曹晏飛,鮑恩財(cái),鄒志榮,何 斌,徐文俊,安康平,王建雄
?
日光溫室熱工缺陷面積熱紅外圖像測量方法
曹晏飛1,鮑恩財(cái)1,鄒志榮1※,何 斌2,徐文俊3,安康平1,王建雄1
(1. 西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室,楊凌 712100; 2. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100; 3. 天龍集團(tuán)公司內(nèi)蒙古北隆生態(tài)農(nóng)業(yè)科技有限公司,包頭 014010)
隔熱層和氣密性缺陷是日光溫室保溫蓄熱性能差的重要因素,為了快速檢測日光溫室熱工缺陷區(qū)域及測量該區(qū)域的面積,該文借助熱紅外成像儀和LabVIEW軟件平臺(tái),構(gòu)建了基于熱紅外圖像的日光溫室熱工區(qū)域面積測量方法。以陜西楊凌西北農(nóng)林科技大學(xué)園藝場日光溫室北墻風(fēng)口為測試對象,通過現(xiàn)場實(shí)測數(shù)據(jù)與理論計(jì)算結(jié)果進(jìn)行比較分析。首先,利用熱紅外成像儀實(shí)時(shí)檢測出日光溫室北墻通風(fēng)口表面與墻體內(nèi)表面存在的明顯溫度差異,其最大溫差高達(dá)8.4 ℃?;跍囟炔町?,能快速找出溫室內(nèi)圍護(hù)結(jié)構(gòu)不同位置所存在的明顯散熱區(qū)域。然后通過直方圖法、均方根法和人工提取法分別計(jì)算了散熱區(qū)域面積,其中直方圖面積測量方法具有較好的效果,平均相對誤差為5.4%;人工提取法次之,平均相對誤差為6.0%,均方根法最大,平均相對誤差為11.8%。研究結(jié)果表明,基于熱紅外圖像的直方圖面積測量方法能快速檢測出熱工缺陷區(qū)域的面積,為進(jìn)一步自動(dòng)定量分析整個(gè)日光溫室熱工缺陷區(qū)域的面積及散熱量提供了理論方法,在溫室圍護(hù)結(jié)構(gòu)熱工損耗計(jì)算方面具有較大地應(yīng)用潛力,可為農(nóng)民和企業(yè)提出日光溫室優(yōu)化改造建議。
熱力學(xué);缺陷;圖像采集;熱紅外圖像;日光溫室;面積測量
日光溫室作為具有中國特色的園藝設(shè)施,由于其具有連棟溫室所無法比擬的良好性價(jià)比,和塑料大棚無法比擬的低成本越冬生產(chǎn)性能,近年來在中國北方地區(qū)得到了大面積的推廣[1-2]。研究人員針對不同類型日光溫室的保溫蓄熱性能也開展了大量的研究工作[3-12],最低保證溫度[13]、熱環(huán)境傳熱數(shù)學(xué)模型[14-15]、熱阻、傳熱系數(shù)、熱惰性指標(biāo)等材料熱工參數(shù)[16]均被用于日光溫室結(jié)構(gòu)保溫和隔熱設(shè)計(jì)。日光溫室的隔熱層和氣密性缺陷是造成溫室保溫性能不穩(wěn)定的重要影響因素[3],因此,需要尋找出合適的方法與設(shè)備來診斷出溫室的問題所在。利用溫濕度環(huán)境傳感器監(jiān)測溫室內(nèi)的熱環(huán)境,仍然是目前用來評價(jià)溫室保溫蓄熱性能優(yōu)劣程度的常規(guī)方法,不過該測試方法僅采用一個(gè)測試點(diǎn)或多個(gè)測試點(diǎn)的溫濕度來代表整個(gè)面或體的溫濕度,且測試點(diǎn)的溫濕度環(huán)境受溫室建造、管理方式等影響較大,難以準(zhǔn)確有效地尋找出日光溫室缺陷區(qū)域。
熱紅外成像技術(shù)能夠把人眼在可見光范圍內(nèi)無法觀察到的物體表面熱分布可視化,以灰度差或偽彩色形式表現(xiàn)物體各點(diǎn)的溫度及溫度差,從而實(shí)現(xiàn)無損檢測[17]。該技術(shù)在建筑[18]、電氣[19]、醫(yī)學(xué)[20]等領(lǐng)域得到了廣泛的應(yīng)用。近年來,研究人員也開始將熱紅外成像技術(shù)應(yīng)用于農(nóng)業(yè)領(lǐng)域[21],如:利用熱紅外成像技術(shù)檢測作物是否受到外界脅迫[22]、果實(shí)識(shí)別[23]、植物是否感染病害[24-25]等。
日光溫室密閉性較差,從而引起溫室表面溫度不均勻分布,其中日光溫室內(nèi)圍護(hù)結(jié)構(gòu)表面溫度值低于某一閾值的點(diǎn)的集合統(tǒng)稱為熱工缺陷區(qū)域。為了尋找出日光溫室的散熱途徑,陳來生等利用熱紅外成像儀對日光溫室進(jìn)行了全面檢測,結(jié)果顯示該方法具有較好的效果,可直觀判斷出日光溫室散熱區(qū)域[26]。本文作者在此研究基礎(chǔ)上,提出一種基于熱紅外圖像的日光溫室熱工缺陷區(qū)域面積測量方法,從而為實(shí)現(xiàn)日光溫室熱工缺陷區(qū)域面積以及散熱量的定量分析提供參考。
1.1 試驗(yàn)材料與設(shè)備
試驗(yàn)于2015年12月在陜西楊凌西北農(nóng)林科技大學(xué)北校區(qū)園藝場日光溫室中進(jìn)行,溫室長52.0 m,凈跨度8.0 m,北墻高2.2 m、厚1.0 m,外加10 cm厚聚苯板,脊高3.9 m,墻體材料為黏土磚,北墻設(shè)置16個(gè)通風(fēng)洞口,溫室前屋面采用保溫被覆蓋。
試驗(yàn)選用的熱紅外成像儀為美國菲利爾(FLIR)公司的E4,波長范圍:7.5~13m,視場角/最小焦距:45°×34°/0.5 m,熱靈敏度:0.15 ℃,溫度測量范圍:?20~250 ℃,精度:±2 ℃,分辨率:320×240像素。試驗(yàn)在晴天進(jìn)行,時(shí)間選在典型晴天2015年12月15日15:30~16:30(蓋簾前,平均空氣溫度為19.2 ℃)。將熱紅外成像儀固定安裝在三腳架上,垂直于北墻正前方,距北墻位置為1.5 m,設(shè)定輻射率為0.95,反射溫度為20 ℃,測量前熱像儀自動(dòng)校準(zhǔn)3遍。
1.2 基于熱紅外圖像的面積計(jì)算方法
熱紅外成像儀是利用目標(biāo)物體自身發(fā)射的熱輻射成像,即其可同時(shí)測量物體表面各點(diǎn)溫度的高低,并以圖像形式直觀顯示出物體表面溫度場。根據(jù)該特點(diǎn),熱紅外圖像中的溫度差可用來作為計(jì)算目標(biāo)物體熱工缺陷區(qū)域面積的基礎(chǔ),具體檢測流程如圖1所示。
基于熱紅外圖像的熱工缺陷區(qū)域面積計(jì)算方法包括3個(gè)步驟:1)采用熱像儀采集目標(biāo)物體的熱紅外圖像采集,利用FLIR Tools軟件提取出相應(yīng)熱紅外圖像的溫度數(shù)據(jù)文檔。2)利用LabVIEW13.0軟件讀取熱紅外圖像,人工初步截取包含熱工缺陷區(qū)域的熱紅外圖像,并導(dǎo)入相應(yīng)的溫度文檔數(shù)據(jù)與溫度閾值進(jìn)行比較,識(shí)別出熱工缺陷區(qū)域。3)統(tǒng)計(jì)熱工缺陷區(qū)域像素單元的數(shù)量,根據(jù)其在整個(gè)熱紅外圖像中所占的比例,計(jì)算出相應(yīng)的熱工缺陷區(qū)域面積。
1.2.1 閾值的選擇
熱紅外成像儀判斷圍護(hù)結(jié)構(gòu)熱工缺陷的重要步驟是分析熱紅外圖像上是否存在熱工異常[27],其中選擇適宜的溫度閾值是檢驗(yàn)該方法是否準(zhǔn)確的關(guān)鍵。
1)直方圖法
直方圖是一種基于統(tǒng)計(jì)的特征描述子,是計(jì)算機(jī)視覺領(lǐng)域常用的圖像特征之一[28]。在熱紅外圖像中,利用直方圖統(tǒng)計(jì)溫度分布,指定溫度區(qū)間寬度Δ在溫度文檔數(shù)據(jù)序列x中出現(xiàn)次數(shù)的頻率計(jì)數(shù)。溫度區(qū)間寬度Δ定義為:
式中max為溫度文檔數(shù)據(jù)序列x的最大值,min為溫度文檔數(shù)據(jù)序列x的最小值,為區(qū)間數(shù)量,設(shè)為10。
溫度區(qū)間的中心c定義為
式中表示溫度區(qū)間的變量。
熱紅外圖像的溫度直方圖h反映了圖像溫度區(qū)間分布,其表達(dá)式為
式中為熱紅外圖像的總像素?cái)?shù),n為每個(gè)溫度區(qū)間的像素?cái)?shù)量。
2)均方根法
均方根法是指在面積計(jì)算過程中以溫度數(shù)據(jù)序列x的均方根值ψ為基礎(chǔ),溫度閾值設(shè)置為(ψ+1)℃,均方根值ψ定義為
式中為溫度數(shù)據(jù)序列x的數(shù)量。
1.2.2 人工提取法
判斷分析熱紅外圖像中是否存在熱工異常,既可以通過溫度閾值比較,也可以通過人工肉眼模糊選擇。在步驟②中,當(dāng)讀取熱紅外圖像之后,首先通過肉眼判斷出溫度異常區(qū)域在熱紅外圖像中的大體位置,然后人工利用方框選擇溫度異常區(qū)域作為熱工缺陷區(qū)域,最后通過計(jì)算機(jī)直接統(tǒng)計(jì)計(jì)算方框區(qū)域的像素單元個(gè)數(shù),計(jì)算其在整個(gè)熱紅外圖像中所占的比例以及面積。
1.3 熱像儀視野區(qū)域面積計(jì)算
如圖2所示,根據(jù)熱像儀與被測物體之間的距離,熱像儀的水平和垂直視場角,計(jì)算出熱像儀視野區(qū)域的面積。
(6)
(7)
2.1 日光溫室熱紅外圖像
日光溫室后墻的可見光圖像與熱紅外圖像如圖3所示。盡管對北墻通風(fēng)口進(jìn)行了封堵,但通風(fēng)口的表面溫度與內(nèi)墻表面的溫度仍然存在明顯差異,最大溫差可達(dá)到8.4 ℃,顯然根據(jù)熱紅外圖像,人肉眼可見發(fā)現(xiàn)在可見光圖像不能看到的溫度差異,從而能夠快速找出熱工散熱區(qū)域,有助于溫室建造、管理質(zhì)量檢測。
2.2 日光溫室通風(fēng)口溫度直方圖分布
溫度直方圖是溫度區(qū)間的函數(shù),它表示熱紅外圖像中不同溫度區(qū)間的像素所占的比例,反映不同溫度區(qū)間所占的面積。圖4為人工初步截取日光溫室后墻包含通風(fēng)口的熱紅外圖像,圖5為該區(qū)域的溫度區(qū)間分布直方圖,橫坐標(biāo)表示10個(gè)不同溫度區(qū)間的中心溫度,變化范圍從7.7~19.5 ℃??v坐標(biāo)表示10個(gè)溫度區(qū)間所占的比例。隨著溫度的升高,溫度區(qū)間所占的比例開始呈現(xiàn)逐漸增加,又逐步減少,最后又增加的趨勢。區(qū)間中心溫度為12.9 ℃的區(qū)間所占比例最大,說明通風(fēng)口表面較大部分區(qū)域的溫度在12.9 ℃左右。中心溫度為16.9 ℃區(qū)間所占比例與中心溫度為18.2 ℃區(qū)間所占比例存在較大差距,說明通風(fēng)口與墻體搭接處的溫度在16.9 ℃左右,可依據(jù)該特征設(shè)置溫度閾值,統(tǒng)計(jì)小于該溫度閾值的溫度區(qū)間所占比例,并據(jù)此計(jì)算通風(fēng)口面積。
2.3 日光溫室熱工缺陷區(qū)域面積測量
熱工缺陷區(qū)域?yàn)闇厥覂?nèi)表面溫度過低點(diǎn)的集合,從2.2節(jié)的日光溫室通風(fēng)口熱紅外圖像可知,日光溫室后墻通風(fēng)口溫度明顯低于墻體其他區(qū)域,即為熱工缺陷區(qū)域。為了比較不同面積測試方法的準(zhǔn)確性,從采集的圖像中選擇了12幅包含通風(fēng)口的日光溫室后墻熱紅外圖像,同時(shí)在拍攝點(diǎn)處人工利用卷尺等接觸式的測量工具,多次測量通風(fēng)口的高度、寬度,取相應(yīng)平均值計(jì)算實(shí)測面積,并以此作為真實(shí)值來比較日光溫室熱工區(qū)域面積不同測量方法的相對誤差。為減少人為因素影響,不同面積測量方法均進(jìn)行3次重復(fù)測量,選取3次測量的平均值作為測量結(jié)果。試驗(yàn)結(jié)果如表1所示,在3種面積測量方法中,直方圖法的平均相對誤差最小,為5.4%,人工提取法次之,平均相對誤差為6.0%,均方根法最大,平均相對誤差為11.8%。
表1 實(shí)測數(shù)據(jù)與理論計(jì)算結(jié)果的對比
均方根法受人工截取圖中各個(gè)熱工區(qū)域所占比例影響較大,當(dāng)熱工散熱區(qū)域所占比例較大時(shí),該方法較為準(zhǔn)確,反之,則誤差相對較大。人工提取法是根據(jù)人的肉眼標(biāo)記出熱工區(qū)域的邊界區(qū)域,受邊界區(qū)域的清晰度影響較大。
利用熱紅外成像儀實(shí)時(shí)檢測出日光溫室北墻通風(fēng)口表面與墻體內(nèi)表面存在的明顯溫度差異,其最大溫差高達(dá)8.4 ℃。此方法能夠快速找出溫室內(nèi)圍護(hù)結(jié)構(gòu)不同位置所存在的明顯散熱區(qū)域。
基于散熱區(qū)域熱紅外圖像,利用直方圖法、均方根法、人工提取法對散熱區(qū)域面積進(jìn)行理論計(jì)算,然后將理論結(jié)果與散熱區(qū)域?qū)崪y數(shù)據(jù)相比較,直方圖法的平均相對誤差最小,為5.4%。結(jié)果表明該方法具有較高的測量精度,可實(shí)現(xiàn)熱工散熱區(qū)域的自動(dòng)測量,在溫室圍護(hù)結(jié)構(gòu)熱工參數(shù)測量方面具有較大的應(yīng)用潛力。
下一步將基于此方法計(jì)算日光溫室整體散熱區(qū)域面積,并定量比較分析不同類型日光溫室圍護(hù)結(jié)構(gòu)缺陷區(qū)域的相對面積,通過熱工缺陷等級等參數(shù)來判斷日光溫室建造是否規(guī)范,管理方式是否合理,同時(shí)該方法在建筑等領(lǐng)域也具有廣泛的實(shí)用性。
[1] 徐凡,馬承偉,曲梅,等. 華北五省區(qū)日光溫室微氣候環(huán)境調(diào)查與評價(jià)[J]. 中國農(nóng)業(yè)氣象,2014,35(1):17-25.
Xu Fan, Ma Chengwei, Qu Mei, et al. Investigation and assessment on microclimate environment of solar greenhouse in north China[J]. Chinese Journal of Agrometeorology, 2014, 35(1): 17-25. (in Chinese with English abstract)
[2] 魏曉明,周長吉,曹楠,等. 中國日光溫室結(jié)構(gòu)及性能的演變[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2012,28(4):855-860.
Wei Xiaoming, Zhou Changji, Cao Nan, et al. Evolution of structure and performance of Chinese solar greenhouse[J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(4): 855-860. (in Chinese with English abstract)
[3] 孫周平,黃文永,李天來,等. 彩鋼板保溫裝配式節(jié)能日光溫室的溫光性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(19):159-167.
Sun Zhouping, Huang Wenyong, Li Tianlai, et al. Light and temperature performance of energy-saving solar greenhouse assembled with color plate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 159-167. (in Chinese with English abstract)
[4] 邱仲華,宋明軍,王吉慶,等. 組裝式太陽能雙效溫室應(yīng)用效果試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):232-239.
Qiu Zhonghua, Song Mingjun, Wang Jiqing, et al. Experiment effect of application to new assembly type solar double effect greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 232-239. (in Chinese with English abstract)
[5] 方慧,張義,楊其長,等. 日光溫室金屬膜集放熱裝置增溫效果的性能測試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):177-182.
Fang Hui, Zhang Yi, Yang Qichang, et al. Performance testing on warming effect of heat storage-release metal film in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 177-182. (in Chinese with English abstract)
[6] 凌浩恕,陳超,陳紫光,等. 日光溫室?guī)жQ向空氣通道的太陽能相變蓄熱墻體體系[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):336-343.
Ling Haoshu, Chen Chao, Chen Ziguang, et al. Performance of phase change material wall vertical air channels integrating solar concentrators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 336-343. (in Chinese with English abstract)
[7] 趙淑梅,馬承偉,程杰宇,等. 日光溫室空氣對流循環(huán)蓄熱墻體的開發(fā)研究[J]. 農(nóng)業(yè)工程技術(shù):溫室園藝,2015(12):40-43.
[8] 張勇,鄒志榮,李建明. 傾轉(zhuǎn)屋面日光溫室的采光及蓄熱性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):129-137.
Zhang Yong, Zou Zhirong, Li Jianming. Performance experiment on lighting and thermal storage in tilting roof solar-greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 129-137. (in Chinese with English abstract)
[9] 張勇,高文波,鄒志榮. 日光溫室主動(dòng)蓄熱后墻傳熱CFD模擬及性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):203-211.
Zhang Yong, Gao Wenbo, Zou Zhirong. Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 203-211. (in Chinese with English abstract)
[10] 梁浩,方慧,楊其長,等. 日光溫室后墻蓄放熱簾增溫效果的性能測試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):187-193.
Liang Hao, Fang Hui, Yang Qichang, et al. Performance testing on warming effect of heat storage-release curtain of back wall in Chinese solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 187-193. (in Chinese with English abstract)
[11] 李明,周長吉,魏曉明. 日光溫室墻體蓄熱層厚度確定方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):177-183.
Li Ming, Zhou Changji, Wei Xiaoming. Thickness determination of heat storage layer of wall in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 177-183. (in Chinese with English abstract)
[12] 劉彥辰,鄒志榮,胡曉輝,等. 陜西關(guān)中地區(qū)不同跨度日光溫室光溫環(huán)境分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2013,41(2):108-116.
Liu Yanchen, Zou Zhirong, Hu Xiaohui, et al. Analysis of light and temperature conditions of sunlight greenhouses with different span lengths in Central Shaanxi Plain[J]. Journal of Northwest A&F University: Natural Science Edition, 2013, 41(2): 108-116. (in Chinese with English abstract)
[13] 陳青云. 日光溫室的實(shí)踐與理論[J]. 上海交通大學(xué)學(xué)報(bào):農(nóng)業(yè)科學(xué)版,2008,26(5):343-350.
Chen Qingyun. Progress of practice and theory in sunlight greenhouse[J]. Journal of Shanghai Jiao Tong University: Agricultural Science, 2008, 26(5): 343-350. (in Chinese with English abstract)
[14] Tong Guohong, Christopher David M, Li Tianlai, et al. Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses[J]. Renewable and Sustainable Energy Reviews, 2013(26): 540-548.
[15] 馬承偉,卜云龍,籍秀紅,等. 日光溫室墻體夜間放熱量計(jì)算與保溫蓄熱性評價(jià)方法的研究[J]. 上海交通大學(xué)學(xué)報(bào):農(nóng)業(yè)科學(xué)版,2008,26(5):411-415.
Ma Chengwei, Bu Yunlong, Ji Xiuhong, et al. Method for calculation of heat release at night and evaluation for performance of heat preservation of wall in solar greenhouse[J]. Journal of Shanghai Jiao Tong University: Agricultural Science, 2008, 26(5): 411-415. (in Chinese with English abstract)
[16] 柳孝圖. 建筑物理(第三版)[M]. 北京:中國建筑工業(yè)出版社,2010.
[17] 楊立,楊楨. 紅外熱成像測溫原理與技術(shù)[M]. 北京:科學(xué)出版社,2012.
[18] 衡濤,江俊佳. 紅外熱成像儀對圍護(hù)結(jié)構(gòu)缺陷溫度場變化規(guī)律的研究與分析[J]. 建筑節(jié)能,2015,43(6):110-114.
Heng Tao, Jiang Junjia. Temperature field variation law on building envelope defect by infrared thermal imager[J]. Building Energy Efficiency, 2015, 43(6): 110-114. (in Chinese with English abstract)
[19] 呂俊,王福田,湯進(jìn),等. 基于全景溫度場的電力設(shè)備在線自動(dòng)識(shí)別與診斷[J]. 計(jì)算機(jī)與現(xiàn)代化,2015(8):19-23.
Lü Jun, Wang Futian, Tang Jin, et al. Online automatic recognition and diagnosis of electrical devices via thermal panorama[J]. Computer and Modernization, 2015(8): 19-23.(in Chinese with English abstract)
[20] 戚沁園,陳長青,郭建茹,等. 熱紅外技術(shù)在中醫(yī)診斷中的應(yīng)用[J]. 世界科學(xué)技術(shù):中醫(yī)藥現(xiàn)代化,2011,13(6):1027-1031.
Qi Qinyuan, Chen Zhangqing, GuoJianru, et al. Application of thermal infrared technology in traditional Chinese medicine diagnosis[J]. World Science and Technology: Modernization of Traditional Chinese Medicine and Materia Medica, 2011, 13(6): 1027-1031. (in Chinese with English abstract)
[21] 周建民,周其顯,劉燕德. 紅外熱成像技術(shù)在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J]. 農(nóng)機(jī)化研究,2010,32(2):1-4.
Zhou Jianmin, Zhou Qixian, Liu Yande. Application of infrared thermography techniques in agricultural production[J]. Journal of Agricultural Mechanization Research, 2010, 32(2): 1-4. (in Chinese with English abstract)
[22] 李真,史智興,王成,等. 紅外熱成像技術(shù)在作物脅迫檢測方面的應(yīng)用[J]. 農(nóng)機(jī)化研究,2016,38(1):232-237.
Zhen Li, Zhixing Shi, Cheng Wang, et al. The application progress of infrared thermography for crop stress detection[J]. Journal of Agricultural Mechanization Research, 2016, 38(1): 232-237. (in Chinese with English abstract)
[23] 徐惠榮,應(yīng)義斌. 紅外熱成像在樹上柑桔識(shí)別中的應(yīng)用研究[J]. 紅外與毫米波學(xué)報(bào),2004,23(5):353-356.
Xu Huirong, Ying Yibin. application of infrared thermal imaging in identification of citrus on trees[J]. Journal of Infrared and Millimeter Waves, 2004, 23(5): 353-356. (in Chinese with English abstract)
[24] 徐小龍,蔣煥煜,杭月蘭. 熱紅外成像用于番茄花葉病早期檢測的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(5):145-149.
Xu Xiaolong, Jiang Huanyu, Hang Yuelan. Study on detection of tomato mosaic disease at early stage based on infrared thermal imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 145-149. (in Chinese with English abstract)
[25] 李小龍,王庫,馬占鴻,等. 基于熱紅外成像技術(shù)的小麥病害早期檢測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014(18):183-189.
Li Xiaolong, Wang Ku, Ma Zhanhong, et al. Early detection of wheat disease based on thermal infrared imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 183-189. (in Chinese with English abstract)
[26] 陳來生,韓睿,祁成文. 紅外熱成像技術(shù)在日光溫室保溫性能檢測中的應(yīng)用[J]. 青海大學(xué)學(xué)報(bào):自然科學(xué)版,2015,33(1):37-40.
Chen Laisheng, Han Rui, Qi Chengwen. Applying infrared thermal imaging technology to detect thermal insulation performance of solar greenhouse[J]. Journal of Qinghai University: Natural Science Edition, 2015, 33(1): 37-40. (in Chinese with English abstract)
[27] 楊麗萍. 紅外熱成像法探測建筑圍護(hù)結(jié)構(gòu)熱工缺陷研究[D]. 西安:西安建筑科技大學(xué),2010.
Yang Liping. Study on Testing Thermal Defects of Building Envelope Using Infrared Thermography[D]. Xi’an: Xi’an University of Architecture and Technology, 2010. (in Chinese with English abstract)
[28] 趙源萌,王嶺雪,金偉其,等. 基于區(qū)域直方圖統(tǒng)計(jì)的灰度圖像色彩傳遞方法[J]. 北京理工大學(xué)學(xué)報(bào),2012,32(3):322-326.
Zhao Yuanmeng, Wang Lingxue, JinWeiqi, et al. A color transfer method for colorization of grayscale image based on region histogram statistics[J]. Transactions of Beijing Institute of Technology, 2012, 32(3): 322-326. (in Chinese with English abstract)
Method for measuring thermodynamic disfigurement area in Chinese solar greenhouse by utilizing thermal infrared image
Cao Yanfei1, Bao Encai1, Zou Zhirong1※, He Bin2, Xu Wenjun3, An Kangping1, Wang Jianxiong1
(1.,712100,; 2.,712100,; 3.014010,)
The Chinese solar greenhouse is a typical greenhouse without heating system, in which the heat insulating layer and the defect of air tightness of the envelope structure are the major factors affecting insulation and heat storage performance. Compared with temperature measurement method of single point, the thermal infrared imaging technology can be used to measure the temperature of the whole area, which can be seen in the form of a color picture. Therefore, the thermal infrared imaging technology can be used as an effective method to detect temperature difference area. The purpose of this study is to develop an efficient method to detect and quantitatively analyze the area of thermodynamic disfigurement in solar greenhouse. The tested solar greenhouse, with length of 52 m and width of 8 m, locate in Yangling, Shanxi province (108°4′E, 34°16′N). The north wall of solar green house, equipped with 16 ventilation vents, was structured by clay-brickwith width of 1 m and polystyrene board with width of 10 cm.E4 thermal mapper, which was perpendicular to the north wall with a distance of 1.5 m, was used to obtain infrared images of the north wall in solar greenhouse. The data that were collected in a typical sunny day (from Dec. 15, 2015, 15:30 to 16:30, the heat insulation sheet was rolled down at 16:30) were used to analyze the accuracy of different area measurement methods. FLIR Tools software was used to extract temperature data in thermal infrared image of the north wall. LabVIEW 13.0 software was used to read and select the interested infrared image area, and the corresponding temperature data were imported. Root mean square (RMS) and histogram were used to set different temperature thresholds. The measured data and calculated data from different area measurement methods were compared. The results showed that the temperature of different regions of the north wall in solar greenhouse can be displayed in the thermal infrared images, the surface temperature of the ventilation vent was lower than the inner surface temperature of northern wall, and the maximum temperature difference was up to 8.4 ℃. Locations of thermodynamic disfigurement could be quickly detected and positioned. The histogram of thermal infrared image showed that the surface temperature of thermal region and the proportion of the temperature interval had a gradual increase and then a decrease after reaching the peak point, and finally a sudden increase. In these three types of the area measurement methods, histogram method showed best results with the minimum average relative error (ARE) of 5.4%, followed by manual extraction method with ARE of 6.0% and the RSM method with ARE of 11.8%. Based on these results, an efficient method for measuring the area of the thermal region in solar greenhouse was developed to quantitatively analyze the entire thermodynamic disfigurement area and the value of the heat loss in solar greenhouse, which will help the further optimization of the solar green house and supply constructive recommendations for farmers and business leaders.
thermodynamics; defects; image acquisition; thermal infrared image; solar greenhouse; area measurement
10.11975/j.issn.1002-6819.2016.24.027
S127; S625.1
A
1002-6819(2016)-24-0206-06
2016-06-26
2016-08-16
陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃項(xiàng)目(2016KTCL02-02);博士科研啟動(dòng)基金(2452015274)
曹晏飛,男,湖南婁底人,講師,博士,主要從事設(shè)施農(nóng)業(yè)信息化及環(huán)境調(diào)控。楊凌 西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室,712100。Email:bmxzbx@126.com
鄒志榮,男,陜西延安人,教授,博士生導(dǎo)師,主要從事設(shè)施農(nóng)業(yè)研究。楊凌 西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室,712100。Email:zouzhirong2005@163.com