• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    求三角函數(shù)單調(diào)區(qū)間易錯剖析

    2016-12-19 02:21:24安徽省靈璧黃灣中學華騰飛
    青蘋果 2016年23期
    關鍵詞:原函數(shù)靈璧易錯

    安徽省靈璧黃灣中學 華騰飛

    求三角函數(shù)單調(diào)區(qū)間易錯剖析

    安徽省靈璧黃灣中學 華騰飛

    在運用三角函數(shù)知識解題時,三角函數(shù)的單調(diào)性有很重要的應用,常用來研究函數(shù)的變化情況,比較函數(shù)值或自變量的大小,解(或證)不等式,求函數(shù)的值域或最值等。有些同學在求三角函數(shù)的單調(diào)區(qū)間時,由于對概念和法則理解不深、把握不準,常常會導致錯解的發(fā)生。下面舉例分類剖析,希望能夠引起同學們的注意,力避此類錯誤的發(fā)生。

    一、忽視了基本函數(shù)致錯

    注 上述兩種解法結果看似不同,其實只不過是形式不同而已,實質(zhì)上是相同的。

    二、沒有考慮原函數(shù)的定義域致錯

    三、未弄清函數(shù)周期性致錯

    圖1

    圖2

    四、遺忘了題設其他條件致錯

    五、參數(shù)處理不當致錯

    例7 討論函數(shù)y=acosx+b的單調(diào)區(qū)間。

    錯解 當y=cosx遞增,即x∈[2kπ-π,2kπ](k∈Z)時,原函數(shù)遞增;

    當y=cosx遞減,即x∈[2kπ,2kπ+π](k∈Z)時,原函數(shù)遞減。

    剖析 對于含參數(shù)問題,若參數(shù)的取值不確定,則必須對其討論。上述錯解是由于想當然地認為a>0導致錯解的發(fā)生。

    正解 當a=0時,y=b為常函數(shù),沒有單調(diào)區(qū)間;

    當a>0時,函數(shù)的增區(qū)間為[2kπ-π,2kπ](k∈Z),

    減區(qū)間為[2kπ,2kπ+π](k∈Z);

    當a<0時,函數(shù)的增區(qū)間為[2kπ,2kπ+π](k∈Z),

    減區(qū)間為[2kπ-π,2kπ](k∈Z)。

    例8 已知0<a<2且a≠1,求函數(shù)y=log2a-a2(sinx·cosx)的單調(diào)遞減區(qū)間。

    錯解 若對2a-a2分類討論或認為1<2a-a2,則都有可能導致錯解的發(fā)生。

    剖析 本題雖含參數(shù),但題設對數(shù)函數(shù)的底數(shù)卻只在區(qū)間(0,1)內(nèi),因此不需要分類討論。

    猜你喜歡
    原函數(shù)靈璧易錯
    攻克“不等式與不等式組”易錯點
    『壓強』易錯警示
    山魂
    寶藏(2021年5期)2021-12-01 10:15:58
    立體幾何易錯警示
    幾類間斷點與原函數(shù)存在性的關系辨析
    卷宗(2020年34期)2021-01-29 05:36:24
    三角函數(shù)中防不勝防的易錯點
    磬云岫
    寶藏(2019年4期)2019-04-18 08:18:48
    三角函數(shù)最值的求解類型及策略
    鐘靈毓秀靈璧石
    寶藏(2018年11期)2018-12-01 01:32:28
    禮就送靈璧石
    寶藏(2017年6期)2017-07-20 10:01:06
    定边县| 石阡县| 永寿县| 四会市| 长兴县| 通榆县| 连江县| 镇远县| 望奎县| 石阡县| 浦江县| 汉阴县| 平和县| 巴东县| 若羌县| 化州市| 旬阳县| 长岛县| 广安市| 宝坻区| 长汀县| 台前县| 柘城县| 贺州市| 剑阁县| 特克斯县| 淳安县| 靖宇县| 吕梁市| 宁蒗| 麻栗坡县| 曲麻莱县| 浪卡子县| 渭南市| 顺义区| 理塘县| 原阳县| 锡林郭勒盟| 四子王旗| 久治县| 长宁县|