率磁共振周圍神經(jīng)成像在臂叢神經(jīng)損傷中的應(yīng)用[J]. 臨床放射學(xué)雜志, 2013, 32(7): 1000-1002.
[27] Chalian M, Behzadi AH, Williams EH. High-resolution magnetic resonance neurography in upper extremity neuropathy[J]. Neuroimaging clinics of North America, 2014, 24(1): 109-125.
[28] Duan XH, Cheng LN, Zhang F, et al. In vivo MRI monitoring nerve regeneration of acute peripheral nerve traction injury following mesenchymal stem cell transplantation[J]. European journal of radiology, 2012, 81(9): 2154-2160.
[29] Cheng LN, Duan XH, Zhong XM, et al. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury: assessment using MRI[J]. AJR American journal of roentgenology, 2011, 196(6): 1381-1387.
[30] Zhang X, Zhang F, Lu L. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis[J]. European radiology, 2014, 24(5): 1145-1152.
[31] Wan Q, Wang S, Zhou J, et al. Evaluation of radiation-induced peripheral nerve injury in rabbits with MR neurography using diffusion tensor imaging and T2 measurements: Correlation with histological and functional changes[J]. Journal of magnetic resonance imaging: JMRI, 2016, 43(6): 1492-1499.
[32] Li X, Chen J, Hong G, et al. In vivo DTI longitudinal measurements of acute sciatic nerve traction injury and the association with pathological and functional changes[J]. European journal of radiology, 2013, 82(11): 707-714.
[33] Boyer RB, Kelm ND, Riley DC, et al. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury[J]. Neurosurgical focus, 2015, 39(3): 9-17.
[34] Yamasaki T, Fujiwara H, Oda R, et al. In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior[J]. Magnetic resonance imaging, 2015, 33(1): 95-101.
[35] Skorpil M, Karlsson M, Nordell A. Peripheral nerve diffusion tensor imaging[J]. Magnetic resonance imaging, 2004, 22(5): 743-745.
[36] Li R, Hettinger PC, Liu X, et al. Early evaluation of nerve regeneration after nerve injury and repair using functional connectivity MRI[J]. Neurorehabilitation and neural repair, 2014, 28(7): 707-715.
[37] Ohana M, Moser T, Moussaoui A, et al. Current and future imaging of the peripheral nervous system[J]. Diagnostic and interventional imaging, 2014, 95(1): 17-26.
[38] Baldassarri AM, Zetti G, Masson S, et al. Magnetic resonance (MR) imaging and MR spectroscopy of nerve regeneration and target muscle energy metabolism in a model of prosthesis-guided reinnervation in rats[J]. Academic radiology, 1995, 2(2): 128-134.
[39] Weise G, Basse-Luesebrink TC, Wessig C. In vivo imaging of inflammation in the peripheral nervous system by (19)F MRI[J]. Experimental neurology, 2011, 229(2): 494-501.
[40] Jung Y, Ng JH, Keating CP, et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model[J]. PloS one, 2014, 9(4): 40-54.
[41] Yan Y, Sun HH, Mackinnon SE. Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice[J]. Experimental neurology, 2011, 232(1): 7-14.