• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation method for thickness of discontinuous boundary layer of engineering pavement

    2016-12-19 06:34:44ZhongQiongZhangQingBaiWuPengZhangSiRuGao
    Sciences in Cold and Arid Regions 2016年6期

    ZhongQiong Zhang,QingBai Wu,Peng Zhang,SiRu Gao

    1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2.Beiluhe Observation Station of Frozen Soil Environment and Engineering,Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    Calculation method for thickness of discontinuous boundary layer of engineering pavement

    ZhongQiong Zhang1,2*,QingBai Wu1,2,Peng Zhang1,SiRu Gao1

    1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    2.Beiluhe Observation Station of Frozen Soil Environment and Engineering,Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    The boundary layer is a buffer layer of water and heat exchange between the atmosphere and permafrost.Based on the atmospheric boundary layer and heat transfer theory,we established a method for determining the boundary layer thickness of engineering pavement (asphalt and sand pavement) in permafrost region.The boundary layer can be divided into the Boundary Layer Above Surface (BLAS) and the Boundary Layer Below Surface (BLBS).From in-situ monitoring data,the thickness of BLAS was determined through the laminar thickness,and the thickness of BLBS was determined through ground temperature,the heat conduction function,and the mean attenuation function (α).For asphalt pavement,the BLAS thickness varied between 2.90 and 4.31 mm and that of BLBS varied between 28.00 and 45.38 cm.For sand pavement,the BLAS thickness varied between 2.55 and 3.29 mm and that of BLBS varied between 15.00 and 46.44 cm.The thickness varied with freezing and thawing processes.The boundary layer calculation method described in this paper can provide a relatively stable boundary for temperature field analysis.

    boundary layer; scope; average attenuation coefficient; pavement; permafrost

    1 Introduction

    The boundary layer,mainly below the ground surface,is attached to the ground surface and within it the vertical hydrothermal change is discontinuous (Zhu,1988).The thickness of the boundary layer is usually several tens of centimeters.Hydrothermal changes in this layer have direct effects on the change of water and heat in the active layer and permafrost (Jiang et al.,2012,2015; Li et al.,2013).In addition,the boundary layer thickness and temperature increment have very important influences on permafrost temperature analysis (Bai et al.,2015),especially in long-term permafrost temperature field studies (Cao et al.,2014).

    In previous permafrost thermal study procedures,the boundary layer was simplified into a thin layer,while the water and heat presented discontinuities in the cross section.Given measured ground temperature data,the temperature at 50-cm below the surface is usually considered as the stability hydrothermal bound,and this depth is often used for analyzing the temperature field (Wang et al.,2003; Dong et al.,2014).The complex hydrothermal changes in the boundary layer are generally not considered,and the scope of the boundary layer is,in fact,not fixed.Scholars have analyzed the thickness and groundtemperature changes of the boundary layer from a theoretical perspective,continuously (i.e.,assuming no discontinuities in the cross section).Based on engineering thermal physics and harmonic theory,Zhu (1988) determined that the thicknesses of the Boundary Layer Below Surface (BLBS) under asphalt pavement and dried sand-gravel soil were 35 cm and 30 cm,respectively (Zhu,1988).This result provided a relatively stable thermal boundary and improved the analysis accuracy (Woo et al.,2004).Then,based on energy balance law and the thermal transfer regime between the boundary layer and permafrost discontinuous interface,Li et al.(2006) applied the integral principle and integral median theorem to derive the joining condition of the thermal discontinuous interface.In order to obtain the dynamic boundary,scholars researched equivalent thermal diffusivity and derived formulae on the thickness and bottom temperature increment of the boundary layer (Bai et al.,2015); they then achieved good results in long-term,one-dimensional field temperature simulations.Therefore,a more accurate description of the boundary layer thickness will improve the accuracy of permafrost thermal state analysis.

    By the atmospheric boundary layer and heat transfer theory,we established a calculation method for the boundary layer thickness,and discussed its rationality.The main contents are:(1) calculation of the thickness of the Boundary Layer Above Surface (BLAS) and explanation of its variation over a year; (2) our proposed average temperature attenuation coefficient (α) and calculation of the thickness of the BLBS,and explanation of its variation over a year; and (3) a discussion of the rationality of this method.

    2 Data and methods

    2.1Data measurements

    The data were obtained from two engineering pavement (asphalt and sand pavement) sites in the southern Beiluhe Basin (34.82°N-34.85°N,92.92°E-92.93°E) on the Qinghai-Tibet Plateau (Figure 1).Generally,the soil in the basin begins to thaw in April or May,and freezes in October or November,frozen period was about 5~6 months in a year.The test embankment we studied was 13 m wide and 3 m in height,and the asphalt pavement was 0.09 m thick,including 0.04 m of AC-13 fine-grain-modified asphalt mixture and 0.05 m of AC-16 modified asphalt mixture.The sand pavement was covered by coarse sand; there was no surface layer structure.

    Figure 1 Schematic of observation points

    The data used in this study included soil temperature,wind velocity,and soil heat flux.Wind velocity was measured with a 010C/034B sensor (Met One Co.,Oregon,U.S.A.),installed at heights of 0.25,0.50,and 1.00 m above the pavement surface (Figure 2).The sensor had a solution of 0.1 m/s and was used to calculate the BLAS.The soil temperature was tested with thermistors made by the State Key Laboratory of Frozen Soil Engineering,Chinese Academy of Sciences (SKLFSE),with sensitivity of ±0.05 °C.Temperature sensors were installed at depths of 0.05,0.15,0.30,0.50,and 0.80 m under the sand pavement,and 0.05,0.10,0.15,0.20,0.30,0.50 m under the asphalt pavement (Figure 2).Soil heat flux was tested with an HFP01SC-10 heat flux sensor (Hukseflux Co.,Delft,The Netherlands),having a self-calibration function and resolution of ±3%.It was used to analyze the BLBS.

    A CR3000 data logger (Campbell Co.,Logan,U.S.A.) was used to collect and store the data; every 30 min the machine automatically generated a set of average values.Monitored data recorded from January 2014 to December 2014 were used in this paper.

    Figure 2 Schematic of boundary layer and observation points

    2.2Calculation method

    2.2.1The BLAS thickness

    The BLAS thickness is 1.18 times of the laminar layer height (Lykov,1961).According to the atmospheric boundary layer theory (Bagnold,1981),the laminar layer height was calculated by Equation (1) as below.The wind velocity at different heights could be fitted by the logarithmic function to get coefficients a,b,and obtain the laminar layer height (Z0); then the BLAS thickness could be obtained.

    where utis wind velocity at t time at height z; Z0is the height of the laminar layer.

    2.2.2The BLBS thickness

    According to the soil heat conduction equation (Gao,2005),soil temperature (T) at a certain depth can be described using Equation (2):

    where k is the soil thermal diffusivity; Cg is the soil volumetric heat capacity; Cwis the liquid water volumetric heat capacity; ω is the vertical velocity of water; and θ is the soil volumetric water content.

    The analytical solution of Equation (2) is:

    where (z) is the average temperature at depth z,A is half of the amplitude,W is the flux density of liquid water,and φ1is the phase of temperature at depth z1.

    Soil temperature decay was in accordance with an exponential function with depth increase (Williams and Smith,1989).The complex functions in Equation (3) can be expressed by the attenuation coefficient (α),which is the change with depth increase (Figure 3b).The test depth was divided into n layers and the change rate of temperature between the top layer (ΔTtop) and the bottom (ΔTbot) was the α value,the α value of each layer was calculated,later.Multiplying it layer by layer,the temperature amplitude relationship between surface and any depth was set up by parameter α (Figure 3c).The soil temperature at any depth was described using Equation (4):

    The BLBS thickness was the maximum depth of the solar radiation impact in a day,meaning that the daily amplitude of the ground temperature was relatively small.Thus,an amplitude of 2 °C in a day would be the determining principle of the BLBS thickness.Becauseis a function of depth (Equation (5)),when the surface temperature amplitude was known,we could calculate the thickness of the BLBS by:where z is depth (cm),and A1,t1,and y0are the fitting coefficients (0.9356,-10.438,and 0.054 for asphalt pavement,and 0.955,-10.99,and 0.0297 for sand pavement,respectively).

    Figure 3 Calculation schematic of the average attenuation coefficient

    3 Results

    3.1Monthly changes of BLAS thickness

    The BLAS thickness was calculated through the wind velocity.Figure 4 shows the monthly changes of the BLAS thickness; it was relatively thick in the cold season and thin in the warm season.The BLAS thickness of the sand pavement was greater than that of the asphalt pavement.For the asphalt pavement,the minimum was 2.55 mm in July and the maximum was 3.29 mm in February,with an average of 2.9 mm.For the sand pavement,the minimum was 2.9 mm in August and the maximum was 4.31 mm in March,with an average of 3.88 mm.In the warm season,the surface convection was greater than in the cold season,because turbulence easily formed above the bare surface.Meanwhile,the laminar layer thickness was reduced and the hydrothermal exchange rate within the layer was increased correspondingly.This directly affected the BLBS temperature and thickness (Sec.3.2).

    3.2Monthly changes of BLBS thickness

    Figure 4 Changes in the BLAS thickness

    Using the measured soil temperature data,we calculated the average monthly temperature amplitude and BLBS thickness.The average monthly temperature amplitude varied between 4.10~13.01 °C under the sand pavement,and 21.7~36.7 °C under the asphalt pavement.Figure 5 shows the changes in the BLBS thickness.The BLBS was thin in the cold season and thick in the warm season,and that of the asphalt pavement was greater than that of the sand pavement.For the asphalt pavement,the minimum was 28.2 cm in March and the maximum was 43.6 cm in July,with an average of 37.2 cm.For the sand pavement,the minimum was 15.8 cm in April and the maximum was 41.7 cm in July,with an average of 27.6 cm.The minimum generally appeared during the thawing process (March or April) and the freezing process (October or November),while the greatest thickness was reached between May and September.The soil phase change process (from solid to liquid,liquid to solid) consumed considerable energy; when the energy involved in the heat transfer was reduced,the BLBS was relatively reduced.In the thawing stage,when solar radiation had great intensity and transported much heat into the soil,the BLBS was increased.Because the thermal conductivity of frozen soil is about twice that of thawed soil,the BLBS would also increase.

    Figure 5 Changes in the BLBS thickness

    4 Discussion

    4.1Time symmetry of ground temperature

    The daily cycle is an important property of the boundary layer.The temperature peak and trough can occur in one day,with little change in time interval.Figure 6 shows the daily distribution of the daily maximum and minimum ground temperatures at the study site.

    For asphalt pavement,the maximum and minimum temperatures appeared at 15:00 and 08:00,respectively,at the surface; the time span was 7 hours.At the 30-cm depth,the maximum temperature appeared at 23:30-24:00,and the minimum temperature was at 12:30-13:00.At the 50-cm depth,the maximum temperature appeared at 23:30-24:00,and the minimum temperature was at 16:00-16:30.For sand pavement,the maximum temperature appeared at 14:30 and the minimum temperature appeared at 07:00-07:30.At the 30-cm depth,the maximum and minimum appeared at 23:30-24:00 and 13:00-13:30,respectively.The appearing time of the maximum and the minimum were similar at the depth of 78 cm.As the depth increased beyond 30 cm,the temperature symmetry with the daily cycle gradually disappeared.When it was completely free from the influence of solar radiation,the BLBS thickness was less than 50 cm.So these results were quite reasonable.

    4.2The boundary layer and heat flux

    The boundary layer thickness may reflect the intensity of heat transfer.The thicker the BLAS is,the greater the turbulence intensity and sensible heat flux are.Compared with sand pavement,there were smaller changes in latent heat flux on the asphalt pavement over a year,and the total amount was also smaller.

    Figure 7 shows the relationship between soil heat flux and soil temperature at the 5-cm depth below the pavement surface.Soil heat flux and temperature showed a linear relationship under the asphalt pavement; when the temperature rose by 2 °C,the soil heat flux increased by about 0.94 W/m2.In contrast,soil heat flux and temperature showed a secondary polynomial relationship under the sand pavement.When the temperature rose by 2 °C,the soil heat flux increased by about 3.74 W/m2.The average net radiation flux (Rn) values were 86.4 and 75.9 W/m2above the asphalt and sand pavement,respectively (Zhang et al.,2016).Soil heat flux at the bottom of BLBS was small,less than 0.05 times of Rn.Thus,we concluded that this method can provide a more stable upper boundary for the temperature field analysis.

    5 Summary

    Based on continuous in-situ monitoring data on soil temperature,wind velocity,and soil heat flux,the thicknesses of BLAS and BLBS were calculated by a novel method proposed in this paper.The method was based on atmospheric boundary layer theory and the heat transfer theory.The BLAS was thick in the cold season and thin in the warm season.The BLBS was thin in the freezing and thawing processes but was relatively thicker in the freezing stage; the maximum thickness appeared in the thawing stage.For asphalt pavement,the BLAS thickness varied between 2.90 and 4.31 mm and the BLBS varied between 28.00 and 45.38 cm.For sand pavement,the BLAS thickness varied between 2.55 and 3.29 mm and the BLBS varied between 15.00 and 46.44 cm.Regarding daily cycles and soil heat flux,analysis of ground temperature changes revealed that the Soil heat flux at the bottom of BLBS was less than 0.05 times to that of Rn.The symmetry of the heat flux and the daily temperature cycle disappeared at depths beyond 30 cm.The boundary layer thickness calculation method presented in this paper can thus provide a more stable upper boundary for temperature field analysis.

    Figure 6 Daily distribution of maximum and minimum ground temperatures under the pavements

    Figure 7 The relationship between soil heat flux (G) and temperature (T) at 5-cm depth under pavements

    Acknowledgments:

    This research was supported by the Natural Science Foundation of China (41330634 and 41301071),and the Independent Research Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-19).We would like to express our sincerest gratitude to the anonymous reviewers for providing us with constructive and insightful comments and suggestions.

    References:

    Bagnold RA,1981.The Physics of Blown and Desert Dunes.New York:Methuen,pp.85-95.

    Bai QB,Li X,Tian YH,2015.Upper boundary conditions in long-term thermal simulation of subgrade.Chinese Journal of Geotechnical Engineering,37(6):1142-1149.(in Chinese)

    Cao YB,Sheng Y,Wu JC,et al.,2014.Influence of upper boundary conditions on simulated ground temperature field in permafrost regions.Journal of Glaciology and Geocryology,36(4):802-810.(in Chinese)

    Dong YH,Pei WS,Liu G,et al.,2014.In-situ experimental and numerical investigation on the cooling effect of a multi-lane embankment with combined crushed-rock interlayer and ventilated ducts in permafrost regions.Cold Regions Science and Technology,104-105:97-105.DOI:10.1016/ j.coldregions.2014.05.003.

    Gao ZQ,2005.Determination of soil heat flux in a Tibetan short-grass prairie.Boundary-Layer Meteorology,114:165-178.DOI:10.1007/s10546-004-8661-5.

    Jiang Y,Zhuang Q,O'Donnell JA,2012.Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model.Journal Geophysical Research,117(D11):90-100.DOI:10.1029/2012JD017512.

    Jiang Y,Rocha AV,O'Donnell JA,et al.,2015.Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest.Journal of Geophysical Research Earth Surface,120:363-378.DOI:10.1002/2014JF003180.

    Li NS,Hu WW,Wu QB,et al.,2006.Disposal of discontinuous thermal interface in calculation of temperature field of permafrost.Journal of Tongji University (Natural Science),34(8):1011-1015.(in Chinese)

    Li R,Zhao L,Ding YJ,et al.,2013.Study on soil thermodynamic characteristic at different underling surface in northern Qinghai-Tibet Plateau.Acta Energiae Solaris Sinica,34(6):1076-1084.(in Chinese)

    Lykov AV,1961.The Theoretical Basis of the Construction Thermal Physics.Minsk:The Belarusian Academy of Sciences Press,pp.56-59.

    Wang TH,Hu CS,Li N,et al.,2003.Numerical analysis of ground temperature in Qinghai-Tibet Plateau.Science in China (Series E),3(7):655-662.

    Williams PJ,Smith MW,1989.The Frozen Earth:Fundamentals of Geocryology.Cambridge,New York:Cambridge University Press,pp.306.

    Woo MK,Arain MA,Mollinga M,et al.,2004.A two-directional freeze and thaw algorithm for hydrologic and land surface modeling.Geophysical Research Letters,31(12):261-268 (L12501).DOI:10.1029/2004GL019475.

    Zhang ZQ,Wu QB,Xun XY,2016.Radiation and energy balance characteristics of asphalt pavement in permafrost regions.Environment Earth Science,75(3):1-19.DOI:10.1007/s12665-015-4975-5.

    Zhu LN,1988.Study of the boundary layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau.Journal of Glaciology and Geocryology,10(1):35-39.(in Chinese)

    Zhang ZQ,Wu QB,Zhang P,et al.,2016.Calculation method for thickness of discontinuous boundary layer of engineering pavement.Sciences in Cold and Arid Regions,8(6):0461-0466.

    10.3724/SP.J.1226.2016.00461.

    *Correspondence to:ZhongQiong Zhang,Northwest Institute of Eco-environment and Resources,Chinese Academy of Sciences.No.320,West Donggang Road,Lanzhou,Gansu 730000,China.Tel:+86-931-4967433; E-mail:zhongqionghao@163.com

    June 12,2016Accepted:August 17,2016

    免费观看的影片在线观看| 最近中文字幕2019免费版| 麻豆成人av视频| 欧美激情国产日韩精品一区| 大陆偷拍与自拍| 午夜福利网站1000一区二区三区| 日本免费在线观看一区| 国产精品久久久久久久电影| av.在线天堂| 天天躁夜夜躁狠狠久久av| 国产黄频视频在线观看| 精品国产三级普通话版| av免费在线看不卡| 色哟哟·www| 视频中文字幕在线观看| 美女福利国产在线 | 直男gayav资源| 又黄又爽又刺激的免费视频.| 精品一区二区三卡| 熟女电影av网| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区 | 高清毛片免费看| 成人高潮视频无遮挡免费网站| 黄片无遮挡物在线观看| 久久6这里有精品| 欧美丝袜亚洲另类| 人妻一区二区av| 久久久午夜欧美精品| 麻豆国产97在线/欧美| 国产精品熟女久久久久浪| 在线观看人妻少妇| 交换朋友夫妻互换小说| 激情 狠狠 欧美| 一级黄片播放器| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 多毛熟女@视频| 人妻少妇偷人精品九色| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 国产免费又黄又爽又色| 亚洲精品亚洲一区二区| 黄色怎么调成土黄色| 成人二区视频| 亚洲经典国产精华液单| 美女主播在线视频| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 在线天堂最新版资源| av免费在线看不卡| 国产成人aa在线观看| 99久久精品一区二区三区| 交换朋友夫妻互换小说| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看| 久久久久久久久大av| 能在线免费看毛片的网站| 精品亚洲乱码少妇综合久久| 亚洲av欧美aⅴ国产| 国产精品三级大全| 超碰97精品在线观看| 欧美+日韩+精品| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 亚洲精品国产av蜜桃| 久久久久久久久久久免费av| 777米奇影视久久| 日韩亚洲欧美综合| 国产毛片在线视频| 日韩中字成人| av国产久精品久网站免费入址| av黄色大香蕉| 国产成人精品久久久久久| 777米奇影视久久| 老司机影院成人| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 91久久精品国产一区二区三区| 少妇 在线观看| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 国产亚洲最大av| 99热这里只有是精品在线观看| 欧美人与善性xxx| 久久国产乱子免费精品| 亚洲综合精品二区| 国产色婷婷99| 日韩av在线免费看完整版不卡| 成人特级av手机在线观看| 高清不卡的av网站| 午夜激情福利司机影院| 亚洲精品第二区| 一级爰片在线观看| 日本免费在线观看一区| 哪个播放器可以免费观看大片| 多毛熟女@视频| 日本欧美国产在线视频| av黄色大香蕉| 黑丝袜美女国产一区| 日本色播在线视频| 99久久中文字幕三级久久日本| 免费大片18禁| 五月天丁香电影| 成年av动漫网址| 国产精品一区二区三区四区免费观看| 日本免费在线观看一区| 3wmmmm亚洲av在线观看| av又黄又爽大尺度在线免费看| 91精品国产国语对白视频| 三级国产精品片| 国产高清三级在线| 亚洲国产日韩一区二区| 欧美日韩视频高清一区二区三区二| 亚洲精品国产成人久久av| 久久97久久精品| 狂野欧美激情性bbbbbb| 久热久热在线精品观看| 国产在线一区二区三区精| 亚洲在久久综合| 亚洲精品视频女| 亚洲精品色激情综合| 久久韩国三级中文字幕| 久久人人爽人人片av| 亚洲国产毛片av蜜桃av| 色综合色国产| 国产精品无大码| 国产亚洲最大av| 香蕉精品网在线| 亚洲成人av在线免费| 高清av免费在线| 天堂俺去俺来也www色官网| 九草在线视频观看| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 天堂中文最新版在线下载| 色哟哟·www| 男人狂女人下面高潮的视频| 成人亚洲精品一区在线观看 | 大香蕉97超碰在线| 国产探花极品一区二区| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美 | 少妇高潮的动态图| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的 | 国产午夜精品一二区理论片| 少妇丰满av| 亚洲高清免费不卡视频| 久久久精品免费免费高清| 国产一区二区三区av在线| 精品久久久久久久末码| 免费看不卡的av| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 亚洲久久久国产精品| 亚洲欧美成人综合另类久久久| 日本一二三区视频观看| 人人妻人人爽人人添夜夜欢视频 | 久久久精品94久久精品| 午夜激情福利司机影院| 高清午夜精品一区二区三区| 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 午夜日本视频在线| 亚洲成人手机| 成人一区二区视频在线观看| 国产一区二区三区av在线| 性色avwww在线观看| 国产av一区二区精品久久 | 成年人午夜在线观看视频| 尾随美女入室| xxx大片免费视频| 国产69精品久久久久777片| 免费av不卡在线播放| 少妇的逼好多水| 美女视频免费永久观看网站| 久久久久久九九精品二区国产| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频| 精品国产乱码久久久久久小说| 国产精品熟女久久久久浪| 亚洲性久久影院| 日日撸夜夜添| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 最近中文字幕高清免费大全6| 老女人水多毛片| 亚洲精品,欧美精品| 欧美成人a在线观看| 一级毛片aaaaaa免费看小| av国产免费在线观看| 日本欧美国产在线视频| 亚洲经典国产精华液单| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频| 久久久午夜欧美精品| videossex国产| 欧美高清成人免费视频www| 99热国产这里只有精品6| 亚洲,一卡二卡三卡| 欧美 日韩 精品 国产| 国产黄片美女视频| 大码成人一级视频| 亚洲四区av| 一级爰片在线观看| 国产一区二区三区综合在线观看 | 久久99蜜桃精品久久| 99久久综合免费| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 欧美+日韩+精品| 在线观看一区二区三区| 91精品国产国语对白视频| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| 深夜a级毛片| 嫩草影院新地址| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 最黄视频免费看| 国产综合精华液| 在线亚洲精品国产二区图片欧美 | 国产中年淑女户外野战色| 91精品一卡2卡3卡4卡| 汤姆久久久久久久影院中文字幕| 亚洲国产精品一区三区| 性色av一级| 亚洲人成网站在线观看播放| 国产有黄有色有爽视频| 成人二区视频| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 国产成人91sexporn| 午夜福利视频精品| 亚洲精品中文字幕在线视频 | 中文字幕制服av| 99视频精品全部免费 在线| 久久综合国产亚洲精品| 国产av一区二区精品久久 | 国产精品伦人一区二区| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 三级经典国产精品| 亚洲国产精品一区三区| 亚洲人成网站在线观看播放| 亚州av有码| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 亚洲四区av| 成人免费观看视频高清| 色视频在线一区二区三区| 中文字幕久久专区| 99久久中文字幕三级久久日本| 香蕉精品网在线| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 国产精品欧美亚洲77777| 老女人水多毛片| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 日韩成人伦理影院| 亚洲成人中文字幕在线播放| 91精品伊人久久大香线蕉| 国产成人a区在线观看| 在线观看av片永久免费下载| 日韩中文字幕视频在线看片 | 免费观看在线日韩| 九色成人免费人妻av| 日本黄色片子视频| 欧美激情极品国产一区二区三区 | 久久 成人 亚洲| 中文字幕人妻熟人妻熟丝袜美| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 99热这里只有是精品在线观看| 大香蕉久久网| 日韩大片免费观看网站| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 国产成人精品福利久久| 欧美日韩视频高清一区二区三区二| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看| 中文字幕免费在线视频6| 2022亚洲国产成人精品| 99热6这里只有精品| 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 国产在线视频一区二区| 久久青草综合色| 熟女av电影| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 草草在线视频免费看| 欧美 日韩 精品 国产| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 国产有黄有色有爽视频| 最近手机中文字幕大全| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 水蜜桃什么品种好| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 精品亚洲乱码少妇综合久久| 亚洲国产精品专区欧美| 精品亚洲成a人片在线观看 | 亚洲人成网站在线播| 日本与韩国留学比较| 日韩 亚洲 欧美在线| 两个人的视频大全免费| 久久久久网色| 交换朋友夫妻互换小说| 国产美女午夜福利| 精品人妻偷拍中文字幕| 少妇 在线观看| 两个人的视频大全免费| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 精品久久久久久久末码| 插逼视频在线观看| 毛片女人毛片| 在线看a的网站| 一本久久精品| 日本-黄色视频高清免费观看| 一区二区三区乱码不卡18| 久久国产精品大桥未久av | 高清在线视频一区二区三区| 美女国产视频在线观看| 观看免费一级毛片| 亚州av有码| 又黄又爽又刺激的免费视频.| 十分钟在线观看高清视频www | 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区三区| 久热这里只有精品99| 午夜激情久久久久久久| 久热这里只有精品99| 有码 亚洲区| 中文字幕久久专区| 97在线视频观看| 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 亚洲av成人精品一区久久| 97超视频在线观看视频| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片| 极品少妇高潮喷水抽搐| 亚州av有码| 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| av在线老鸭窝| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 综合色丁香网| 成人免费观看视频高清| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 欧美xxxx性猛交bbbb| 天天躁夜夜躁狠狠久久av| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 亚洲欧美日韩另类电影网站 | 一本久久精品| 国产在线视频一区二区| a级毛片免费高清观看在线播放| 大香蕉97超碰在线| 婷婷色av中文字幕| 午夜福利在线在线| 综合色丁香网| 午夜免费男女啪啪视频观看| 日韩大片免费观看网站| 蜜桃久久精品国产亚洲av| 国产精品国产三级专区第一集| 夜夜骑夜夜射夜夜干| 黄色配什么色好看| 国产精品一区二区在线不卡| 联通29元200g的流量卡| 色吧在线观看| 日韩中文字幕视频在线看片 | 久久女婷五月综合色啪小说| 欧美性感艳星| 在线观看人妻少妇| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看 | 亚洲精品色激情综合| 久久久久久久大尺度免费视频| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 亚洲最大成人中文| 亚洲内射少妇av| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 日本欧美国产在线视频| 亚洲av二区三区四区| 免费观看性生交大片5| 一级爰片在线观看| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 黄色配什么色好看| 亚洲精品国产色婷婷电影| 精品一区二区三卡| 久久久久久久久大av| 亚洲人成网站高清观看| 欧美少妇被猛烈插入视频| 亚洲欧美成人精品一区二区| 高清不卡的av网站| 你懂的网址亚洲精品在线观看| 麻豆成人午夜福利视频| 日本与韩国留学比较| 中文字幕制服av| 久久久久久伊人网av| 夜夜爽夜夜爽视频| 一级二级三级毛片免费看| 人人妻人人爽人人添夜夜欢视频 | av女优亚洲男人天堂| 婷婷色麻豆天堂久久| 一级av片app| 99久久精品热视频| 成年女人在线观看亚洲视频| 综合色丁香网| 大陆偷拍与自拍| 麻豆成人午夜福利视频| 91aial.com中文字幕在线观看| 99热这里只有精品一区| 大码成人一级视频| 中文资源天堂在线| 亚洲高清免费不卡视频| 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 精品视频人人做人人爽| 一级毛片久久久久久久久女| 国产精品一区二区在线观看99| 日本欧美国产在线视频| 只有这里有精品99| 久久久久久久久久久丰满| 国产成人精品婷婷| 亚洲性久久影院| 91久久精品国产一区二区成人| 国产av码专区亚洲av| 丝袜脚勾引网站| 日本与韩国留学比较| 一级av片app| 亚洲综合色惰| 小蜜桃在线观看免费完整版高清| 人人妻人人添人人爽欧美一区卜 | 亚洲精品久久午夜乱码| 全区人妻精品视频| 久久人人爽人人片av| 欧美bdsm另类| 欧美97在线视频| 18禁在线播放成人免费| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 久久99蜜桃精品久久| 亚洲av在线观看美女高潮| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 欧美性感艳星| 国产av精品麻豆| 最近2019中文字幕mv第一页| 26uuu在线亚洲综合色| 亚洲av成人精品一区久久| 国产高清国产精品国产三级 | 毛片一级片免费看久久久久| 两个人的视频大全免费| 美女视频免费永久观看网站| 亚洲精品色激情综合| 欧美老熟妇乱子伦牲交| 欧美成人一区二区免费高清观看| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 日韩三级伦理在线观看| 久久毛片免费看一区二区三区| 观看美女的网站| 精品国产露脸久久av麻豆| 欧美xxxx性猛交bbbb| 日韩伦理黄色片| 国产日韩欧美在线精品| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 午夜激情福利司机影院| 日韩制服骚丝袜av| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 午夜福利网站1000一区二区三区| 欧美 日韩 精品 国产| av又黄又爽大尺度在线免费看| 色5月婷婷丁香| 成人无遮挡网站| 亚洲激情五月婷婷啪啪| 久久久久久久久久久丰满| 97在线视频观看| 久久久久久久久久久免费av| 久久久久精品性色| 只有这里有精品99| 久久精品久久久久久久性| 久久热精品热| 日本色播在线视频| 成年免费大片在线观看| 日日啪夜夜撸| 日本黄色片子视频| 深夜a级毛片| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 一级黄片播放器| 日韩一本色道免费dvd| 日本一二三区视频观看| av在线蜜桃| 性色avwww在线观看| 看十八女毛片水多多多| 人人妻人人添人人爽欧美一区卜 | 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看| 一级毛片黄色毛片免费观看视频| 99久久精品国产国产毛片| 大陆偷拍与自拍| 亚洲婷婷狠狠爱综合网| 熟女电影av网| 中国国产av一级| 久久亚洲国产成人精品v| 一级毛片久久久久久久久女| 国产成人freesex在线| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 有码 亚洲区| 亚洲三级黄色毛片| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 色婷婷av一区二区三区视频| 欧美极品一区二区三区四区| 中文欧美无线码| 免费看av在线观看网站| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 成人亚洲欧美一区二区av| 欧美zozozo另类| 大香蕉久久网| 黄色怎么调成土黄色| 伦精品一区二区三区| 中国国产av一级| 小蜜桃在线观看免费完整版高清| 久久久国产一区二区| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 久久毛片免费看一区二区三区| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| 美女国产视频在线观看| 久久精品国产鲁丝片午夜精品| 亚洲美女视频黄频| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 直男gayav资源| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 国产成人精品婷婷| 久久国产精品男人的天堂亚洲 | 日韩av免费高清视频| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 精品一品国产午夜福利视频| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 免费av中文字幕在线| 国产在线视频一区二区| 能在线免费看毛片的网站| 寂寞人妻少妇视频99o| 亚洲精品第二区| 国产黄频视频在线观看| 亚洲不卡免费看| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 欧美另类一区| 午夜视频国产福利| 舔av片在线| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂 | 伦理电影免费视频| 成人高潮视频无遮挡免费网站| 亚洲高清免费不卡视频| 99视频精品全部免费 在线| 最近手机中文字幕大全| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 亚洲av中文av极速乱|