• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental analysis on mechanical model of industrial hemp stalk

    2016-12-19 08:53:39ZhouYangLiXianwangShenChengTianKunpengZhangBinHuangJicheng
    關(guān)鍵詞:機(jī)械性能大麻莖稈

    Zhou Yang, Li Xianwang, Shen Cheng, Tian Kunpeng, Zhang Bin, Huang Jicheng

    (Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture, Nanjing 210014, China)

    Experimental analysis on mechanical model of industrial hemp stalk

    Zhou Yang, Li Xianwang, Shen Cheng※, Tian Kunpeng, Zhang Bin, Huang Jicheng

    (Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture, Nanjing 210014, China)

    In order to provide the mechanical parameters for the research on industrial hemp harvest machinery, the mechanical model for industrial hemp stalk is supposed with the knowledge of mechanics of composite material in the paper. To gain the mechanical parameters, the mechanical tests like tensile test, compressive test and bending test in the light of various directions and different fractions is carried out by utilizing the WDW-10 universal testing machine. All elastic parameters of mechanical model of industrial hemp stalk were achieved through analysis and calculation with composite material theory. All of the parameters were experimentally determined for industrial hemp stalks in order to find methods for mechanical harvest with minimum energy consumption. The xylem axis elasticity modulus is 1 343.5 MPa. The phloem radial elasticity modulus is 3 607.5 MPa. The stalk axis elasticity modulus are 1 743.50 MPa. The stalk radial compressive elasticity modulus is 88 MPa. The xylem shear modulus is 33.52 MPa. The stalk shear modulus is 31.99 MPa. According to the experiment, the hemp stalk has excellent mechanical properties, especially the performance of the phloem fiber. The test result of experiment shows that radial parameters of industrial hemp stalk accord with characteristics of composite material. It is a significant guidance in hemp cutter design. This study provided a theoretical foundation for in-depth exploration on hemp cutter design and optimization to make the hemp harvester satisfy the working requirement of high quality and low consumption.

    models; composite materials; elasticity; industrial hemp; stalk; experiments

    Biography:Zhou Yang, Male, Liaoning Province, Engaged in research on agricultural mechanization engineering. Nanjing Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture, 210014. Email:347100380@qq.com

    ※Corresponding Author:Shen Cheng, Male, Zhejiang Province, Assistant Professor, Engaged in research on agricultural mechanization engineering. Nanjing Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture, 210014. Email:shencheng1989@cau.edu.cn. Member of the Chinese Society of Agricultural Engineering: Shen Cheng (E041100063M)

    0 Introduction

    At present, the nations of cultivation of industrial hemp in the world about 30. Currently the main hemp producing regions in the world are China, Europe, and Canada[1]. For a long time, China has always been the largest hemp producing country in the world, with the planting area and output of hemp occupying over 30% of total amount in the world[2]. Hemp fiber is shorter than ramie and cotton fiber[3]. But, it has incomparable superiorities as a textile material. As an excellent natural material of textile fiber, it enjoys a high reputation all around the world.

    Hemp is a more sustainable annual energy crop[4]. In some respects during the whole production process of hemp, The quality of harvesting and fiber peeling are difficult to be controled. At present stage, we need more efficient hemp crops harvest and peeling machine[5-6]. In recent years, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences and Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture have conducted a large number of researches in mechanized harvesting and mechanical peeling[7-9]. Predecessor mostly carried out cutter and drying experiment, but lack of the study of mechanical properties of the materials[10-12]. The mechanical properties of crops fiber directly affect the working effect of equipment. Existing equipment cannot realize the purposes of high-quality, efficient and low-consumption. Ramie and hemp stalk have a big difference in physical properties and application. Hemp stalk is thicker and stronger than ramie stalk, so the modulus parameters are higher than ramie. It is also a significant guidance in hemp cutter design[13].The purpose of the experiment is to reveal the essence of hemp harvesting from mechanical mechanism aspects.

    This study provided a theoretical foundation for in-depth exploration on hemp cutter design and optimization combining test with calculation analysis, constitutive relation and material characteristics of hemp stalk were determining. In order to meet the purposes of the experiment, experimental process refer to the method of analyzing mechanical properties of stalk crops[14-16], like ramie, sugarcane, corn artemisia and sunflower stalk[17-20]. The paper established the mechanical model of crop stalk via composite material mechanics theory[21-22].

    1 Method of establishing mechanical model of stalk and determining parameters

    1.1 Assumption of geometrical model

    The cross section of hemp stalk approximates roundness, and the cross section is composed of central medulla, xylem, bast fiber layer (phloem) and green husk layer from inside to outside, as shown in Fig.1a.

    Fig.1 Geometrical model of hemp

    Central medulla is cystose, with loose structural tissue and irregular shape. Green layer is thin and crisp. Mechanical properties of these two can be ignored when compared with other parts. Hemp stalk has great differences among individuals and various parts, so its geometrical shape should be abstracted and simplified. It was supposed that section of hemp was a circular cross section with a certain diameter, and the material, diameter and wall thickness of different components were uniform. After central medulla and green husk layer were ignored, the geometrical shape of hemp would be a hollowed circular tube, composed of xylem and phloem which had different materials. Besides, a coordinate axis was established; Z axis was set up at the axial direction of stalk, and X axis and Y axis were established at the radial direction (as shown in Fig.1b).

    1.2 Elastic parameters of constitutive relation

    According to composite material mechanics theory, fractional characteristics of orthogonal anisotropic materials can be characterized by 9 engineering elastic parameters: axial elasticity modulus EZand radial elasticity modulus EXand EY; connatural plane axial shear modulus GXYand anisotropic plane axial shear modulus GYZand GXZ; connatural plane Poisson's ratio μXYand anisotropic plane Poisson's ratio μYZand μXZ. According to the geometrical shape assumption of hemp, hemp has characteristic of axis rotation and possesses an orthogonal & symmetric interface. Thus it is equipped with characteristics of transverse orthogonal anisotropic materials. Its engineering elastic parameters meet formula (1).

    Where EX, EYare radial elasticity modulus ,MPa; GXYis connatural plane axial shear modulus, MPa; GYZ, GXZare nisotropic plane axial shear modulus, MPa; μXYis connatural plane Poisson’s ratio; μYZand μXZare anisotropic plane Poisson’s ratio.

    1.3 Theoretical method of elastic parameter determination

    1) Firstly, external diameter, inner diameter and phloem thickness of hemp stalk samples were determined, and the volume ratios VM, VRof hemp stalk xylem and phloem to stalk were calculated according to formula (2).

    Where D is external diameter, mm; d is inner diameter, mm; h is phloem thickness, mm; VMand VRare the volume ratios.

    2) Elasticity modulus E can be gained by stress and strain according to formula (3). It need to be gotten from linear part of the curve after adjustment of curve.

    Where E is elasticity modulus, MPa; σ is stress in MPa; ε is strain.

    3) Axial tension test was conducted for various components via PC-controlled universal testing machine, to gain axial tensile elasticity modulus EZ2, EZ3and EZ1of xylem, phloem and stalk. Meanwhile, axial tensile elasticity modulus of various components was tested by utilizing the relational expression of composite material engineering constant (formula (4))[23].

    Where EZi(i=1, 2, 3) is axial elasticity modulus, MPa.

    4) Radial compression test was conducted for hemp stalk sample via PC-controlled universal testing machine, to gain radial compressive elasticity modulus EX1of stalk.

    5) Radial three-point bending test was conducted for xylem and stalk of hemp stalk sample via PC-controlled universal testing machine. By referring to the calculation formula of circular tube shear stiffness (formula (5)) and calculation formula of circular tube shear modulus (formula (6)) in Test Method for Flexural Properties of Sandwich Constructions (GB1456-2005), radial shear stiffness UYZ2& UYZ1and bending shear modulus GYZ2& GYZ1of xylem and stalk were obtained[24].

    Where U is shear stiffness, N; Δp represents load increment of elastic stage, N; L denotes span, mm; f indicates mid-span deflection increment, mm; f1refers to epitaxial deflection increment, mm; a means extrapolation length, mm.

    Where G is bending shear modulus, MPa.

    Bending shear modulus GYZ2and GYZ1of hemp xylem and stalk could be gained according to formula (7). Three-point bending test could not be conducted for hemp phloem, so its bending shear modulus must be calculated via the formula. According to the relational expression of composite material engineering constant, bending shear modulus GYZ3of hemp phloem could be derived. The derivation process is presented by formula (7).

    Where GYZ2and GYZ1are bending shear modulus of hemp xylem and stalk, MPa; GYZ3is bending shear modulus of hemp phloem, MPa.

    6) Axial torsional shear modulus could not be measured via PC-controlled universal testing machine. Therefore, connatural plane Poisson’s ratio μXY2, μXY3and μXY1of hemp stalk xylem, phloem and stalk were assumed as 0.3 by referring to Poisson's ratio of similar materials and combining with previous material research[25]. Then the axial torsional shear modulus GXYwas gained through formula (1).

    7) Parameter relationship (formula (8)) of orthogonal anisotropic material was derived according to composite material mechanics theory, and meanwhile anisotropic plane Poisson's ratio μYZwas derived according to the values of radial compressive elasticity modulus EX, axial tensile elasticity modulus EZand connatural plane Poisson's ratio μXY.

    Where μYZis anisotropic plane Poisson's ratio; μXYis connatural plane Poisson's ratio.

    2 Mechanical test

    2.1 Test equipment and materials

    2.1.1 Test equipment

    WDW-10 PC-controlled universal testing machine was adopted as mechanical test equipment, and see Fig.2a. Tensile and bending test force range was 2 kN and compressive test force range was 10 kN. The precision of force sensor and displacement sensor was within ±0.1%. Both universal testing machine and sensors are producted by Jinan Chuanbai Instrument Co., Ltd. In addition, other auxiliary tools included test fixture, vernier caliper, ruler, and inductive moisture instrument.

    2.1.2 Test materials

    Hemp of “Anhui Hemp No. 1” planted in Lu’an Hemp Comprehensive Test Station of China Agriculture Research System was selected and collected on 19 Jul, 2015.Test materials were cut from mature stem less than 30 cm from the bottom of hemp, and see Fig.2b.

    Eighty straight and healthy hemp stalks were selected as test materials. The external diameter and inner diameter at 25 cm above the bottom were measured, and phloem thickness after phloem was separated was measured. The average value was gained through data statistics. The average D of hemp stalk is 16.44 mm, the average d is 9.15 mm, and the averaged h of phloem is 0.61 mm, and see Table 1 for the test data. The volume ratio VMof xylem to stalk was calculated according to formula (2), and its value is 0.793; at the same time, the volume ratio VRof phloem to stalk was 0.207.

    Fig.2 Test equipment and test materials

    Table 1 Measurement data of physical components of hemp stalks

    The moisture content of experimental stem material about 66.33%-72.21%.

    2.2 Test method

    2.2.1 Tensile test

    The xylem, phloem and stalk samples were cut into rectangles with the length of 90 mm and width of 7-8 mm; the thickness remained unchanged and depended on the materials. Plate fixture was used to clamp the test materials, and the clamping part was wrapped with gauze to protect clamping part of the material. Pretension force (<5 N) was initiated, loading velocity of the test was 2 mm/min, and the test for xylem, phloem and stalk samples was repeated for 20 groups. Fracture damage occurred in the middle of sample. Elastic modulus of various tensile parameters can be gained by combining with formula (3).

    2.2.2 Compressive test

    The radial compressive stalk samples were cut into rectangles with the length of 10 mm and width of 6 mm; the thickness remained unchanged and depended on the materials. The axial compressive stalk test samples were cut into 20 cm long and the diameter remained unchanged and depended on the materials. Squeezing block was applied on the test samples, pretension force (<5 N) was initiated, loading velocity of the test was 0.5 mm/min, and the test for xylem, phloem and stalk samples was repeated for 10 groups. Elastic modulus of various compressive parameters can be gained by combining with formula (3).

    2.2.3 Bending test

    Xylem and stalk samples were test samples with the length of 110 mm, cross section of the test samples was tubular, and the external diameter and inner diameter depended on the materials. Geometrical parameters (external diameter and inner diameter) of various samples were measured via vernier caliper and the data were recorded. The samples were put between the support and pressure head of three-point bending test fixture, and span L of the support was 70 mm. Pretension force (<5 N) was initiated, loading velocity of the test was 5 mm/min, and the test for xylem and stalk samples was repeated for 10 groups.

    2.3 Test results

    2.3.1 Axial tensile test data about various components of stalk

    Axial tensile test was conducted for 20 groups of xylem, phloem and stalk samples. See Fig.3 for the stress-strain curves, and see Table 2.

    Fig.3 Axial tensile stress-strain curve

    Table 2 Data of axial tensile test of hemp

    Fig.3 presents exponentially increasing relationship between stress and strain. The curves have tendency of ascending first and sudden descending because of hemp fiber fractured gradually. The valid data needs to be gotten from linear part of the curve after adjustment of curve.

    According to the statistical calculation of axial tensile test, the average value of elasticity modulus EZ2in xylem is 1 343.50 MPa, the standard deviation is 373.23 MPa, the maximum value EZ2maxis 1 990 MPa, and the minimum value EZ2minis 730 MPa. The average value of elasticity modulus EZ3in phloem is 3 607.50 MPa, the standard deviation is 1 056.56 MPa, the maximum value EZ3maxis 5 350 MPa, and the minimum value EZ3minis 630 MPa. The average value of elasticity modulus EZ1in stalk is 1 743.50 MPa, the standard deviation is 484.98 MPa, the maximum value EZ1maxis 2 330 MPa, and the minimum value EZ1minis 780 MPa.

    2.3.2 Radial compressive test data about stalk

    Fig.4 presents linear growth relationship between stress and strain. The valid data needs to be gotten from linear part of the curve after adjustment of curve. Radial compressive test was conducted for 10 groups of stalk samples. See Fig. 4 for the stress-strain curves, and see Table 3 for the test data.

    Fig.4 Radial compressive stress-strain curve

    Table 3 Radial compressive result of hemp stalk

    2.3.3 Axial compressive test data about various components of stalk

    Fig.5 presents exponentially increasing relationship between stress and strain because of the woody structure broken in compression gradually. The valid data needs to be gotten from linear part of the curve after adjustment of curve. Axial compressive test was conducted for 10 groups of xylem, phloem and stalk samples. See Fig.4 for the stress-strain curves, and see Table 4 for the test data.

    Fig.5 Axial compressive stress-strain curve

    Table 4 Data of axial compressive test of hemp

    2.3.4 Radial bending test data about various components of stalk

    Radial bending test was conducted for 10 groups of xylem and stalk samples. See Fig.6 for the stress-strain curves, and see Table 5 for the test data.

    Fig.6 presents exponentially increasing relationship between force and deformation. The valid data needs to be gotten from linear part of the curve after adjustment of curve. According to the statistical calculation of radial bending test, the average value of shear modulus GXZ2in xylem is 33.52 MPa, the standard deviation is 11.99 MPa, the maximum value GXZ2maxis 61.38 MPa, and the minimum value GXZ2minis 19.45 MPa. The average value of shear modulus GXZ1in stalk is 31.99 MPa, the standard deviation is 9.56 MPa, the maximum value GXZ1maxis 48.85 MPa, and the minimum value GXZ1minis 16.76 MPa.

    Fig.6 Radial bending force-deformation curve

    Table 5 Data of radial bending test of hemp

    3 Result analysis

    3.1 Elastic parameters gained in the test

    The average diameter D of hemp stalk bottom is 16.44 mm, the inner diameter d is 9.15 mm, and the thickness h of phloem is 0.61 mm; the volume ratios of hemp stalk xylem and phloem to stalk are VM=0.793 and VR=0.207.

    Axial tensile elasticity modulus: xylem EZ2=1 343.5 MPa, phloem EZ3=3 607.5 MPa and stalk EZ1=1 743.50 MPa.

    Radial compressive elasticity modulus: Stalk EX1= 88 MPa.

    Anisotropic plane bending shear modulus: xylem GXZ2=33.52 MPa and stalk GXZ1=31.99 MPa.

    Connatural plane Poisson’s ratio: xylem μXY2, phloem μXY3and stalk μXY1are 0.3.

    3.2 Elastic parameters gained in calculation

    By substituting the values of EX1and μXY1into formula (1), connatural plane torsional shear modulus of various hemp stalk components can be gained: stalk GXY1=33.85 MPa.

    By substituting the values of GYZ1, GYZ2, VMand VRinto formula (7), anisotropic plane bending shear modulus of hemp phloem can be gained: GYZ3=32.28 MPa.

    By substituting the results into formula (8), anisotropic plane Poisson’s ratio can be obtained: stalk μYZ1<0.0252.

    3.3 Parameter analysis

    By integrating the elastic parameters gained in test and calculation together, elastic parameters of various hemp stalk components can be gained by combining with formula (1), as shown in Table 6.

    Table 6 Elastic parameters of each part of hemp stalk

    By substituting the values of EZ2, EZ3, VMand VRinto formula (4), it is obtained that EZ1calculation=1 812.148 MPa, while the value measured in the test is EZ1=1 743.50 MPa. These two have a difference, and the actually measured value EZ1approximates EZ2more. As for the reason, xylem and phloem of hemp are stuck together by relying on their own adhesive power, and the adhesive power cannot stop phloem from slipping on the surface layer of xylem. Because of different shapes, axial compressive elasticity modulus much larger than radial compressive elasticity modulus. At the same time, in bending test, the load-bearing effect of xylem is mainly reflected. Because of axial compressive without the influence factor, axial compressive modulus is much lower than axial tensile modulus.

    4 Conclusions

    The mechanical model of hemp stalk was assumed via composite material mechanics theory, data of mechanical parameters were obtained through mechanical test, and elastic parameters of various hemp stalk components were gained via data analysis and calculation. The xylem axis elasticity modulus is 1 343.5 MPa. The phloem radial elasticity modulus is 3 607.5 MPa. The stalk axis elasticity modulus are 1 743.50 MPa. The stalk radial compressive elasticity modulus is 88 MPa. The xylem shear modulus is 33.52 MPa. The stalk shear modulus is 31.99 MPa. The test result of experiment shows that radial parameters of hemp stalk accord with characteristics of composite material. And the results were experimentally determined for industrial hemp stalks in order to find methods for mechanical harvest with minimum energy consumption.

    [Reference]

    [1] Salentijn E M J, Zhang Qingying, Amaducci S, et al. New developments in fiber hemp (Cannabis sativa L.) breeding[J]. Industrial Crops and Products, 2015, 68(3): 32-41.

    [2] Wu Hongling, Jiang Shaojun, Ding Liwen. Property of hemp fiber and development of its product[J]. Wood textile Journal 2004, 32(6): 36-39. (in Chinese with English abstract)

    [3] Huang Cuirong, Yu Weidong. The spinning capability of hemp fiber and the studying getting on[J]. Journal of Wuhan University of Science and Engineering, 2006, 19(1): 35-38. (in Chinese with English abstract)

    [4] Finnan J, Styles D. Hemp: A more sustainable annual energy crop for climate and energy policy[J]. Energy Policy, 2013, 58(4): 152-162.

    [5] Lu Jiangnan, Long Chaohai, Ma Lan, et al. Research progress and suggestions on mechanized equipments for bast fiber crops in China[J]. Plant Fibers and Productions, 2013, 35(6): 307-312. (in Chinese with English abstract)

    [6] Liu Lijun, Lao Chengying, Zhang Na, et al. The effect of new continuous harvest technology of ramie (Boehmeria nivea L. Gaud.) on fiber yield and quality[J]. Industrial Crops and Products, 2013, 44(2): 677-683.

    [7] Long Chaohai, Lu Jiangnan, Ma Lan, et al. Research and application of ramie decorticating and processing machine[J]. Hunan Agricultural Machinery, 2011, 38(1): 1-4. (in Chinese with English abstract)

    [8] Li Xianwang, Zhang Bin, Wang Jinguo, et al. Design and experiment of crawler ramie combine harvester[J]. Chinese Agricultural Mechanization, 2013, 34(1): 123-125, 133. (in Chinese with English abstract)

    [9] Huang Jicheng, Li Xianwang, Zhang Bin, et al. Research on the 4LMZ160 crawler ramie combine harvester[J]. Journal of Agricultural Mechanization Research, 2015, 37(9): 155-163. (in Chinese with English abstract)

    [10] Li Xiaoping, Wang Siqun, Du Guanben, et al. Variation in physical and mechanical properties of hemp stalk fibers along height of stem[J]. Industrial Crops and Products, 2013, 42(1): 344-348.

    [11] Beaugrand J, Nottez M, Konnerth J, et al. Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location[J]. Industrial Crops and Products, 2014, 60(60): 193-204.

    [12] Marrot L, Lefeuvre A, Pontoire B, et al. Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17)[J]. Industrial Crops and Products, 2013, 51(6): 317-327.

    [13] Shen Cheng, Li Xianwang, Tian Kunpeng, et al. Experimental analysis on mechanical model of ramie stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 26-33. (in Chinese with English abstract).

    [14] Kronbergs E. Mechanical strength testing of stalk materials and compacting energy evaluation[J]. Industrial Crops & Products, 2000, 11(2): 211-216.

    [15] Aarseth K A, Prestl?kken E. Mechanical properties of feed pellets: Weibull analysis[J]. Biosystems Engineering, 2003, 84(3): 349-361.

    [16] Su Gongbing. Mechanical Modeling and Analysis of Finite Element Method for Ramie Stalk[D]. Huazhong Agricultural University, 2007. (in Chinese with English abstract)

    [17] Liu Qingting, Ou Yinggang, Qing Shangle, et al.Cutting force test of sugarcane stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 91-94. (in Chinese with English abstract)

    [18] Li Yaoming, Qin Tongdi, Chen Jin, et al. Experiments and analysis on mechanical property of corn stalk reciprocating cutting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 160-164. (in Chinese with English abstract)

    [19] Chen Cong, Zhu Haifeng, Zhou Yabo, et al. Experimentl study on mechanical properties of artemisia annua stem test[J]. Hunan Agricultural Michinery, 2014, 40(3) : 159-161. (in Chinese with English abstract)

    [20] ?nce A, U?urluay S, Güzel E, et al. Bending and shearing characteristics of sunflower stalk residue[J]. Biosystems Engineering, 2005, 92(2): 175-181.

    [21] Liu Qingting, Qu Yinggang, Qing Shangle, et al. Study progress on mechanics properties of crop stalks[J]. Transactions of The Chinese Society for Agricultural Machinery, 2007, 23 (7): 172-176. (in Chinese with English abstract)

    [22] Ma Fanzhong, Liu Jizhan. Review on mechanical testing of crop stalks[J]. Journal of Agricultural Mechanization Research, 2014, 36(8): 5-9. (in Chinese with English abstract)

    [23] Wang Shijie. Compound Material Mechanics[M]. Chongqing: Chongqing University Press, 1987.

    [24] Zhou Zhulin, Wan Yousheng, Yang Yundi, et al. Expanded application of state standard GB1456, 1997[C]//Composite Academic Essays. (in Chinese with English abstract)

    [25] Liu Zhaopeng, Xie Fangping, Wu Mingliang, et al. Study of mechanical property parameters of ramie bottom stalk in harvesting period[J]. Journal of Hunan Agricultural University: Natural Sciences, 2011, 37(3): 329-332. (in Chinese with English abstract)

    工業(yè)大麻莖稈力學(xué)模型的試驗(yàn)分析

    周 楊,李顯旺,沈 成※,田昆鵬,張 彬,黃繼承

    (農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)

    為了促進(jìn)工業(yè)大麻產(chǎn)業(yè)的快速發(fā)展,為大麻收獲機(jī)械的研究與設(shè)計(jì)提供物料的機(jī)械性能參數(shù)指標(biāo),作為收獲機(jī)具的研究依據(jù),該文通過(guò)綜合利用復(fù)合材料力學(xué)的基礎(chǔ)知識(shí)對(duì)工業(yè)大麻莖稈的機(jī)械物理模型進(jìn)行假定,再利用WDW-10萬(wàn)能試驗(yàn)機(jī)對(duì)工業(yè)大麻莖稈各組成部分分別進(jìn)行軸向拉伸、軸向和徑向壓縮、徑向彎曲等力學(xué)性能的試驗(yàn),從而獲得工業(yè)大麻莖稈的力學(xué)性能數(shù)據(jù),再通過(guò)復(fù)合材料理論的基礎(chǔ)知識(shí)進(jìn)行綜合分析與計(jì)算,獲得工業(yè)大麻莖稈力學(xué)模型的性能參數(shù),最后通過(guò)比較分析得出假定的數(shù)學(xué)模型基本可靠。通過(guò)試驗(yàn)得到的木質(zhì)部軸向彈性模量為1 343.5 MPa,韌皮層徑向彈性模量為3 607.5 MPa,莖稈的軸向彈性模量為1 743.50 MPa,莖稈的徑向壓縮彈性模量為88 MPa,木質(zhì)部異性面彎剪模量為33.52 MPa,莖稈異性面彎剪模量為31.99 MPa,木質(zhì)部、韌皮層、莖稈的同性面泊松比為0.3。通過(guò)試驗(yàn)數(shù)據(jù)可以看出,大麻莖稈的各組成部分具有優(yōu)異的機(jī)械性能,其中韌皮纖維的機(jī)械性能尤其突出。試驗(yàn)結(jié)果表明,工業(yè)大麻莖稈徑向結(jié)構(gòu)符合復(fù)合材料的特性。通過(guò)測(cè)量工業(yè)大麻的力學(xué)性能參數(shù),可為優(yōu)化工業(yè)大麻收獲機(jī)具的強(qiáng)度與剛度提供參考,使機(jī)具在收獲過(guò)程中的功耗最少、割茬質(zhì)量最高。

    模型;復(fù)合材料;彈性;工業(yè)大麻;莖稈;試驗(yàn)

    10.11975/j.issn.1002-6819.2016.09.004

    S563.3; S225.91+3

    A

    1002-6819(2016)-09-0022-08

    Zhou Yang, Li Xianwang, Shen Cheng, Tian Kunpeng, Zhang Bin, Huang Jicheng. Experimental analysis on mechanical model of industrial hemp stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 22-29. (in English with Chinese abstract)

    10.11975/j.issn.1002-6819.2016.09.004 http://www.tcsae.org

    周 楊,李顯旺,沈 成,田昆鵬,張 彬,黃繼承. 工業(yè)大麻莖稈力學(xué)模型的試驗(yàn)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):22-29. doi:10.11975/j.issn.1002-6819.2016.09.004 http://www.tcsae.org

    date:2015-10-17 Revision date:2016-03-01

    Fund of China Agricultural Research System (CARS-19-E22); The Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP,CAAS)

    猜你喜歡
    機(jī)械性能大麻莖稈
    為什么巢鼠喜歡在植物莖稈上或雜草叢中筑巢生存?
    工業(yè)大麻中大麻二酚的研究進(jìn)展
    中成藥(2021年5期)2021-07-21 08:38:48
    大麻二酚在醫(yī)學(xué)上的應(yīng)用前景
    谷子莖稈切割力學(xué)特性試驗(yàn)與分析
    高壓電纜大截面分割導(dǎo)體焊接后的機(jī)械性能及緩沖阻水層設(shè)計(jì)
    電線電纜(2018年4期)2018-08-31 05:57:30
    施肥量與施肥頻率對(duì)紫花苜蓿莖稈直徑及長(zhǎng)度的影響
    硫化溫度對(duì)硅橡膠絕緣線機(jī)械性能的影響
    電線電纜(2018年2期)2018-05-19 02:03:43
    大麻是個(gè)啥?
    華聲(2016年20期)2016-11-19 12:38:03
    γ射線輻照對(duì)超高分子量聚乙烯片材機(jī)械性能和結(jié)晶度的影響
    核技術(shù)(2016年4期)2016-08-22 09:05:24
    亞臨界電站鍋爐高溫過(guò)熱器管屏機(jī)械性能研究
    河南科技(2014年8期)2014-02-27 14:07:50
    www国产在线视频色| 日本a在线网址| 美女cb高潮喷水在线观看 | 一a级毛片在线观看| 听说在线观看完整版免费高清| 青草久久国产| 中文字幕久久专区| 不卡一级毛片| 久久久久久久久久黄片| 久久性视频一级片| 日韩欧美国产在线观看| 一级黄色大片毛片| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av| 国产激情久久老熟女| 美女被艹到高潮喷水动态| 日韩中文字幕欧美一区二区| 岛国视频午夜一区免费看| 亚洲五月天丁香| 精品日产1卡2卡| 欧美绝顶高潮抽搐喷水| 国产一区二区在线观看日韩 | 一个人观看的视频www高清免费观看 | 国产成人aa在线观看| 久久热在线av| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 亚洲av熟女| 国产成人欧美在线观看| 国内精品一区二区在线观看| 国产真人三级小视频在线观看| 最近视频中文字幕2019在线8| 国产美女午夜福利| 久久久久久久久中文| 人妻夜夜爽99麻豆av| 一二三四社区在线视频社区8| 免费观看的影片在线观看| www.熟女人妻精品国产| 久久香蕉精品热| 国产精品久久久久久精品电影| 夜夜爽天天搞| 高清在线国产一区| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看| 日本与韩国留学比较| 一级毛片精品| 一进一出抽搐gif免费好疼| 亚洲国产欧洲综合997久久,| a在线观看视频网站| 亚洲第一电影网av| 黄色成人免费大全| 国产成年人精品一区二区| 久久久久国内视频| 淫妇啪啪啪对白视频| 亚洲国产高清在线一区二区三| 欧美午夜高清在线| 欧美乱妇无乱码| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 国产精品,欧美在线| a级毛片在线看网站| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| 中国美女看黄片| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 深夜精品福利| 可以在线观看的亚洲视频| 99精品在免费线老司机午夜| 免费看a级黄色片| 久久久久久大精品| 中出人妻视频一区二区| 少妇熟女aⅴ在线视频| 五月伊人婷婷丁香| 色精品久久人妻99蜜桃| 丰满人妻熟妇乱又伦精品不卡| 免费av不卡在线播放| 国产蜜桃级精品一区二区三区| 国模一区二区三区四区视频 | 美女午夜性视频免费| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 久久久久亚洲av毛片大全| 综合色av麻豆| 成熟少妇高潮喷水视频| 精品国产亚洲在线| 国产午夜精品久久久久久| 亚洲成人久久爱视频| 怎么达到女性高潮| 日韩欧美精品v在线| 18禁美女被吸乳视频| 午夜福利成人在线免费观看| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 18禁观看日本| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久| 在线a可以看的网站| 黄片小视频在线播放| 国产淫片久久久久久久久 | 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 最新中文字幕久久久久 | 岛国在线观看网站| 亚洲精品色激情综合| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 国产精品久久视频播放| 真人做人爱边吃奶动态| 亚洲国产看品久久| 欧美乱妇无乱码| 窝窝影院91人妻| 男人舔女人的私密视频| 国产成人精品无人区| 亚洲国产精品久久男人天堂| 一区二区三区激情视频| 综合色av麻豆| svipshipincom国产片| 又紧又爽又黄一区二区| 亚洲av日韩精品久久久久久密| 国产精品美女特级片免费视频播放器 | 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久末码| 丁香六月欧美| 啦啦啦免费观看视频1| 一个人观看的视频www高清免费观看 | 国产一区二区三区视频了| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 欧美黑人欧美精品刺激| 在线免费观看不下载黄p国产 | 18美女黄网站色大片免费观看| 精品久久久久久久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | 狂野欧美激情性xxxx| 最新中文字幕久久久久 | 国产成人精品久久二区二区免费| 午夜福利欧美成人| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 日本免费a在线| 色av中文字幕| 99久久久亚洲精品蜜臀av| a级毛片a级免费在线| 中文字幕精品亚洲无线码一区| 又黄又粗又硬又大视频| 一进一出好大好爽视频| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| 噜噜噜噜噜久久久久久91| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 日本在线视频免费播放| 又粗又爽又猛毛片免费看| 18禁美女被吸乳视频| 欧美大码av| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 久久久国产成人精品二区| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 日韩有码中文字幕| 久久久久国产精品人妻aⅴ院| 国产成人系列免费观看| 丝袜人妻中文字幕| 国产1区2区3区精品| 精品人妻1区二区| 少妇裸体淫交视频免费看高清| 99久国产av精品| 亚洲欧美精品综合一区二区三区| 欧美黄色片欧美黄色片| 日本黄色片子视频| 亚洲专区国产一区二区| 亚洲无线在线观看| 精品久久久久久成人av| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 法律面前人人平等表现在哪些方面| 午夜两性在线视频| 午夜福利免费观看在线| 香蕉国产在线看| 可以在线观看毛片的网站| 国产黄片美女视频| 我的老师免费观看完整版| 美女扒开内裤让男人捅视频| 天堂网av新在线| 亚洲成av人片在线播放无| 日本黄大片高清| 91av网一区二区| 午夜免费观看网址| 久久中文字幕人妻熟女| 欧美日韩一级在线毛片| 国产又黄又爽又无遮挡在线| 国产精品98久久久久久宅男小说| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 亚洲成人久久爱视频| 免费观看精品视频网站| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久久久免费视频| h日本视频在线播放| 久久精品人妻少妇| 国产成年人精品一区二区| 色精品久久人妻99蜜桃| 国产v大片淫在线免费观看| 国产激情偷乱视频一区二区| 亚洲中文字幕一区二区三区有码在线看 | 色综合亚洲欧美另类图片| 国产高清有码在线观看视频| x7x7x7水蜜桃| 一级毛片精品| 我的老师免费观看完整版| 18禁国产床啪视频网站| 一夜夜www| 亚洲成a人片在线一区二区| 日韩大尺度精品在线看网址| 欧美日韩综合久久久久久 | 亚洲乱码一区二区免费版| 亚洲国产欧美人成| 色精品久久人妻99蜜桃| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 91字幕亚洲| 90打野战视频偷拍视频| 18禁黄网站禁片午夜丰满| 少妇的逼水好多| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 久久国产乱子伦精品免费另类| 两个人视频免费观看高清| 校园春色视频在线观看| 日本成人三级电影网站| 99精品欧美一区二区三区四区| 在线观看日韩欧美| 免费一级毛片在线播放高清视频| 久久久久亚洲av毛片大全| 一个人免费在线观看电影 | 在线视频色国产色| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 日本 av在线| 真人一进一出gif抽搐免费| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 这个男人来自地球电影免费观看| 成人精品一区二区免费| 亚洲片人在线观看| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 一进一出抽搐动态| www日本在线高清视频| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 国产一区二区激情短视频| 国产69精品久久久久777片 | 亚洲成人免费电影在线观看| 日韩三级视频一区二区三区| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清| 制服人妻中文乱码| 亚洲精品一区av在线观看| 日韩高清综合在线| 久久久久久久久中文| 99re在线观看精品视频| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美黄色片欧美黄色片| 欧美色欧美亚洲另类二区| 久久国产精品影院| 视频区欧美日本亚洲| www.熟女人妻精品国产| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 99久久精品一区二区三区| 亚洲成人中文字幕在线播放| 青草久久国产| 无限看片的www在线观看| 中文字幕人妻丝袜一区二区| www国产在线视频色| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 一夜夜www| 国产av麻豆久久久久久久| 草草在线视频免费看| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 亚洲国产看品久久| 热99re8久久精品国产| 免费av不卡在线播放| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 欧美日韩瑟瑟在线播放| 18禁国产床啪视频网站| 少妇的丰满在线观看| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 99久久99久久久精品蜜桃| 黄色女人牲交| 国产69精品久久久久777片 | 国产成人一区二区三区免费视频网站| 欧美日韩综合久久久久久 | 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| av中文乱码字幕在线| 国产精品久久久久久人妻精品电影| 日本在线视频免费播放| 999精品在线视频| 少妇裸体淫交视频免费看高清| 日韩欧美在线二视频| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 欧美中文日本在线观看视频| 免费av不卡在线播放| 19禁男女啪啪无遮挡网站| 国产美女午夜福利| 欧美精品啪啪一区二区三区| 国内揄拍国产精品人妻在线| 后天国语完整版免费观看| 看黄色毛片网站| 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 免费电影在线观看免费观看| 一进一出抽搐动态| 亚洲最大成人中文| 99精品欧美一区二区三区四区| 欧美色欧美亚洲另类二区| 黄色日韩在线| 天堂√8在线中文| 国产精品亚洲av一区麻豆| 一级黄色大片毛片| 国产三级黄色录像| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 视频区欧美日本亚洲| 色av中文字幕| 悠悠久久av| 岛国在线免费视频观看| 观看免费一级毛片| 亚洲av成人不卡在线观看播放网| 搡老妇女老女人老熟妇| 观看免费一级毛片| 亚洲美女黄片视频| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 精品久久久久久久末码| 波多野结衣巨乳人妻| 久久99热这里只有精品18| 亚洲人成电影免费在线| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 国产亚洲av高清不卡| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区| 久久香蕉精品热| 黄色视频,在线免费观看| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清| 欧美国产日韩亚洲一区| 两个人的视频大全免费| 宅男免费午夜| 久久久国产成人免费| 99久久精品一区二区三区| 不卡一级毛片| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 美女免费视频网站| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 深夜精品福利| 两人在一起打扑克的视频| 亚洲中文字幕一区二区三区有码在线看 | 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9 | 国产精品av久久久久免费| 精品久久久久久成人av| 日本黄大片高清| 日日干狠狠操夜夜爽| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 免费搜索国产男女视频| 免费在线观看日本一区| 一区福利在线观看| 热99re8久久精品国产| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 久久精品国产清高在天天线| 99国产精品一区二区蜜桃av| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 99热6这里只有精品| 欧美日韩精品网址| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 99re在线观看精品视频| 99热6这里只有精品| 国产黄色小视频在线观看| 国产爱豆传媒在线观看| 亚洲黑人精品在线| 久久精品国产综合久久久| 亚洲激情在线av| 麻豆国产av国片精品| av天堂中文字幕网| 国产精品av久久久久免费| 99热精品在线国产| 最新中文字幕久久久久 | 99国产精品99久久久久| 亚洲美女视频黄频| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 亚洲,欧美精品.| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 1024手机看黄色片| 又紧又爽又黄一区二区| а√天堂www在线а√下载| 少妇的逼水好多| 国产精品一区二区三区四区久久| 欧美国产日韩亚洲一区| 亚洲成人精品中文字幕电影| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 国产熟女xx| 90打野战视频偷拍视频| 国产在线精品亚洲第一网站| avwww免费| 国产日本99.免费观看| 欧美乱码精品一区二区三区| 草草在线视频免费看| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 久久亚洲真实| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| 亚洲人与动物交配视频| 两个人的视频大全免费| 毛片女人毛片| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 国产伦一二天堂av在线观看| 久久久久久大精品| 亚洲 欧美一区二区三区| 在线免费观看的www视频| 色尼玛亚洲综合影院| avwww免费| 99久久综合精品五月天人人| 午夜福利18| 久久久久性生活片| 一区二区三区高清视频在线| 午夜免费激情av| 免费无遮挡裸体视频| 成人午夜高清在线视频| 国产免费男女视频| 欧美性猛交╳xxx乱大交人| 亚洲中文日韩欧美视频| 深夜精品福利| 中文字幕最新亚洲高清| 久久精品夜夜夜夜夜久久蜜豆| 欧美3d第一页| av天堂在线播放| 精品无人区乱码1区二区| 97碰自拍视频| 黄色片一级片一级黄色片| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| 欧美三级亚洲精品| 国产成人影院久久av| 日韩精品中文字幕看吧| 观看美女的网站| 91在线观看av| 成在线人永久免费视频| 成人精品一区二区免费| 琪琪午夜伦伦电影理论片6080| 一级毛片精品| 久久久国产精品麻豆| 亚洲中文日韩欧美视频| 久久久久久大精品| 中文字幕高清在线视频| 九色成人免费人妻av| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 久久国产精品人妻蜜桃| 黄片小视频在线播放| 最近最新中文字幕大全电影3| 久久久久久久久久黄片| 亚洲人成网站高清观看| 国产成年人精品一区二区| 观看免费一级毛片| 免费电影在线观看免费观看| 午夜久久久久精精品| 精品国产美女av久久久久小说| 精品日产1卡2卡| 国产不卡一卡二| 色综合欧美亚洲国产小说| www日本黄色视频网| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 国产69精品久久久久777片 | 夜夜爽天天搞| 99国产精品一区二区三区| а√天堂www在线а√下载| 成人永久免费在线观看视频| 观看美女的网站| 黑人操中国人逼视频| 叶爱在线成人免费视频播放| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| netflix在线观看网站| 舔av片在线| 国产亚洲精品一区二区www| 免费大片18禁| 亚洲国产日韩欧美精品在线观看 | 偷拍熟女少妇极品色| 欧美日本视频| 叶爱在线成人免费视频播放| 国产成+人综合+亚洲专区| 黄频高清免费视频| 成年版毛片免费区| 国产精品久久视频播放| 亚洲成人免费电影在线观看| 禁无遮挡网站| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器 | 色综合亚洲欧美另类图片| 99久久成人亚洲精品观看| 久久中文看片网| 精品国产乱子伦一区二区三区| 国产成人福利小说| 色综合婷婷激情| 免费大片18禁| 国产精品乱码一区二三区的特点| 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 亚洲av成人精品一区久久| 亚洲中文av在线| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 成人无遮挡网站| 国产午夜福利久久久久久| 成人av在线播放网站| 国产三级中文精品| 亚洲一区高清亚洲精品| 少妇丰满av| 观看免费一级毛片| 国产黄a三级三级三级人| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 特级一级黄色大片| 99久久无色码亚洲精品果冻| 久久香蕉精品热| av女优亚洲男人天堂 | bbb黄色大片| 日韩成人在线观看一区二区三区| 舔av片在线| 国产91精品成人一区二区三区| 伦理电影免费视频| 国产成年人精品一区二区| 中文字幕久久专区| 亚洲性夜色夜夜综合| 色老头精品视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲色图 男人天堂 中文字幕| 波多野结衣高清无吗| 亚洲第一欧美日韩一区二区三区| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全电影3| 亚洲精品美女久久久久99蜜臀| 看黄色毛片网站| 狠狠狠狠99中文字幕| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 午夜福利18| 在线播放国产精品三级| 男女做爰动态图高潮gif福利片| 久久久久久久久免费视频了| 久久久久久大精品| 两性午夜刺激爽爽歪歪视频在线观看|