史風梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰
(黑龍江省農(nóng)業(yè)科學院農(nóng)村能源研究所,哈爾濱 150086)
活性炭脫除模擬沼氣中H2S的動態(tài)試驗
史風梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰※
(黑龍江省農(nóng)業(yè)科學院農(nóng)村能源研究所,哈爾濱 150086)
利用動態(tài)試驗,以模擬沼氣為研究對象,研究了進氣中H2S的濃度、進氣流速、吸附劑質(zhì)量及吸附劑粒徑等因素對吸附柱穿透時間及穿透吸附容量的影響。研究結(jié)果表明,提高進氣中的H2S濃度和進氣流速,增加活性炭的粒徑可以有效地縮短穿透時間。當其他試驗條件保持不變時,進氣中H2S的體積分數(shù)分別為0.0124%和0.0454%時,其對應的穿透容量分別為1.20和1.86 mg/g;進氣速度為0.15 L/min時的穿透容量為0.30 L/min時的1.6倍;粒徑0.84~2.00 mm時的穿透容量只有0.42~0.84 mm時的58%。因此,提高活性炭對H2S的穿透吸附容量可以通過提高進氣中H2S的濃度,降低進氣速度、減小活性炭的粒徑等方法實現(xiàn)。通過Bangham吸附速率方程的模擬可知,未經(jīng)改性的活性炭對H2S的吸附行為同樣符合Bangham吸附速率方程。該研究可為未改性活性炭沼氣脫硫裝置的放大和實際應用提供參考。
沼氣;吸附;脫硫;活性炭;Bangham吸附速率方程
沼氣是一種以CH4為主要成分的可燃性混合氣體[1]。其中,H2S體積分數(shù)約為0~1%[2-3]。H2S是一種酸性的劇毒氣體,在沼氣的凈化、傳輸、儲存和使用過程中會因腐蝕引發(fā)安全問題[4]。因此,常采用化學法[5-6]、物理法[7-8]、生物法[9]或以上幾種方法組合[10-11]的形式脫除沼氣中的H2S。其中,活性炭有效處理低濃度的H2S而得到廣泛地研究[12-16]。活性炭脫除H2S的效率受其性質(zhì)[3]、孔徑大小[17-18]、水分含量[15]以及沼氣組成[15]等諸多因素的影響。中國擁有大量生物質(zhì)資源。農(nóng)業(yè)廢棄物、城市污泥以及廢棄的工業(yè)有機物都可以作為生產(chǎn)沼氣或活性炭的原料[19]。采用活性炭處理沼氣既有利于廢棄物的無害化處理和資源化。
但是迄今為止,國內(nèi)外的研究多集中于浸漬活性炭脫H2S的行為和規(guī)律[14-16]。雖然通過浸漬堿液或金屬鹽溶液進行改性的活性炭的脫硫效果在大多數(shù)情況下較未改性的活性炭好,但也有試驗數(shù)據(jù)表明改性后的活性炭對硫化氫的吸附效果有時未必理想[3]。除改性活性炭的價格較高外,堿浸漬活性炭在運輸、使用和廢棄處理等過程中還會產(chǎn)生腐蝕等問題。隨著礦產(chǎn)資源的逐漸枯竭,價格低廉的氧化鐵脫硫劑最終會退出歷史舞臺。因此,重新對未改性活性炭的脫硫效果進行研究意義深遠。通過孔徑、流速、硫化氫濃度等參數(shù)的控制提高活性炭對硫化氫的吸附效果是解決上述問題的有效方法。
因此,本試驗采用動態(tài)試驗,研究粒徑大小、進氣濃度、氣體流速等對活性炭對模擬沼氣中的H2S脫除功效和穿透吸附容量的影響,所得數(shù)據(jù)可為未改性的活性炭沼氣脫硫裝置的放大和實際應用提供相應地數(shù)據(jù)支持。
1.1 所用藥品和試劑
試驗所用的NaOH和酚酞均為分析純;木屑活性炭外購于天津天昌活性炭有限公司,篩分出10~20目(0.84~2.00 mm),20~40(0.42~0.84 mm)目的活性炭顆粒用于試驗[20]?;钚蕴康牟糠中再|(zhì)見表1。甲烷標氣購于哈爾濱市春霖氣體經(jīng)銷有限公司,標氣中CH4、CO2和H2S的體積分數(shù)分別為63%、36%和1%。為避免氣體分壓變化引起的活性炭對H2S吸附行為的影響,采用N2氣改變H2S的濃度。通過文獻可知以城鎮(zhèn)、單位的生活廢水為發(fā)酵原料的大中型沼氣工程穩(wěn)定運行時,沼氣中H2S體積分數(shù)范圍為0.035%~0.074%[21]。而低于0.01%時的沼氣可直接用于發(fā)電,因此該試驗采用的硫化氫體積分數(shù)為0.0124%和0.0454%。
表1 活性炭的性質(zhì)Table 1 Properties of activated carbon of this study
1.2 試驗裝置
固定吸附裝置為試驗室自制,由沼氣瓶、N2氣瓶、減壓閥、緩沖瓶、流量計、固定床吸附柱、吸收瓶以及尾氣處理裝置組成,具體如圖1所示。
圖1 固定床吸附裝置Fig.1 Diagram of experimental setup
1.3 試驗方法
1)活性炭含水率的測定
將洗凈的玻璃燒杯在105℃的烘箱內(nèi)烘至恒質(zhì)量,用分析天平稱取W的活性炭置于其中,然后在105℃的條件下烘至恒質(zhì)量Wd,按公式(1)計算活性炭的含水率WP(%)。
本試驗所用活性炭的含水率為21%。
2)活性炭pH值的測定
稱取0.4 g活性炭置于潔凈干燥的比色管中,加入2 mL蒸餾水,室溫條件下置放24 h,期間對其進行搖動3次,然后利用雷磁pH計測定浸泡液的pH值。本試驗所用活性炭的pH值為7.01。
3)活性炭結(jié)構(gòu)表征
活性炭噴金后,采用S-3400N 電子掃描電鏡觀察活性炭的表面和斷面結(jié)構(gòu),并采用IPP6.0軟件分析未改性活性炭的孔徑分布[22]。
4)動態(tài)吸附試驗
稱取一定量的活性炭于吸附柱內(nèi)。沼氣標準氣和N2按一定的比例經(jīng)過減壓閥、緩沖罐后,以設(shè)定的流量從吸附柱底部進入,凈化后的氣體經(jīng)過流量計2,進入盛有10% NaOH水溶液的吸收瓶,尾氣進行燃燒處理。在吸收瓶中滴入酚酞試劑,當溶液變?yōu)闇\粉時,更換吸收液。吸附硫化氫后的活性炭可做為炭基肥原料或經(jīng)再生后重新利用。填充柱長度根據(jù)吸附柱長度確定;氣體流速由自制實驗裝置經(jīng)初步試驗得到。表2為吸附試驗的參數(shù),每組試驗重復3次。通過AC1與AC2、AC2與AC3、AC3與AC4、AC2與AC5的試驗數(shù)據(jù)對比可初步獲得H2S的濃度、吸附劑質(zhì)量、吸附劑粒徑及進氣流速對穿透時間和穿透吸附容量的影響。
表2 吸附試驗的參數(shù)Table 2 Experimental parameters of adsorption experiment
采用Gasboard3200L測定凈化后沼氣中H2S氣體的濃度,當吸附后氣體中的H2S濃度達到進氣濃度時停止試驗。吸附后氣體中的H2S濃度達到進氣濃度的90%的時間定義為穿透時間。
以H2S濃度對時間作圖得到穿透曲線,然后對穿透曲線進行積分可得到活性炭對H2S的穿透吸附容量。穿透吸附容量的計算如公式(2)所示:
式中q為吸附容量,mg/g;Q為氣體流量,m3/min;t為吸附時間,min;C0為吸附柱入口質(zhì)量濃度,mg/m3;C為吸附柱出口質(zhì)量濃度,mg/m3;m為吸附劑質(zhì)量,g。以時間t為橫坐標,吸附量q為縱坐標作圖,得到吸附曲線。
5)吸附動力學研究
研究表明,H2S在改性活性炭上的吸附行為符合Bangham吸附速率方程[23]。本文也采用該法研究沼氣中的H2S在未改性活性炭上的吸附動力學行為以及各種因素對吸附過程的影響。
Bangham吸附速率方程可以表達為
將方程(3)進行積分,得到
將方程(4)兩邊取對數(shù),得到
式中qm為穿透吸附量,mg/g;k和z為常數(shù)。做曲線,可求取吸附速率方程常數(shù)k和z。
將k和z值代入公式(6)中,即可得到吸附曲線的模擬曲線。N2的進氣流量為500 L/h,甲烷標氣的進氣流量分別為0.10和0.4 L/min時,可得到H2S含量分別為124×10-6和454×10-6的混合氣體。
2.1 活性炭的結(jié)構(gòu)
SEM可以反映活性炭的微觀結(jié)構(gòu)和孔徑的大小。圖2為活性炭表面和斷面SEM圖。
由圖2可知,活性炭的斷面和表面為不規(guī)則海綿狀結(jié)構(gòu),具有大量的孔隙,由IPP6.0軟件可知活性炭的大部分孔徑在0.1~25 μm(圖3),屬于大孔的活性炭。在活性炭的形成過程中,孔壁的崩塌造成活性炭斷面失去原有的植物構(gòu)造。
圖2 活性炭的SEM圖(500×)Fig.2 SEM pictures of activated carbon (500×)
圖3 活性炭的孔徑分布圖Fig.3 Pore size distribution diagram of activated carbon
2.2 動態(tài)吸附試驗結(jié)果與分析
在保持其他試驗條件不變,分別改變進氣中H2S的濃度、吸附劑粒徑大小、吸附劑質(zhì)量和進氣速度,得到的穿透曲線如圖4所示。經(jīng)過公式(2)可得到的穿透吸附容量見表3。
圖4 不同試驗條件下的穿透曲線Fig.4 Diagram of concentration of outlet at adsorption time with different operating parameters
從圖4中可以看出,出氣中H2S的濃度隨時間的變化曲線形狀相似,呈S形。吸附初期,到達吸附劑表面的氣體分子較少,而吸附劑有大量的羥基等活性點位,可吸附氣中的H2S,使出口中硫化氫的濃度低。當大量的氣體分子到達吸附劑的表面,吸附量迅速增加,活性點位迅速減少,吸附區(qū)逐漸外移減小,出氣中的H2S濃度迅速增加。吸附末期,吸附劑漸漸失去吸附能力,導致出氣中H2S濃度緩慢接近進氣濃度。
表3 圖4,5中吸附參數(shù)q、甲烷損失率、z、k及R2值Table 3 q, loss rate of CH4, z, k and R2 obtained from Fig.4 and Fig.5
2.2.1 不同H2S濃度的影響
對圖4中AC1和AC2進行比較,可得到H2S濃度對穿透曲線的影響。當進氣中H2S濃度增加時,穿透時間變短。CH2S為0.0454%和0.0124%時,活性炭的穿透吸附容量分別為1.86和1.20 mg/g。活性炭脫硫分為3個過程[24]:1)活性炭表面形成水膜;2)H2S和O2溶于水膜并發(fā)生離解等變化;3)在活性炭表面發(fā)生反應。研究表明在室溫條件下,在H2S和活性炭之間主要發(fā)生表面的物理吸附[3, 25]。但是,有氧化劑存在時,也會發(fā)生化學吸附,H2S中的硫會被氧化成單質(zhì)硫[26]。而本文中的活性炭含有吸附水,且孔隙中充滿了空氣。因此,活性炭中的H2S主要以氣體分子的形式存在,只有少量的H2S被活性炭孔中存在的氧分子氧化成單質(zhì)硫。在溫度、壓力不變的情況下,氣體分子的擴散速度取決于該氣體的濃度梯度。高的進氣濃度意味著擴散的推動力較大,導致氣體分子到活性炭表面及孔隙內(nèi)的擴散速度較快,吸附能夠在較短的時間內(nèi)達到平衡,吸附劑表面的氣體分子的數(shù)量較多。因此,穿透時間隨著濃度的增加而縮短,但穿透吸附量是增加的。
2.2.2 不同粒徑尺寸的影響
活性炭的粒徑的大小對穿透時間和H2S穿透吸附容量的影響見圖4中的AC3和AC4。在相同填充柱長和進氣速度的情況下,填充料粒徑大的較粒徑小的穿透時間較短。粒徑為10~20目的活性炭的穿透吸附容量為1.23 mg/g,粒徑為20~40目時的穿透吸附容量為2.12 mg/g。吸附劑對氣體發(fā)生物理吸附,其穿透吸附容量受吸附劑表面積大小的影響[27]。小的顆粒意味著大的外比表面積,更多的吸附活性點,因此,穿透時間長,穿透吸附量較大。
2.2.3 不同活性炭填充質(zhì)量的影響
從圖4中的AC2和AC3可知吸附劑質(zhì)量對穿透曲線的影響。保持其他試驗條件不變,僅改變填充劑的質(zhì)量,可顯著影響穿透時間。H2S的穿透吸附容量分別為1.20和1.23 mg/g,二者相近,即吸附劑的質(zhì)量對穿透吸附容量影響較小。吸附劑的質(zhì)量決定了吸附柱的長度,影響氣體分子與吸附質(zhì)的接觸時間。吸附柱越長,吸附的氣體分子就越多,但是因為平衡的條件一樣,所以單位質(zhì)量活性炭的穿透吸附容量變化不大。
2.2.4 不同氣體流入速度的影響
氣體流速對活性炭吸附H2S的影響的試驗結(jié)果見圖4中的AC2和AC5,對應的穿透吸附容量分別為1.20和1.95 mg/g。氣體的流速決定氣體分子與吸附柱中的吸附劑的接觸時間[20]。低流速保證了H2S氣體分子擴散到活性炭內(nèi)部空隙的時間,使吸附得以順利進行,從而H2S的穿透吸附容量比較大。程文煜等[28]利用活性焦固定床吸附SO2的試驗結(jié)果顯示高氣體流速可以提高吸附劑對吸附質(zhì)的吸附速率和穿透吸附容量。二者之間的差異是因其試驗所用吸附質(zhì)較大(當量直徑約為11.48 mm),氣體分子需要一定的能量往吸附劑內(nèi)部擴散。而本試驗中所用的活性炭粒徑較小,氣體擴分子向內(nèi)部擴散不需要太大的動能。因此,流速的增加縮短了穿透時間,也相應的降低了穿透吸附容量。
研究表明,孔徑尺寸為納米級的活性炭吸附硫化氫的效率高[17-18, 29-30]。活性炭的微孔是吸附污染物質(zhì)的主要場所,而介孔和大孔是污染物質(zhì)遷移的通道[31]。因此,本試驗中所用的活性炭的孔徑較大,造成硫化氫的吸附效率相對較低。但試驗結(jié)果仍具有較高的借鑒意義。
2.3 吸附動力學研究
利用Bangham吸附速率方程可得到ln(ln(qm/(qm?q)))~lnt曲線(圖5)。所有的ln(ln(qm/(qm?q)))~lnt曲線可分為兩段,在穿透時間內(nèi)的曲線線性良好,由圖5得到的穿透時間段內(nèi)的k,z和R2值見表3。
圖5 曲線ln(lnqm/(qm?q))~lntFig.5 Diagram of ln(lnqm/(qm?q))-lnt
由表3中可知,所有的ln(ln(qm/(qm?q)))~lnt線性良好,AC1、AC2、AC3、AC4和AC5的R2分別為0.99、0.97、0.97、0.98和0.98.
通過AC1和AC2的k值大小的比較,可知提升進氣中H2S的濃度可提高活性炭對H2S的吸附速率常數(shù);入口H2S濃度的增加,加速了H2S分子在活性炭內(nèi)部的擴散,提高了活性炭對H2S的吸附速率[32]。而AC3和AC4 的k值表明:在進氣速率和濃度一定的條件下,減小吸附劑的粒徑可有效地降低吸附速率常數(shù);AC2和AC3的k值的大小意味著填充柱的增長卻降低了H2S的吸附速率常數(shù)。而AC2和AC5相比,AC2曲線ln(ln(qm/(qm?q)))~lnt比較陡峭,表明該流速時,在活性炭表面的H2S氣體始終保持較高的濃度梯度,有利于H2S的吸附,吸附速率常數(shù)較大。而當流速較慢時,活性炭表面的H2S濃度隨著H2S分子的運動不斷減小,濃度梯度也呈減小的趨勢,導致吸附速率常數(shù)逐漸降低。
將從表3中的k和z的值分別帶入公式(6)中,得到AC1~AC5的H2S吸附量的模擬曲線(圖6)。由圖6可知,利用Bangham吸附速率方程可對不同粒徑、流速、不同吸附劑質(zhì)量以及H2S濃度時的活性炭對H2S的吸附行為進行很好地描述。
圖6 不同試驗條件下吸附試驗及模擬曲線Fig.6 Experimental and fitting curve of adsorption capacity with different operating times
另外,表3中也列出了每組試驗的CH4損失率,在該試驗條件下,CH4的損失率均小于6%,H2S穿透吸附容量大的,CH4的損失率也較大,這表明活性炭同樣吸附CH4,CH4與H2S的吸附規(guī)律相似,后續(xù)試驗會對H2S/CH4和H2S/CO2的競爭吸附規(guī)律進行深入研究。
本文利用動態(tài)試驗研究了流速、H2S濃度、填充劑質(zhì)量和填充劑粒徑大小對穿透時間、穿透吸附容量的影響,并采用Bangham吸附速率方程對活性炭吸附H2S的動力學行為進行了研究。研究結(jié)果表明:活性炭粒徑為0.84~2.00 mm,填充質(zhì)量為2.0 g,進氣流速為0.30 L/min,進氣中H2S的濃度為0.0454%和0.0124%時,活性炭對H2S的穿透吸附容量分別為1.86和1.20 mg/g;活性炭粒徑為0.84~2.00 mm,進氣中H2S的濃度為0.0124%,進氣流速為0.30 L/min,填充質(zhì)量為2.0和1.0 g時,活性炭對H2S的穿透吸附容量分別為1.20和1.23 mg/g;保持進氣中H2S體積分數(shù)為0.0124%,進氣流速為0.30 L/min,填充質(zhì)量為1.0 g不變,活性炭粒徑為0.84~2.00和0.42~0.84 mm時,活性炭對H2S的穿透吸附容量分別為1.23 和2.12 mg/g;保持活性炭粒徑為0.84~2.00 mm,進氣中H2S體積分數(shù)為0.0124%,填充質(zhì)量為2.0 g不變,進氣流速為0.30和0.15 L/min時,活性炭對H2S的穿透吸附容量分別為1.20和1.95 mg/g。因此,提高進氣中硫化氫濃度,減小吸附劑粒徑、降低進氣速度有助于提高活性炭對H2S的穿透吸附容量,而吸附劑填充劑質(zhì)量的影響不明顯。
Bangham吸附速率方程常數(shù)k分別為0.046、0.011、0.022、0.011和0.0037;相關(guān)系數(shù)分別為0.99、0.97、0.97、0.98和0.98。因此,Bangham吸附速率方程可較好地描述H2S在未改性活性炭上的吸附動力學行為。
[1] Ozturk B, Demirciyeva F. Comparison of biogas upgrading performances of different mixed matrix membranes[J]. Chemical Engineering Journal, 2013, 222: 209-217.
[2] García G, Cascarosa E, ábrego J, et al. Use of different residues for high temperature desulphurisation of gasification gas[J]. Chemical Engineering Journal, 2011, 174(2/3): 644-651.
[3] Sitthikhankaew R, Predapitakkun S, Kiattikomol R, et al. Comparative study of hydrogen sulfide adsorption by using alkaline impregnated activated carbons for hot fuel gas purification[J]. Energy Procedia, 2011, 9: 15-24.
[4] 羅新愛. 天然氣脫硫裝置中硫化氫對設(shè)備的腐蝕問題淺析[J].四川化工,2014(3):26-29. Luo Xin’ai. Analysis of corruption in nature gas desulfurization plant caused by hydrogen sulfide[J]. Sichuan Chemical Industry, 2014(3): 26-29. (in Chinese with English abstract)
[5] Tippayawong N, Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2and H2S in a packed column reactor[J]. Energy, 2010, 35(12): 4531-4535.
[6] Krischan J, Makaruk A, Harasek M. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas[J]. Journal of Hazardous Materials, 2012, 215/216: 49-56.
[7] Lucrédio A F, Assaf J M, Assaf E M. Reforming of a modelsulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition[J]. Biomass and Bioenergy, 2014, 60: 8-17. [8] Kárászová M, Vejra?ka J, Vesely V, et al. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane[J]. Separation and Purification Technology, 2012, 89: 212-216.
[9] Fernández M, Ramírez M, Gómez J M, et al. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam[J]. Journal of Hazardous Materials, 2014, 264: 529-535.
[10] Charnnok B, Suksaroj T, Boonswang P, et al. Oxidation of hydrogen sulfide in biogas using dissolved oxygen in the extreme acidic biofiltration operation[J]. Bioresource Technology, 2013, 131: 492-499.
[11] Ho Kuoling, Lin Weichih, Chung Yingchien, et al. Elimination of high concentration hydrogen sulfide and biogas purification by chemical–biological process[J]. Chemosphere, 2013, 92(10): 1396-1401.
[12] Pipatmanomai S, Kaewluan S, Vitidsant T. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm[J]. Applied Energy, 2009, 86(5): 669-674.
[13] Esteves I A A C, Lopes M S S, Nunes P M C, et al. Adsorption of natural gas and biogas components on activated carbon[J]. Separation and Purification Technology, 2008, 62(2): 281-296.
[14] Sitthikhankaew R, Chadwick D, Assabumrungrat S, et al. Effects of humidity, O2, and CO2on H2S adsorption onto upgraded and KOH impregnated activated carbons[J]. Fuel Processing Technology, 2014, 124: 249-257.
[15] Huang Chenchia, Chen Chienhung, Chu Shumin. Effect of moisture on H2S adsorption by copper impregnated activated carbon[J]. Journal of Hazardous Materials, 2006, 136(3): 866-873.
[16] K?chermann J, Schneider J, Matthischke S, et al. Sorptive H2S removal by impregnated activated carbons for the production of SNG[J]. Fuel Processing Technology, 2015, 138: 37-41.
[17] Bagreev A, Menendez JA, Dukhno I, et al. Bituminous coal-based active carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42: 469-472.
[18] 譚小耀,吳迪鏞,袁權(quán).浸漬活性炭脫硫過程中孔結(jié)構(gòu)及氣體濕度的影響[J].化工學報,1997,48(2):237-240. Tan Xiaoyao, Wu Diyong, Yuan Quan. Influence of the pore structure and gas humidity on desulfurization by impregnated activated carbon[J]. Journal of Chemical Industry and Engineering(China), 1997, 48(2): 237-240. (in Chinese with English abstract)
[19] 王寧,侯艷偉,彭靜靜,等. 生物炭吸附有機污染物的研究進展[J]. 環(huán)境化學,2012,31(3):287-295. Wang Ning, Hou Yanwei, Peng Jingjing, et al. Research progess on sorption of organic contaminants to biochar[J]. Environmental Chemistry, 2012, 31(3): 287-295. (in Chinese with English abstract)
[20] 郭紅娜. 活性炭吸附低濃度甲烷的研究[D].大連:大連理工大學,2013. Guo Hongna. Research of Adsorbing Low Concentration Methane with Activated Carbon[D]. Dalian: Dalian University of Technology, 2013. (in Chinese with English abstract)
[21] 黎良新. 大中型沼氣工程的沼氣凈化技術(shù)研究[D]. 南寧:廣西大學,2007. Li Liangxin. Biogas Purifying Technology in Large and Medium Scale Biogas Projects[D]. Nanning: Guangxi University, 2007. (in Chinese with English abstract)
[22] 石瑩瑩. 多孔介質(zhì)結(jié)構(gòu)特征圖像分析研究:煙煤與碎石堆[D]. 呼和浩特:內(nèi)蒙古科技大學,2014. Shi Yingying. Study on Structure Characteristics of Porous Media Based on Image Analysis: Bituminous Coal and Rubble[D]. Huhot: Inner Mongolia University of Science&Technolog, 2014. (in Chinese with English abstract)
[23] Wang Li, Cao Bin, Wang Shudong, et al. H2S Catalytic oxidation on impregnated activated carbon: Experiment and modeling[J]. Chemical Engineering Journal, 2006, 118(3): 133-139.
[24] 吳浪,張永春,張安峰,等. 活性炭脫除低濃度硫化氫研究進展[J]. 低溫與特氣,2005,23(2):5-9. Wu Lang, Zhang Yongchun, Zang Anfeng, et al. The development of the research in removal of low concentration of H2S by activated carbon[J]. Low Temperature and Specialty Gases, 2005, 23(2): 5-9.(in Chinese with English abstract)
[25] Mochizuki T, Kubota M, Matsuda H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Processing Technology, 2016, 144: 164-169.
[26] Guo Jia, Luo Ye, Lua Aik Chong, et al. Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil: Palm shell[J]. Carbon, 2007, 45: 330-336.
[27] 張?zhí)燔?,許鴻杰,李樹剛,等. 粒徑大小對煤吸附甲烷的影響[J]. 湖南科技大學學報:自然科學版,2009,24(1):9-12. Zhang Tianjun, Xu Hongjie, Li Shugang, et al. The effect of particle size on adsorption of methane on coal[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2009, 24(1): 9-12. (in Chinese with English abstract)
[28] 程文煜,邢德山,樊騰飛,等. 活性焦固定床的吸附過程和穿透曲線預測[J]. 電力科學與工程,2015,31(2):1-5. Cheng Wenyu, Xing Deshan, Fan Tengfei, et al. Adsorption process and prediction of breakthrough curve in fixed bed of activated coke[J]. Electric Power Science and Engineering, 2015, 31(2): 1-5. (in Chinese with English abstract)
[29] Steijins M, Berks F, Werloop A, et al. The mechanism of the catalytic oxidation of hydrogen sulfide[J]. Journal of Catalysis, 1976,42: 87-95.
[30] Sreeramamurthy R, Menon P G. Oxidation of H2S on activated carbon[J]. Journal of Catalysis, 1975, 37(2): 287-296.
[31] 李坤權(quán),鄭正,李燁. 高比表面微孔活性炭的制備及其對對硝基苯胺的吸附[J]. 環(huán)境工程學報,2010,4(7):1478-1482. Li Kunquan, ZhengZheng, LiYe. Preparation of high surface area microporous carbons and their adsorption of nitroaniline[J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1478-1482. (in Chinese with English abstract)
[32] 殷操,盧晗鋒,王罡,等. 高分子吸附樹脂對VOCs的動態(tài)吸附及其穿透模型[J]. 浙江工業(yè)大學學報,2012,40(4):422-427. Yin Cao, Lu Hanfeng, Wang Gang, et al. The dynamic adsorption and breakthrough model of polymer resin for VOCs[J]. Journal of Zhejiang University of Technology, 2012, 40(4): 422-427. (in Chinese with English abstract)
Dynamic experiment of biogas desulfurization by activated carbon
Shi Fengmei, Pei Zhanjiang, Wang Su, Gao Yabing, Sun Bin, Liu Jie※
(Rural Energy Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
The world suffers the fossil energy crisis, and biogas gains more and more attention for it is a kind of reproducible, clean and environmental-friendly energy. Biogas comes from the anaerobic fermentation of organic materials in agriculture, industry and household waste at certain temperature and pressure. The concentration of H2S in biogas varies from 10 to 2 000 ×10-6or even more, which is different with the type, concentration of organic materials and the operation of anaerobic digestion process. In order to use biogas safely, the H2S in biogas which is hazardous to the equipment or human health should be removed from the biogas. Purification methods of H2S vary from simple physical or chemical technology to complex process including chemical, physical or biological treatment units, which depended on the use purpose of biogas. Activated carbon is a highly porous material, and known as an efficient media for low-concentration H2S removal by adsorption process. Moreover, activated carbon is easily available and cheap in price, because it is produced from biomass such as agricultural waste, wood, bamboo, coconut shells, and almond shells, which is abundant in China. Currently, most efforts are made in the study on H2S adsorption by modified activated carbon such as impregnated activated carbon with alkali or heavy metal salts. The modified active carbon has the better performances in most cases, but it is proved to have negative effects on the removal of H2S. For example, active carbon’s absorption capacity of H2S will decrease when the crystals of alkali or metal salts block the pores which act as adsorption site. The price of impregnated active carbon is higher than unmodified activated carbon and the corrosion often occurs inevitably. It is necessary to study the most efficient way to improve the performance of unmodified active carbon. Thus, the effects of the inflow rate, the concentration of H2S, the size of unmodified activated carbon and the length of the fixed adsorption bed on activated carbon’s adsorption capacity of H2S and the breakthrough time through fixed adsorption column were investigated. The adsorption capacity of H2S was 1.20 and 1.86 mg/g when the effluent H2S concentration was 0.0124% and 0.0454% respectively. The adsorption capacity of H2S with the effluent rate of 0.15 L/min was 1.6 times that with the effluent rate of 0.30 L/min, and the adsorption capacity of H2S with the particle size of 0.84-2.00 mm was only 58% of that with the particle size of 0.42-0.84 mm. Therefore, it could enhance activated carbon’s adsorption capacity of H2S by increasing the inlet concentration of H2S, decreasing the inflow rate and utilizing the small-size particles. The adsorption process was modeled by Bangham equation. The H2S adsorption capacity of unmodified activated carbon could be well described by Bangham equation.
biogas; adsorption; desulfurization; activated carbon; Bangham equation
10.11975/j.issn.1002-6819.2016.09.026
S216.4
A
1002-6819(2016)-09-0187-06
史風梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰. 活性炭脫除模擬沼氣中H2S的動態(tài)試驗[J]. 農(nóng)業(yè)工程學報,2016,32(9):187-192.
10.11975/j.issn.1002-6819.2016.09.026 http://www.tcsae.org
Shi Fengmei, Pei Zhanjiang, Wang Su, Gao Yabing, Sun Bin, Liu Jie. Dynamic experiment of biogas desulfurization by activated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 187-192. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.026 http://www.tcsae.org
2015-10-07
2016-02-19
黑龍江省農(nóng)業(yè)科技創(chuàng)新工程重點項目(2013ZD001);哈爾濱市青年科技創(chuàng)新人才(2013RFQYJ17);哈爾濱市創(chuàng)新人才研究專項資金(2015RAQXJ056);黑龍江省農(nóng)業(yè)科學院引進博士人員科研啟動金(201507-37)
史風梅,女(漢族),山東莒縣人,副研究員,博士,從事沼氣的凈化及利用研究。哈爾濱 黑龍江省農(nóng)業(yè)科學院農(nóng)村能源研究所,150086。Email:ocean-water@126.com
※通信作者:劉杰,男(漢族),研究員,博士,從事生物質(zhì)能源的生產(chǎn)與利用研究。哈爾濱 黑龍江省農(nóng)業(yè)科學院農(nóng)村能源研究所,150086。Email:Liujie@163.com