高保東, 張 巖, 唐文超, 趙 詔, 王 鑫, 徐 水, 朱 勇
(西南大學(xué) 生物技術(shù)學(xué)院, 重慶 400715)
絲素基傷口敷料研究進(jìn)展
高保東, 張 巖, 唐文超, 趙 詔, 王 鑫, 徐 水, 朱 勇
(西南大學(xué) 生物技術(shù)學(xué)院, 重慶 400715)
目前絲素基傷口敷料的研究主要集中于應(yīng)用靜電紡技術(shù)制備含功能性物質(zhì)的理想傷口敷料。添加納米金屬和抗生素等功能成分雖可增強(qiáng)敷料的抗菌性,卻引發(fā)了細(xì)胞毒性與抗藥性,威脅生物體安全。基于此,從創(chuàng)造微濕傷口環(huán)境、增強(qiáng)抗菌性能、支持細(xì)胞生長(zhǎng)和刺激傷口愈合4個(gè)方面,綜述了近年來國(guó)內(nèi)外通過新型技術(shù)、復(fù)合多組分材料和功能成分制備絲素基傷口敷料的研究進(jìn)展;展望了以多組分天然材料為基材,利用新技術(shù)制備添加天然抗菌藥物敷料的廣闊前景,以期為絲素基傷口敷料的臨床應(yīng)用研究提供有益參考。
絲素; 傷口敷料; 傷口愈合; 靜電紡絲
絲素(SF)主要由非極性氨基酸(如:甘氨酸,丙氨酸)組成,是一種不溶于水的天然纖維蛋白[1-2]。SF擁有較優(yōu)的力學(xué)性能、良好的生物相容性、可降解性高,炎癥反應(yīng)微小,透氧性能好,易化學(xué)修飾和促進(jìn)傷口愈合等特性[3],因此,以絲素為基材的傷口敷料被廣泛應(yīng)用于傷口治愈。
傷口治愈包括3個(gè)階段:1)炎癥期,傷口收縮與止血,清除壞死組織;2)修復(fù)期,肉芽組織形成且上皮化;3)成熟期,毛細(xì)血管減少且新生纖維轉(zhuǎn)型[4-5],是一系列不同類型細(xì)胞、細(xì)胞因子和細(xì)胞外基質(zhì)相互作用的復(fù)雜過程。傷口敷料不應(yīng)滿足于對(duì)傷口的覆蓋,還應(yīng)以傷口治愈過程為依據(jù)。理想的傷口敷料需具備良好的力學(xué)性能、維持濕環(huán)境、吸收過多滲出液、阻礙病原體進(jìn)入、不繼發(fā)感染、更換容易、刺激傷口愈合且無毒、無炎癥反應(yīng)等特性[6-8],從而為傷口提供濕潤(rùn)清潔的環(huán)境,促進(jìn)傷口無痂皮愈合。
目前對(duì)絲素基傷口敷料的研究尚處于起步階段,雖然不同功能的絲素基敷料數(shù)目眾多,但是沒有任何一種敷料能夠滿足理想傷口敷料的所有要求?;诖耍疚陌凑詹煌δ茴愋蛯?duì)絲素基傷口敷料的研究進(jìn)展進(jìn)行歸類概述,期望對(duì)今后包括絲素基敷料在內(nèi)的傷口敷料的進(jìn)一步發(fā)展提供有益的參考。
使傷口始終處于濕潤(rùn)環(huán)境是傷口處理的標(biāo)準(zhǔn)過程[9],濕潤(rùn)的環(huán)境不僅有助于生長(zhǎng)因子釋放以及細(xì)胞增殖,而且促進(jìn)表皮細(xì)胞遷移,增強(qiáng)白細(xì)胞功能[10]。絲素基敷料創(chuàng)造濕潤(rùn)環(huán)境既要保證吸除多余的傷口滲出液,又要避免傷口干化,從而促進(jìn)傷口愈合。
1.1 可吸除多余傷口滲出液的敷料
鑒于三維的海綿敷料可吸除大量液體,殼聚糖具有較高的吸脹率和多孔率,有研究制備了再生絲素蛋白/殼聚糖/聚乙烯醇復(fù)合海綿狀傷口敷料,鼠傷口檢測(cè)顯示可吸收傷口滲出液體[11]。而絲素/N-(羥丙基三甲基)殼聚糖/聚乙烯醇復(fù)合海綿狀敷料的液體吸收量則達(dá)自身質(zhì)量的80%,水蒸氣轉(zhuǎn)化率[12]為(2 974±684) g/(m2·d1),能夠維持傷口濕潤(rùn)環(huán)境,以改善血管形成,促進(jìn)皮膚再生。有學(xué)者將殼聚糖和絲素蛋白共混,并用藻朊酸鹽二醛交聯(lián)固定得到吸水性和蒸汽滲透性均滿足敷料要求的膜敷料,經(jīng)測(cè)試該膜可以促進(jìn)細(xì)胞黏附和增殖[13]。
Roh等[14]制備了絲素蛋白/海藻酸鈉(SF/AA)復(fù)合海綿,并將SF海綿,AA海綿,SF/AA海綿和醫(yī)用敷料Nu GauzeTM(CONT)分別用于鼠全層皮膚傷口模型上進(jìn)行實(shí)驗(yàn)。組織觀察和免疫組織化學(xué)分析得出:相對(duì)其他3種敷料,SF/AA海綿明顯增加了再生上皮的面積和增殖細(xì)胞核抗原的數(shù)量。這不僅源于SF/AA敷料為海綿狀,而且當(dāng)AA和傷口滲出液接觸時(shí),AA中的Ca+和傷口滲出液中的Na+發(fā)生交換,并在傷口表面形成凝膠,從而吸收過多滲出液維持濕性環(huán)境,促進(jìn)傷口愈合[15]。
1.2 可避免傷口干化的敷料
傷口干燥會(huì)導(dǎo)致滲出物結(jié)痂,造成傷口黏連,換藥時(shí)引發(fā)二次傷痛。為此,Sorada等[16]成功制備了基于絲素蛋白的新型雙層傷口敷料。其中一層為無黏附層,是臘包裹的絲素織物。這層敷料直接接觸皮膚傷口,不僅阻止傷口脫水干化,使暴露的神經(jīng)末梢受到濕潤(rùn)等張力的保護(hù)[17],而且不與傷口發(fā)生黏連,避免了更換敷料可能引發(fā)的二次傷痛[18]。在此基礎(chǔ)上,Scradak等[19]分別用紫膠臘,蜂蠟和棕櫚蠟成功包裹了絲素蛋白織物,以進(jìn)一步優(yōu)化敷料的黏合性能,與商業(yè)傷口敷料Sofra-tulle相比,3種敷料均呈現(xiàn)較少的細(xì)胞附著和較弱的黏附力,可減輕病人痛苦和二次傷痛的風(fēng)險(xiǎn)。另外,該團(tuán)隊(duì)還將絲素和明膠混合溶于絲膠溶液并用戊二醛交聯(lián)制得傷口敷料。該敷料可持續(xù)地吸收傷口滲出液以滿足較長(zhǎng)的炎癥期,且與商業(yè)敷料Allevyn具備相似的脫水能力[20]。
病原微生物通過傷口侵入機(jī)體會(huì)引發(fā)傷口感染,傷口感染會(huì)引起組織損傷性病變的病理反應(yīng),從而影響傷口愈合速度。有研究利用納米金屬及其鹽類、人工合成聚合物、天然物質(zhì)增強(qiáng)絲素基傷口敷料的抗菌性,促進(jìn)傷口愈合。
2.1 添加納米金屬及其鹽類的敷料
2.1.1 添加銀鹽或納米銀類
銀鹽及納米銀是公認(rèn)的廣譜抗生物,被應(yīng)用于商業(yè)敷料中。有研究將納米銀嵌合到絲素蛋白纖維中經(jīng)體積分?jǐn)?shù)為1.25%~5.0%聚乙二醇二縮水甘油醚凝結(jié)制備得到傷口敷料(SFSD)。SFSD中的銀離子可在PBS溶液中持續(xù)穩(wěn)定地釋放,抗菌活性持續(xù)明顯。研究結(jié)果表明:SFSD敷料的治愈時(shí)間為(17.7±2.4)d,明顯短于豬非細(xì)胞真皮基質(zhì)[21]。Jeong等[22]利用靜電紡技術(shù)得到含有不同濃度磺胺嘧啶銀鹽(SSD)的絲素納米纖維。研究結(jié)果表明:隨著SSD含量的增加,抗菌性增強(qiáng),但細(xì)胞毒性也上升。還有學(xué)者通過靜電紡絲獲得含納米銀的絲素生物納米織物敷料,該敷料具備很好的抗金黃色葡萄球菌(Staphylococcusaureus)和綠膿桿菌(Pseudomonasaeruginosa)活性[23-24]。
2.1.2 添加納米TiO2類
TiO2納米顆粒無毒,價(jià)格低廉,并具有持久的抗菌性能,暴露在紫外光(UV)下會(huì)呈現(xiàn)更強(qiáng)的抗菌活性和光催化活性[25-26], UV-A光催化可強(qiáng)效地消滅大腸桿菌[27-28]。將絲素、TiO2靜電紡制成納米纖維并用于傷口敷料,研究結(jié)果表明,該敷料具備殺菌能力[29]。
2.2 人工合成聚合物復(fù)合敷料
聚乙烯亞胺(PEI)是聚陽離子抗菌物,通過靜電作用與帶負(fù)電的細(xì)胞結(jié)合,使細(xì)胞黏附于敷料上,并利用氨基作為能源維持細(xì)胞活性,促進(jìn)細(xì)胞生長(zhǎng)和增殖。Calamak等[30]采用靜電絲制備了PEI/SF抗菌納米纖維織物,該敷料在較長(zhǎng)的一段時(shí)間里有很好的抗菌活性,且阻止細(xì)菌黏附。然而,當(dāng)PEI用量達(dá)到30%時(shí),由于過多的正電荷,促細(xì)胞生長(zhǎng)效果下降。
2.3 可添加的天然抗菌物
2.3.1 葡聚糖
天然抗菌物質(zhì)是理想的敷料抗菌劑,Sukumar等[31]將仙人掌汁、葡聚糖和重組人表皮生長(zhǎng)因子(rhEGF)與絲素蛋白溶解混合后制備得到復(fù)合支架。支架用于傷口治療研究中,抗菌測(cè)試結(jié)果顯示:由于葡聚糖和rhEGF的存在,支架具備很強(qiáng)的抗大腸桿菌和金黃色釀膿葡萄球菌活性。
2.3.2 殼聚糖
殼聚糖由β-1,4 糖苷鍵連接的2-氨基-β-D葡萄糖組成,是經(jīng)甲殼素脫乙?;傻奶烊桓叻肿泳酆衔?,將其與絲素共混制備傷口敷料。研究結(jié)果表明:復(fù)合膜具有較好的抗菌活性[11-12],且其抗菌活性與殼聚糖的分子質(zhì)量、脫乙?;潭?、取代基類型、正電荷密度以及細(xì)菌的類型有關(guān)[32-33]。
2.3.3 黏菌素
抗藥菌感染傷口是傷口治療的一個(gè)主要問題,為此研究人員制備了載有黏菌素抗菌劑的絲素膜,以抑制革蘭氏陰性菌綠膿桿菌。用不同濃度的黏菌素絲素膜處理傷口,所有膜均有抗菌活性,且抗菌活性高度依賴黏菌素濃度,高質(zhì)量濃度黏菌素膜(270 mg/mL)可完全清除革蘭氏陰性菌綠膿桿菌,避免傷口感染[34]。
細(xì)胞附著、增殖和遷移需要合適的機(jī)械支撐物,而仿生、三維等結(jié)構(gòu)由于具有合適的纖維直徑、孔徑大小、孔隙率、張力等利于細(xì)胞生長(zhǎng)的特性,被廣泛應(yīng)用于絲素基傷口敷料。
3.1 仿生結(jié)構(gòu)
彈性蛋白(EL)是一種細(xì)胞外基質(zhì)蛋白,可為皮膚增添彈力和恢復(fù)力[35-37],由于其高度交聯(lián),不溶于水,在生物材料領(lǐng)域的應(yīng)用受到限制。將EL和SF復(fù)合,并經(jīng)冷凍干燥、京尼平(GE)交聯(lián)獲得具有仿生細(xì)胞外基質(zhì)效果的多孔SF/EL支架[38]。將支架用于燒傷傷口,研究結(jié)果表明:SF/EL支架可支持人纖維原細(xì)胞體外增殖,且EL含量高的支架能夠加速上皮再生和傷口緊縮。
Jesada等[39]則利用靜電紡絲和冷凍干燥技術(shù)制備了聚ε-己內(nèi)酯/絲素(PCL/SF)混合仿生纖維墊,并利用纖連蛋白對(duì)絲素包衣層表面修飾以提高生物功能。研究結(jié)果表明:相比平滑的PCL纖維,混合仿生墊具有更優(yōu)的支持人皮膚纖維原細(xì)胞黏附和增殖的能力。
3.2 三維結(jié)構(gòu)
3.2.1 電極化三維凝膠
電極化是給電介質(zhì)施加一個(gè)電場(chǎng)時(shí),由于電介質(zhì)內(nèi)部正負(fù)電荷的相對(duì)位移,產(chǎn)生電偶極子的現(xiàn)象。Okabayashi等[40]將羥基磷灰石(HA)粉加入到絲素蛋白(SF)中,經(jīng)電極化獲得pHA/SF混合凝膠,該凝膠具有3D結(jié)構(gòu),極高的孔隙率和毛表面。將該敷料、SF敷料,HA/SF敷料分別用于豬全層皮膚傷口檢測(cè)治療效果。研究結(jié)果表明:pHA/SF凝膠相比其他敷料對(duì)傷口愈合、上皮再生、基質(zhì)形成促進(jìn)效果明顯,有效提高了纖維原細(xì)胞成熟,這得益于pHA顆粒表面電極化形成的存儲(chǔ)電荷和pHA/SF凝膠的結(jié)構(gòu)特征。
3.2.2 靜電紡納米纖維
靜電紡納米纖維構(gòu)成的膜材料為三維結(jié)構(gòu),它不僅具有納米顆粒尺寸微小,比表面積高等優(yōu)點(diǎn),同時(shí)還具備機(jī)械穩(wěn)定性好,纖維膜孔徑小,孔隙率高,纖維連續(xù)性好等利于傷口愈合的特性[41]。有研究通過靜電紡純絲素蛋白蟻酸紡絲液,制備了絲素納米纖維傷口敷料。敷料纖維表面光滑,其圓形橫截面平均直徑為80 nm,范圍為30~120 nm;細(xì)胞活性實(shí)驗(yàn)結(jié)果表明:SF纖維促進(jìn)正常人角質(zhì)細(xì)胞和纖維原細(xì)胞黏附且存在I型膠原蛋白的傳播[42]。也有以HFIP/TFA為溶劑,靜電紡絲素蛋白/殼聚糖(SF/CS)復(fù)合納米纖維。該納米纖維膜隨著CS含量的下降,纖維直徑上升,纖維機(jī)械特征加強(qiáng);蘇木精和曙紅染色并細(xì)胞毒性(MTT)測(cè)試表明:該膜可體外促進(jìn)細(xì)胞黏附和增殖[32]。另有研究通過靜電紡絲制備了聚乳酸-羥基乙酸嵌段共聚物/絲素(PLGA/SF)混合膜,體外測(cè)試表明:PLGA/SF混合膜明顯促進(jìn)小鼠成纖維細(xì)胞(L929)的黏附和增殖[43]。鮑韡韡等[44]則采用靜電紡制備再生絲素/明膠納米纖維,人臍靜脈內(nèi)皮細(xì)胞(HUVECs)和L929培養(yǎng)實(shí)驗(yàn)結(jié)果表明:HUVECs及L929均能夠在納米纖維膜上黏附、生長(zhǎng)和增殖。
目前靜電紡被作為制備傷口敷料的一門技術(shù)廣泛使用,靜電紡絲素/天然聚合物復(fù)合納米纖維[45-46],絲素/人工合成聚合物復(fù)合納米纖維[30,38]和加載金屬及其鹽類絲素納米纖維均[22,24,47]可以支持細(xì)胞增殖和遷移,促進(jìn)傷口愈合。
4.1 含胰蛋白酶抑制子類
慢性傷口滲出液中,過量胰蛋白酶會(huì)降低生長(zhǎng)因子[48]和內(nèi)源性蛋白酶抑制劑的含量,導(dǎo)致膠原蛋白、彈性蛋白和纖連蛋白酶解以致細(xì)胞間基質(zhì)降解[49]。將基于Bowman-Birk抑制子 (BBI)反應(yīng)活性環(huán)合成的小段肽嵌入角質(zhì)素/絲素蛋白復(fù)合傷口敷料膜,結(jié)果表明該膜可降低存在于慢性傷口的胰蛋白酶含量。即對(duì)于慢性傷口,這是一種創(chuàng)新的方式控制胰肽酶-抗胰肽酶的不平衡[50]。
4.2 含生長(zhǎng)因子類
Schneider等[51]制備出含有表皮細(xì)胞生長(zhǎng)因子(EGF)的絲素納米纖維絲墊。掃描電鏡圖片證實(shí)了EGF確實(shí)整合到絲墊中,并隨時(shí)間推移而緩慢釋放(170 h內(nèi)可釋放25% EGF)。組織觀察結(jié)果表明:絲墊可以治愈傷口,且與未功能化的傷口敷料相比表皮覆蓋傷口90%的時(shí)間縮短了3.5倍以上。Gil等[47]成功制備了3種類型的膜:絲素膜,薄片多孔絲素膜和靜電紡絲素納米纖維膜,并用EGF和磺胺嘧啶銀鹽(SSD)分別將膜功能化。研究結(jié)果表明:功能化絲素膜增加了傷口愈合速率,抵抗傷疤形成;所有膜均有治療傷口效果,多孔材料和功能化材料效果更快。
4.3 含黃芩甲苷類
黃芩甲苷(AS)作為中藥,可用于治療許多疾病。Shan等[52]采用靜電紡絲制備了含有AS的絲素蛋白(SF)/明膠(GT)納米纖維膜,以誘導(dǎo)灼傷傷口愈合,抵抗傷疤形成。相對(duì)SF/GT納米纖維,AS-SF/GT納米纖維在體外提高了細(xì)胞黏附和增殖(p<0.01);在體外斷層灼傷傷口中該膜通過刺激傷口緊縮加速傷口愈合,抑制傷疤形成(p<0.05)。AS 功能化的SF/GT膜可增加血管內(nèi)皮生長(zhǎng)因子的表達(dá),存在于血液的前體細(xì)胞通過血管遷移至傷口部位誘導(dǎo)皮膚再生[53-54]。
4.4 含殼聚糖類
殼聚糖通過分子鏈解聚形成的單體可刺激傷口處成纖維細(xì)胞生長(zhǎng)、透明質(zhì)酸合成以及膠原蛋白沉積[55]。殼聚糖/絲素/聚乙烯醇復(fù)合海綿膜用于鼠傷口研究,組織切片表明,12 d后維管向內(nèi)生長(zhǎng),皮膚生長(zhǎng)快于對(duì)照組[11]。
絲素基傷口敷料不僅呈現(xiàn)出創(chuàng)造微濕環(huán)境、支持細(xì)胞生長(zhǎng)、抗菌和分子水平上刺激傷口愈合的功效,而且具備良好的生物相容性,表明其作為生物敷料具有潛在的應(yīng)用價(jià)值。目前絲素基傷口敷料的研究尚處于起步階段,雖然功能異同的絲素基敷料種類繁多,但仍未開發(fā)出多種功能優(yōu)勢(shì)集于一體的理想敷料。因此,未來敷料的研究重點(diǎn)應(yīng)趨向多組分材料和新技術(shù)功能優(yōu)點(diǎn)的結(jié)合,從而制備理想的絲素基傷口敷料。
相比人工合成聚合物、納米金屬及其鹽類,天然材料具備無毒、無污染和更優(yōu)的生物相容性等特點(diǎn),但也存在一些問題,如:抗菌性能不足,不具仿生結(jié)構(gòu),多組分混合材料結(jié)構(gòu)穩(wěn)定性差等。因而,基于海藻酸鹽、殼聚糖以及絲素等天然材料,載入中醫(yī)藥物、生長(zhǎng)因子、天然抗菌藥物或接枝廣譜抗菌肽等,并利用靜電紡絲技術(shù)制備三維仿生結(jié)構(gòu),抑制微生物生長(zhǎng),支持細(xì)胞附著和增殖,刺激傷口愈合的理想傷口敷料可應(yīng)運(yùn)而生。
FZXB
[1] 向仲懷. 蠶絲生物學(xué)[M]. 2版. 北京: 中國(guó)林業(yè)出版社, 2005: 344-347. XIANG Zhonghuai. Biology of Sericulture[M]. 2nd ed. Beijing: Chinese Forestry Press, 2005: 344-347.
[2] 高欣, 張海萍, 陳宇, 等. 絲素蛋白多孔材料及其在組織工程的應(yīng)用[J]. 紡織學(xué)報(bào), 2008, 29(10): 132-136. GAO Xin, ZHANG Haiping, CHEN Yu, et al. Application of silk fibroin porous material in tissue engineering[J]. Journal of Textile Research, 2008, 29(10): 132-136.
[3] KIM S H, NAM Y S, LEE T S, et al. Silk fibroin nanofiber. electrospinning, properties, and struc-ture[J]. Polymer Journal, 2003, 35(2): 185-190.
[4] BOATENG, CATANZANO O. Advanced therapeutic dressings for effective wound healing: a review[J]. Journal of Pharmaceutical Sciences, 2015, 104(11): 3653-3680.
[5] FALANGA V. Wound healing and its impairment in the diabetic foot[J]. The Lancet, 2005, 366(9488): 1736-1743.
[6] PEI Hongna, CHEN Xiguang, LI Yan, et al. Characterization and ornidazole release in vitro of a novel composite film prepared with chitosan/poly(vinyl alcohol)/alginate[J]. Journal of Biomedical Research Part A, 2008, 85(2): 566-572.
[7] TSAO C T, CHANG C H, LIN Y Y, et al. Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials[J]. Carbohydrate Polymers, 2011, 84(2): 812-819.
[8] LIN Y H, LIN J H, PENG S F, et al. Multifunctional gentamicin supplementation of poly(γ-glutamic acid)-based hydrogels for wound dressing application[J]. Applied Polymers Science, 2011, 120 (2): 1057-1068.
[9] LIN Y H, LIN J H, WANG S H, et al. Evaluation of silver-containing activated carbon fiber for wound healing study: in vitro and in vivo[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100(8): 2288-2296.
[10] 張勁峰, 郝建波, 張勁鵬, 等. 生物敷料的研究進(jìn)展[J]. 中國(guó)修復(fù)重建外科雜志, 2015, 29(2): 254-258. ZHANG Jinfeng, HAO Jianbo, ZHANG Jinpeng, et al. Research progress of biomaterials[J]. Chinese Journal of Reparative and Recons tructive Surgery, 2015, 29(2): 254-258.
[11] YEO J K, LEE K G, KIM H C, et al. The effects of PVA/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats[J]. Europe PubMed Central, 2000, 23(10): 1220-1223.
[12] LI Xiaomeng, LI Binghui, MA Jun, et al. Development of a silk fibroin/HTCC/PVA sponge for chronic wound dressing[J]. Bioactive and Compatible Polymers: Biomedical Applications, 2014, 29(4): 398-411.
[13] GU Zhipeng, XIE Huixu, HAUNG Chengcheng, et al. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing[J]. International Journal of Biological Macromolecules, 2013, 58: 121-126.
[14] ROH D H, KANG S Y, KIM J Y, et al. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat[J]. Journal of Materials Science-Materials in Medicine, 2006, 17(6): 547-552.
[15] THOMAS A, HARDING K G, MOORE K. Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α[J]. Biomaterials, 2000, 21(17): 1797-1802.
[16] SORADA K, SIRIPORN D, JUTHAMAS R, et al. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing[J]. International Journal of Pharmaceutics, 2012, 436(1-2): 141-153.
[17] KAMOLZ L P, WILD T. Wound bed preparation: The impact of debridement and wound cleansing[J]. Wound Medicine, 2013, 1: 44-50.
[18] 代明盛, 王李云, 沈華強(qiáng). 濕性敷料與干性敷料在中厚供皮區(qū)上應(yīng)用的對(duì)比研究[J]. 實(shí)用醫(yī)學(xué)雜志, 2011, 27(1): 58-60. DAI Mingsheng, WANG Liyun, SHENG Huaqiang. Comparative study of wet dressing and dry dressing on the mid-thick skin area for the applica- tion [J]. The Journal of Practical Medicine, 2011, 27(1): 58-60.
[19] SORADA K, SIRIPORN D, JUTHAMAS R, et al. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing[J]. International Journal of Biological Macromolecules, 2013, 55: 88-97.
[20] SUKHONTHA H, RUNGNAPHA Y, PITHI C, et al. Physical and biological assessments of the innovative bilayered wound dressing made of silk and gelatin for clinical applications[J]. Journal of Biomaterials Applications, 2015, 29(9): 1304-1313.
[21] MIN Sijia, GAO Xin, HAN Chunmao, et al. Preparation of a silk fibroin spongy wound dressing and its therapeutic efficiency in skin defects[J]. Journal of Biomaterials Science-Polymer Edition, 2012, 23(1-4): 97-110.
[22] JEONG L, KIM M H, JUNG J Y, et al. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing[J]. International Journal of Nanomedicine, 2014, 9: 5277-5287.
[23] CALAMAK S, AKSOY E A, ERDOGDU C, et al. Silver nanoparticle containing silk fibroin bionano-textiles[J]. Journal of Nanoparticle Research, 2015, 17(2).
[24] PIMPON U, SUWIMOL J, PHIRIYATON S, et al. Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application[J]. Fibers and Polymers, 2012, 13(8): 999-1006.
[25] MIHAILOVIC D, SAPONJIC Z, RADOICIC M, et al. Functionalization of polyester fabrics with alginates and TiO2nanoparticles[J]. Carbohydrate Polymers, 2010, 79(3): 526-532.
[26] SKORB E V, ANTONOUSKAYA L I, BELYASOVA N A, et al. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2and TiO2: In2O3nanocomposite[J]. Applied Catalysis B: Environmental, 2008, 84(1-2): 94-99.
[27] LIU Yang, WANG Xiaolei, YANG Fan, et al. Excellent antimicrobial properties of mesoporous anatase TiO2and Ag/TiO2composite films[J]. Microporous and Mesoporous Materials, 2008, 114(1-3): 431-439.
[28] BARAM N, STAROSVETSKY D, STAROSVETSKY J, et al. Enhanced inactivation of E. coli bacteria using immobilized porous TiO2photoelectrocatalysis[J]. Electrochimica. Acta, 2009, 54(12): 3381-3386.
[29] JAO Winchun, YANG Mingchien, LIN Chienhong, et al. Fabrication and characterization of electrospun silk fibroin/TiO2nanofibrous mats for wound dressings[J]. Polymers for Advanced Technologies, 2012, 23(7): 1066-1076.
[30] CALAMAK S, ERDOGDU C, OZALP M, et al. Silk fibroin based antibacterial bionanotextiles as wound dressing material[J]. Materials Sciences & Engineering C-Materials for Biological Applications, 2014, 43: 11-20.[31] SUKUMAR N, RAMACHANDRAN T, LAKSHMIKA-NTHA C B. Development and characterization of cactus-dextrin-recombinant human epidermal growth factor based silk scaffold for wound dressing applications[J]. Journal of Industrial Textiles, 2014, 43(4): 565-576.
[32] CAI Zengxiao, MO Xiumei, ZHANG Kuihua, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications[J]. International Journal of Molecular Sciences, 2010, 11(9): 3529-3539.
[33] VINSOVA J, VAVRIKOVA E. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities: a review[J]. Current Pharmaceutical Design, 2011, 17(32): 3596-3607.
[34] STEINSTRAESSER L, TRUST G, RITTIG A, et al. Colistin-loaded silk membranes against wound infection with Pseudomonas aeruginosa[J]. Plastic and Reconstructive surgery, 2011, 127(5): 1838-1846.
[35] AYA R, ISHIKO T, NODA K, et al. Regeneration of elastic fibers by three-dimensional culture on a collagen scaffold and the addition of latent TGF-β binding protein 4 to improve elastic matrix deposition [J]. Biomaterials, 2015, 72: 29-37.
[36] FAURY G. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres[J]. Pathologie Biologie, 2001, 49(4): 310-325.
[37] MARTYN C, GREENWALD S. A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life[J]. Clinical and Experimental Pharmacology Physiology, 2001, 28(11): 948-951.
[38] VASCONCELOS A, GOMES A C, CAVACOPAULO A. Novel silk fibroin/elastin wound dressings[J]. Acta Biomaterialia, 2012, 8(8): 3049-3060.
[39] JESADA C, URACHA R, PITT S. Hybrid biomimetic electrospun fibrous mats derived from poly(ε-caprolactone) and silk fibroin protein for wound dressing application[J]. Applied Polymer Science, 2015, 132(11).
[40] OKABAYASHI R, NAKAMURA M, OKABAYASHI T, et al. Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009, 90B(2): 641-646.
[41] 丁彬, 俞建勇. 靜電紡絲與納米纖維[M]. 北京: 中國(guó)紡織出版社, 2011: 8. DING Bin, YU Jianyong. Electrospinning and Nanofibers[M]. Beijing: China Textile Press, 2011: 8.
[42] MIN B M, LEE G, KIM S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004, 25(7/8): 1289-1297.
[43] SHAHVERDI S, HAJIMIRI M, ESFANDIARI M A, et al. Fabrication and structure analysis of poly(lactide-co- glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications[J]. International Journal of Pharmaceutics, 2014, 473(1/2): 345-355.
[44] 鮑韡韡, 王曙東, 張幼珠, 等. 靜電紡再生絲素/明膠納米纖維的結(jié)構(gòu)與性能[J]. 紡織學(xué)報(bào), 2008, 29(3): 1-5. BAO Weiwei, WANG Shudong, ZHANG Youzhu, et al. Microstructure and property of electrospun regenerated silk fibroin gelatin nanofibers[J]. Journal of Textile Research, 2008, 29(3): 1-5.
[45] ZHANG X H, LAPLAN D L, WHARRAM S E, et al. Electrospun silk material systems for wound healing: US, 08728498[P]. 2014-05-20.
[46] YEO I S, OH J E, JEONG L, et al. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures[J]. Biomacromolecules, 2008, 9(4): 1106-1116.
[47] EUN S G, BRUCE P, EVANGELIA B, et al. Functionalized silk biomaterials for wound healing[J]. Advanced Healthcare Materials, 2013, 2(1): 206-217.
[48] CHUFA H, MARGARET A H, GEORGE W C, et al. Effects of chronic wound fluid on the bioactivity of platelet-derived growth factor in serum-free medium and its direct effect on fibroblast growth[J]. Wound Repair and Regener, 1999, 7(2): 97-105.
[49] DORNE R Y, BENEDICT, C N. The proteolytic environment of chronic wounds[J]. Wound Repair and Regener, 1999, 7(6): 433-441.
[50] ANDREIA V, ANA P P, LARA H, et al. Protein matrices for improved wound healing: elastase inhibition by a synthetic peptide model[J].Macromolecules, 2010, 11(9): 2213-2220.
[51] SCHNEIDER A, WANG X Y, KAPLAN D L, et al. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing[J]. Acta Biomaterialia, 2009, 5(7): 2570-2578.
[52] SHAN Yinghui, PENG Lihua, LIU Xin, et al. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound[J]. International Journal of Pharmaceutics, 2015, 479(2): 291-301.
[53] PENG L H, FUNG K P, LEUNG P C, et al. Genetically manipulated adult stem cells for wound healing[J]. Drug Discovery Today, 2011, 16(21/22): 957-966.
[54] PENG L H, TSANG S Y, TABATA Y, et al. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration[J]. Journal of Controlled Release, 2012, 157(3): 321-330.
[55] LU Baoyong, ZHENG Jian, CHEN Denglong, et al. Evaluation of a new type of wound dressing made from recombinant spider silk protein using rat models[J]. Burns, 2010, 36(6): 891-896.
Research progress of wound dressing based on silk fibroin
GAO Baodong, ZHANG Yan, TANG Wenchao, ZHAO Zhao, WANG Xin, XU Shui, ZHU Yong
(CollegeofBiotechnology,SouthwestUniversity,Chongqing400715,China)
At present, the research on silk fibroin wound dressing mainly focused on the preparation of ideal wound dressing containing functional material by electrostatic spinning technique. Although functional component including nano metal and antibiotics can enhance the antimicrobial properties of the dressing, the addition of such components triggers cellular toxicity and drug resistance, which was harmful to organisms. Therefore, from the creation of moist wound environment, enhancement of antibacterial activity, supporting cell growth and stimulating wound healing, this paper reviews the research progress of wound dressings based on silk fibroin including new technologies, combination of multicomponents, and functional materials at home and abroad in recent years. In addition, the broad prospects of wound dressing prepared by the addition of natural antibacterial into multicomponent natural materials are indicated. The research is expected to provide beneficial references for clinical application of wound dressings.
silk fibroin; wound dressing; wound healing; electrospinning
10.13475/j.fzxb.20150501107
2015-05-07
2016-01-13
國(guó)家農(nóng)業(yè)科技成果轉(zhuǎn)化資金資助項(xiàng)目(2012GB2F100376)
高保東(1990 —),男,碩士生。主要研究方向?yàn)槔w維化學(xué)。朱勇,通信作者,E-mail:zhuy@swu.edu.cn。
TQ 341.5
A