• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational design of iris folding patterns

    2016-12-14 08:06:06YukiIgarashiTakeoIgarashiandJunMitani
    Computational Visual Media 2016年4期

    Yuki Igarashi(),Takeo Igarashi,and Jun Mitani

    Research Article

    Computational design of iris folding patterns

    Yuki Igarashi1(),Takeo Igarashi2,and Jun Mitani3

    Iris folding is an art-form consisting of layered strips of paper,forming a spiral pattern behind an aperture,which can be used to make cards and gift tags.This paper describes an interactive computational tool to assist in the design and construction of original iris folding patterns.The design of iris folding patterns is formulated as the calculation of a circumscribed polygonal sequence around a seed polygon.While it is possible to compute the positions of vertices analytically for a regular polygon,it is not straightforward to do so for irregular polygons.We give a numerical method for irregular polygons,which can be applied to arbitrary convex seed polygons.The user can quickly experiment with various patterns using the system prior to constructing the art-form.

    craft;pattern;fabrication;user interface;novice users

    1 Introduction

    Iris folding is an art-form consisting of layered paper strips that form a spiral pattern behind an aperture, as shown in Fig.1.Iris folding is a simple and fun paper-folding technique that can be used to make greeting cards and gift tags.The design forms an irislike pinhole at the center,similar to that of an eye or a camera lens.In a typical workflow,a person first prepares a guide sheet(usually taken from a book), base sheet,and paper strips.She then cuts the base sheet making a hole as shown in the guide sheet.She places the base sheet on the guide sheet and pastesthe paper strips on the base sheet following the instructions shown in the guide sheet.After pasting all the paper strips,she turns the base sheet over to obtain the final result.

    1 Meiji University,Nakano-ku,164-8525,Japan.E-mail: yukim@acm.org().

    2 The University of Tokyo,Bunkyo-ku,113-0033,Japan. E-mail:takeo@acm.org.

    3 University of Tsukuba,Tsukuba-city,305-8573,Japan. E-mail:mitani@cs.tsukuba.ac.jp.

    Manuscript received:2016-08-27;accepted:2016-09-23

    Fig.1 (a)The end result viewed from the front.(b)A guide sheet.(c)–(f)The construction process viewed from the back.(c) The user first cuts out some paper and turns it over onto a guide sheet.(d)–(f)The user then pastes colored paper strips around the central polygon.

    There are several interesting geometric properties of iris folding patterns,which make the design of such patterns an intriguing mathematical problem. Although it can be easy to design basic iris folding patterns,even for novices,many of the more complex geometrical patterns must satisfy certain geometric constraints,as shown in Fig.2.It is typically difficult for novices to design such patterns.If the geometric constraints are not satisfied,paper is wasted because the design does not effectively use the width of the paper strips.In addition,manual construction takes more time as the number of required polygons increases.

    Fig.2 Problem:calculate the next polygon circumscribing the inner polygon such that the distance from the vertices of the polygon to the corresponding internal polygon edge is constant.

    This paper presents an interactive computational system to assist in the design and construction of original iris folding patterns that satisfy geometric constraints.Figure 3 shows an overview of the process.The user first inputs an outline and a seed polygon inside it.The system then automatically computes an iris folding pattern,i.e.,a series of strips around the seed polygon.The user can experiment with arbitrary polygons and color combinations prior to completing the pattern.

    The design of iris folding patterns requires the computation of a series of strips of equal width around the polygon.As shown in Fig.2,we formulate this design problem as the calculation of an offset polygonal sequence around an inner polygon, satisfying the constraint that the distance from the vertices of the polygon to the corresponding internal edge of the polygon must be constant(i.e.,the width of the paper strips is constant).In this manner, the system computes iris folding patterns around an arbitrary convex seed polygon.

    2 Related work

    Various interesting systems have been proposed recently to support the fabrication of physical objects using state-of-the-art graphics techniques. Mitani and Suzuki[1]presented a system for paper craft. Li et al.[2,3]presented systems for popup cards.

    As for two-dimensional objects,Coahranm and Fiume[4]reported a sketch-based design system for a specific quilting art-form,Bargello patterns. They described an algorithm that transforms sketched input data into graceful Bargello curves. Holly[5]is an interactive stencil design system for novices,providing a method for generating expressive stencils, where a user simply uses standard drawing operations and the system automatically generates the appropriate stencil satisfying constraints.Patchy[6]is an interactive system that can assist in the design of original patchwork patterns.The user designs original patchwork strokes,and can quickly experiment with various patterns prior to sewing.

    The pursuit curve of a polygon forms a geometric pattern similar to iris folding.It is defined as the trajectories of vertices starting from the corners of the polygon,and moving inwards pursuing the neighboring vertices[7].In the case of a triangle, three pursuit curves converge to a point known as the Brocard point.Although pursuit curves form similar patterns to those seen in iris folding,the definitions differ,and the analysis of pursuit curves cannot be applied directly to our problem.

    3 User interface

    Figure 3 shows an overview of the process.The user first inputs an outline and a seed polygon,as shown in Fig.3(a).Then it automatically computes an iris folding pattern(Fig.3(b)).The user can experiment with arbitrary polygons and color combinations prior to completing the pattern.The user can also apply textured rendering as shown in Fig.3(c).The user finally creates the physical pattern(Fig.3(d)).

    Fig.3 Overview of our system.(a)The user first inputs an outline S(blue line)and a seed polygon P(black line).(b)Then the system automatically computes a pattern for iris folding and(c)applies texture rendering.(d)The user finally creates the physical pattern.

    3.1 User inputs

    The user first inputs an outline polygon S and an internal convex seed polygon P inside S.The user can change the width w of the paper strips.The system provides two methods to input the outline S: the user can either draw a stroked line directly,or can load a black-and-white bitmap image and have the system trace the contour line using the marchingsquares algorithm[8].

    The user draws a polygon P,as shown in Fig.3(a). Arbitrary polygons can be designed by clicking on desried vertex positions for the polygon.The user can also draw a regular polygon by choosing one from a menu.The system automatically places the polygon at the center,and the user can drag it to a desired position.It is also possible to scale the polygon P.The default width of the paper strips is 10 mm;however,this can be changed using the menu.The user can change the orientation of the strips using the menu.

    3.2 Interactive design

    Once the outline S,the seed polygon P,and the strip width w have been determined,the system automatically generates a pattern for iris folding.If the user drags the vertices of the internal polygon P,the system updates the pattern in real time.The user can set the colors of the strips using a paint tool. By default,the system shows a design with n-sided polygons with n colors:see Fig.3(b).

    To create a shaded image,the system may also switch to visualization with shading,considering the layers of paper strips,as shown in Fig.4.Regions of the same color are grouped for previewing,and the system calculates a rendered image for each group.The user can preview the resulting image using a textured image of paper strips.It cannot be manipulated interactively while previewing the texture image,however,and the system switches to normal coloring mode whenever the user performs a dragging operation(Fig.5).

    Fig.4 The fill tool(left)and textured rendering(right).

    3.3 Construction guide

    The system ultimately outputs a pattern for use in construction.The user pastes paper strips onto the back of the main piece of paper,as shown in Fig.6.Therefore,the resulting guide sheet is flipped horizontally.The system also shows a step-by-step graphical presentation to aid the construction.

    4 Theoretical analysis

    This section provides a theoretical analysis of the geometric problem.The algorithm used in the current implementation is described in the next section.First we define the problem,and then we analyze regular seed polygons,followed by irregular seed polygons.

    4.1 Definitions

    The seed polygon P(input by the user)is defined as P0.The polygons formed using paper strips are defined as Pm(m=1,2,...). We consider the problem as determining Pm+1from Pmfor a given strip width w.The system first computes an offset polygon Pm',i.e.,the polygon that is obtained by offsetting each edge of Pmby the strip width w.

    Then it searches for the Pm+1that satisfies the following geometric constraints:(i)the vertices of the next polygon Pm+1should be located on the edge of the offset polygon Pm',and(ii)the edges of the next polygon Pm+1should pass through the vertices of the polygon Pm.

    Fig.5 Screen capture of our system.The user can interactively change the design by dragging the seed polygon.

    Fig.6 A step-by-step construction guide.

    4.2 Analytical solutions for regular polygons For a regular n-gon(n-sided polygon)Pm,it is possible to analytically calculate the angle of rotation and the scaling ratio that maintain the next polygon Pm+1as an n-gon.As shown in Fig.6,for an internal angle of the n-gon α and strip width w,the edge length l can be found.The system computes the angle of rotation θ whereby the vertices of the polygon Pm+1lie on the edges of the strip.

    The geometrical relations shown in Fig.7 can be expressed as follows:

    Eq.(1)can be rewritten as

    When L=1,we obtain the angle of rotation θ as follows:

    Fig.7 Iris folding geometry for a regular n-polygon.

    4.3 Numerical analysis for arbitrary polygons

    Now we describe a numerical approach for an arbitrary n-gon Pm.As shown in Fig.8,the vertices of an n-gon Pmare defined asin clockwise order.We put a point vstarton the edgeby varying the parameter t in the range[0, 1].The straight line l1passes through vstartand, and intersects the edgeat pointThe straight line that passes throughandis lineli+1,which intersects the edge betwee natThe straight line that passes through vstartandis line l0. The point where lines l0and ln-1intersect is v(t).The intersection between the trajectory of v(t)and the edge becomes

    Obtaining an explicit formula to compute Pm+1from Pmis overly complicated and difficult. Instead,we analyzed the problem numerically using interactive geometry software(Cinderella[9]).By varying t in the range 0 to 1,the trajectory of v(t) can be found,as shown in Fig.9.We observe that the trajectories are conic curves,and therefore we can calculate the value t for which the point v(t)is located on an edge of Pm'using bisection search. (The Appendix shows that the trajectory is a conic curve,with a quadratic equation,when the seed polygon is a triangle.)

    5 Algorithm

    We calculate the next polygon Pm+1from polygon Pmusing bisection search.The system computes the signed distance from v(t)to the corresponding edgeIf the user chooses a clockwise pattern, we search for the parameter t between[0,0.5];if the user chooses a counterclockwise pattern,we search

    for t between[0.5,1].After finding the value of t, the system generates Pm+1using the value.This is repeated until Pm?P(S),where P(S)includes the polygon of the desired outline S.

    Fig.8 Analysis of iris folding with arbitrary polygons.The aim is to find t such that v(t)is located on the edge

    Fig.9 By varying t from 0 to 1 on the pink edge of the offset polygon,the trajectory v(t)is found(red line).v(t)forms a part of a conic curve:for example,by varying t from ?100 to 100,the trajectory v(t)was found(blue line).We find the value t for which the point v(t)is located on the orange edge of the offset polygon.

    Because the trajectory is a conic curve,a solution does not always exist.The existence of a solution depends on the ratio of the strip width to the edge length of the polygon(see Fig.10).If a solution cannot be found,the system does not draw a pattern, but instead prompts the user to let the system search for another solution by moving some vertex of the internal polygon,or by changing the strip width w. If a solution still cannot be found,the system tells the user so.

    6 Results

    Fig.10 The existence of a solution depends on the ratio of the strip width to the length of the edges of the polygon.Here the ratio w/l was varied from 0.29 to 0.33,0.37,and 0.41(left to right).For w/l=0.37 and 0.41,a pattern could not be formed.

    A prototype of the system was implemented in Java running on a laptop computer with a 1.2 GHz processor and 2 GB RAM.We used this system to create designs for iris folding patterns, as shown in Fig.11.Users were allowed to experiment with various patterns using the system prior to beginning construction.A design session typically takes approximately 10–20 minutes,and construction takes about 1 hour.

    7 Conclusions and future work

    We have described an interactive design system for generating iris folding patterns.Users can quickly experiment with various patterns using the system before beginning practical work.

    In future,we plan to develop a method to handle multiple internal polygons.We also plan to investigate patterns formed with other constraints, such as symmetry and similarity to the original polygon. We also plan to investigate conditions for the existence of a polygon which circumscribes a polygon and inscribes a polygon. It is also an interesting problem to analyze the requirements concerning the shape of the internal polygon and the upper limit of the ratio of the strip width to the edge length of the polygon for a given shape.We also plan to consider how the system may determine

    which vertices it makes sense for the user to modify, and in which direction it should move,to guide the user to a feasible solution when an error occurs.

    Fig.11 Design examples created using our system.

    Appendix

    In this appendix,we show that the trajectory of Q is a conic curve(quadratic equation)when the seed polygon is a triangle.

    The vertices of a polygon Pmare defined as,in clockwise order,as shown in Fig.12.The system first computes an offset polygon Pm',i.e.,the polygon that is obtained by offsetting each edge of Pmby the strip width w.We put a pointon the edgeThe straight line l1passes throughand,and intersects the edgeat point. The straight line l2passes throughand.The straight line that passes throughandis line l0.The point where lines l0and l2intersect is.The intersection between trajectory ofand the edgebecomes

    In the following derivation,each occurrence of C represents a different constant value.

    We have five constraints as follows:

    Fig.12 Inner polygon Pmis given(input)and we observe how(x2,y2)moves as we move(x0,y0)on.

    We have six unknown values(x0,y0),(x1,y1), (x2,y2).We wish to get an expression relating x2and y2by eliminating the variables(x0,y0)and(x1,y1). Constraint(4)can be rewritten as

    Constraint(5)can be rewritten as

    Constraint(6)can be rewritten as

    (x0-X0)(y2-Y0)=(y0-Y0)(x2-X0) (11)

    Constraint(7)can be rewritten as

    (x1-X1)(y0-Y1)=(y1-Y1)(x0-X2) (12)

    Constraint(8)can be rewritten as

    (x1-X2)(y2-Y2)=(y1-Y2)(x2-X2) (13)

    To eliminate y0and y1,substitute Eqs.(9)and (10)into Eq.(11):

    (x0-X0)(y2-Y0)=(C x0+C)(x2-X0) (14)

    To eliminate y0and y1,substitute Eqs.(9)and (10)into Eq.(12):

    (x0-X1)(C x0+C)=(C x1+C)(x0-X1)(15)

    To eliminate y0and y1,substitute Eqs.(9)and (10)into Eq.(13):

    (x1-X2)(y2-Y2)=(C x1+C)(x2-X2) (16)

    Eq.(14)can be rewritten as

    Eq.(16)can be rewritten as

    To eliminate x0and x1we substitute Eqs.(17)and (18)into Eq.(14).We first rewrite Eq.(15)as

    C x0x1+C x0+C x1+C=0 (19)

    Eq.(17)can be rewritten as

    Eq.(18)can be rewritten as

    (a,b,c,d are linear combinations of x2and y2: a(x2,y2)=C x2+C y2+C).

    We substitute Eqs.(20)and(21)into Eq.(19), then multiply both sides by b(x2,y2)d(x2,y2).

    C a(x2,y2)c(x2,y2)+C a(x2,y2)d(x2,y2) +C c(x2,y2)b(x2,y2)+C b(x2,y2)d(x2,y2)=0

    This shows that the trajectory is a conic curve (quadratic equation in x2and y2)because all terms mutliply a linear combination of x2and y2by a linear combination of x2and y2.

    Acknowledgements

    We thank Kazushi Ahara for his comments.We also thank Takuya Sawada for his help in writing the paper. This work was supported in part by JSPS KAKENHI Grant Number 26240027.

    Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s41095-016-0062-4.

    [1]Mitani,J.;Suzuki,H.Making papercraft toys from meshes using strip-based approximate unfolding.ACM Transactions on Graphics Vol.23,No.3,259–263, 2004.

    [2]Li,X.-Y.;Shen,C.-H.;Huang,S.-S.;Ju,T.;Hu,S.-M.Popup:Automatic paper architectures from 3D models.ACM Transactions on Graphics Vol.29,No. 4,Article No.111,2010.

    [3]Li,X.-Y.;Ju,T.;Gu,Y.;Hu,S.-M.A geometric study of v-style pop-ups:Theories and algorithms.ACM Transactions on Graphics Vol.30,No.4,Article No. 98,2011.

    [4]Coahranm,M.;Fiume,E.Sketch-based design for Bargello quilts.In: Proceedings of Eurographics Workshop on Sketch-Based Interfaces and Modeling, 165–174,2005.

    [5]Igarashi,Y.;Igarashi,T.Holly:A drawing editor for designing stencils.IEEE Computer Graphics and Applications Vol.30,No.4,8–14,2010.

    [6]Igarashi,Y.;Mitani,J.Patchy: An interactive patchwork design system.In:Proceedings of ACM SIGGRAPH 2015 Posters,Article No.10,2015.

    [7]Peterson,I.Pursuing pursuit curves.2001.Available at https://www.sciencenews.org/article/pursuingpursuit-curves.

    [8]Lorensen,W.E.;Cline,H.E.Marching cubes:A highresolution 3D surface construction algorithm.ACM SIGGRAPH Computer Graphics Vol.21,No.4,163–169,1987.

    [9]Cinderella.The interactive geometry software.1998. Available at http://cinderella.de/.

    Yuki Igarashi is a senior assistant professor in interdisciplinary mathematical science at Meiji University. She received her Ph.D. degree from the Department of Engineering at the University of Tokyo in 2010.From 2010 to 2015,she was a JSPS research fellow at University of Tsukuba.Her research interests are in computer graphics and user interfaces.

    Takeo Igarashi is a professor in the CS Department at the University of Tokyo. He received his Ph.D.degree from the Department of Information Engineering at the University of Tokyo in 2000.His research interest is in user interfaces in general and his current focus is on interaction techniques for 3D graphics. He is known as the inventor of the sketch-based modeling system called Teddy,and received the Significant New Researcher Award at SIGGRAPH 2006.

    Jun Mitani is a professor at the University of Tsukuba.He received his Ph.D.degree in engineering from the University of Tokyo in 2004. He has been a professor at the University of Tsukuba since April 2015.His research interests are centered on computer graphics,especially geometric modeling techniques.He studies the geometry of curved origami as well as interactive design interfaces.

    Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    ? The Author(s)2016.This article is published with open access at Springerlink.com

    久久久国产成人免费| 欧美 亚洲 国产 日韩一| 99久久久亚洲精品蜜臀av| 男人舔女人下体高潮全视频| 一进一出好大好爽视频| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 免费在线观看影片大全网站| 无遮挡黄片免费观看| 免费av毛片视频| 亚洲七黄色美女视频| 成人av在线播放网站| 国产高清videossex| www日本在线高清视频| www.自偷自拍.com| 国产私拍福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 一a级毛片在线观看| 欧美zozozo另类| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 白带黄色成豆腐渣| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 中文字幕熟女人妻在线| 欧美成人性av电影在线观看| 亚洲九九香蕉| 久久中文字幕人妻熟女| 欧美性猛交╳xxx乱大交人| 国产精品精品国产色婷婷| 国产亚洲精品久久久久5区| 两个人视频免费观看高清| 免费看十八禁软件| 午夜精品在线福利| 亚洲成人久久爱视频| 中文字幕精品亚洲无线码一区| 又爽又黄无遮挡网站| 最新在线观看一区二区三区| 成人亚洲精品av一区二区| 免费在线观看日本一区| 一边摸一边做爽爽视频免费| 男女做爰动态图高潮gif福利片| 国产高清有码在线观看视频 | 亚洲电影在线观看av| 男女做爰动态图高潮gif福利片| 免费人成视频x8x8入口观看| 99久久综合精品五月天人人| 好看av亚洲va欧美ⅴa在| 又粗又爽又猛毛片免费看| 长腿黑丝高跟| 成年人黄色毛片网站| 一本精品99久久精品77| 国产精品免费视频内射| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯| 又爽又黄无遮挡网站| 特级一级黄色大片| 免费看a级黄色片| 淫秽高清视频在线观看| 国产成人av教育| 日日摸夜夜添夜夜添小说| 我的老师免费观看完整版| 美女高潮喷水抽搐中文字幕| 国产精华一区二区三区| 中文在线观看免费www的网站 | 国产熟女午夜一区二区三区| 99热这里只有是精品50| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影| 亚洲五月天丁香| 欧美中文综合在线视频| 亚洲av五月六月丁香网| 色噜噜av男人的天堂激情| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 国产亚洲精品av在线| 午夜免费成人在线视频| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 久久热在线av| av福利片在线观看| 国产蜜桃级精品一区二区三区| 一级片免费观看大全| 婷婷丁香在线五月| 成人永久免费在线观看视频| 午夜影院日韩av| 亚洲九九香蕉| 老司机午夜福利在线观看视频| 特级一级黄色大片| 亚洲国产精品999在线| 国产亚洲精品久久久久5区| 久久久久国产一级毛片高清牌| 欧美日韩瑟瑟在线播放| 国产一区在线观看成人免费| 亚洲黑人精品在线| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 精品久久久久久久末码| 中文在线观看免费www的网站 | 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久久电影 | 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 男人的好看免费观看在线视频 | 床上黄色一级片| 国产麻豆成人av免费视频| 男男h啪啪无遮挡| 又粗又爽又猛毛片免费看| av在线天堂中文字幕| 真人一进一出gif抽搐免费| 国内精品久久久久精免费| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美午夜高清在线| 丝袜人妻中文字幕| 最新美女视频免费是黄的| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 后天国语完整版免费观看| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 婷婷丁香在线五月| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 午夜免费成人在线视频| 亚洲七黄色美女视频| 亚洲第一电影网av| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 最近在线观看免费完整版| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区| 国产精品av久久久久免费| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 麻豆国产97在线/欧美 | 一级黄色大片毛片| 天堂√8在线中文| 午夜激情福利司机影院| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 夜夜爽天天搞| 欧美久久黑人一区二区| 18禁观看日本| 哪里可以看免费的av片| 国产视频内射| 欧美日韩精品网址| 免费在线观看完整版高清| 亚洲人成电影免费在线| 香蕉久久夜色| 亚洲片人在线观看| 禁无遮挡网站| 一区二区三区国产精品乱码| 五月伊人婷婷丁香| 又大又爽又粗| 成人精品一区二区免费| 美女午夜性视频免费| 男人的好看免费观看在线视频 | 狠狠狠狠99中文字幕| 日本三级黄在线观看| 999久久久精品免费观看国产| 久久久久久国产a免费观看| 国产成人欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 岛国视频午夜一区免费看| 1024手机看黄色片| 亚洲成av人片在线播放无| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 久久久久久久久中文| av在线播放免费不卡| 高清毛片免费观看视频网站| 看片在线看免费视频| 18禁黄网站禁片免费观看直播| 麻豆av在线久日| 亚洲 欧美一区二区三区| 亚洲自拍偷在线| 日韩大码丰满熟妇| 看片在线看免费视频| 啦啦啦免费观看视频1| 一本久久中文字幕| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 午夜精品在线福利| 成人永久免费在线观看视频| 国产精品一及| 国产成人av教育| 欧美日韩精品网址| 女生性感内裤真人,穿戴方法视频| 首页视频小说图片口味搜索| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品 | 波多野结衣高清无吗| av视频在线观看入口| 久久人妻av系列| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 窝窝影院91人妻| 成人三级黄色视频| www.www免费av| 看片在线看免费视频| 日韩精品免费视频一区二区三区| 国产真实乱freesex| 在线十欧美十亚洲十日本专区| 国产精品一及| 亚洲成a人片在线一区二区| 黄色成人免费大全| АⅤ资源中文在线天堂| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 免费观看人在逋| 男女那种视频在线观看| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| 久久亚洲精品不卡| 99久久国产精品久久久| av免费在线观看网站| 亚洲中文av在线| 国产激情久久老熟女| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| av有码第一页| 黄色丝袜av网址大全| 99国产极品粉嫩在线观看| 久久精品91无色码中文字幕| 成人精品一区二区免费| 少妇人妻一区二区三区视频| 久久午夜亚洲精品久久| 日本熟妇午夜| 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 在线观看一区二区三区| 三级毛片av免费| 在线a可以看的网站| videosex国产| 特大巨黑吊av在线直播| 午夜视频精品福利| 国产精品 国内视频| 91在线观看av| 亚洲男人天堂网一区| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| 色播亚洲综合网| 亚洲午夜理论影院| 国产精品一及| 婷婷丁香在线五月| 国产三级中文精品| 在线观看免费日韩欧美大片| 国产免费男女视频| 黄色视频不卡| 可以免费在线观看a视频的电影网站| 亚洲成人久久性| 亚洲国产精品成人综合色| 看片在线看免费视频| 国产免费av片在线观看野外av| 成年免费大片在线观看| 免费在线观看影片大全网站| 久久精品91无色码中文字幕| 国产免费男女视频| 久久精品综合一区二区三区| 亚洲天堂国产精品一区在线| 国产精品久久久av美女十八| 久99久视频精品免费| 国产精品免费视频内射| 午夜亚洲福利在线播放| 日日夜夜操网爽| 香蕉av资源在线| 91麻豆av在线| 午夜免费成人在线视频| 99精品久久久久人妻精品| av福利片在线观看| 性色av乱码一区二区三区2| 成人欧美大片| 精品国产美女av久久久久小说| 少妇的丰满在线观看| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 成人18禁在线播放| 亚洲国产精品999在线| 国产成人av教育| 亚洲欧美日韩东京热| 久久精品综合一区二区三区| 国产在线精品亚洲第一网站| 色噜噜av男人的天堂激情| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼| 免费看十八禁软件| 激情在线观看视频在线高清| 在线观看美女被高潮喷水网站 | 一级a爱片免费观看的视频| 好男人在线观看高清免费视频| 国产乱人伦免费视频| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 久久伊人香网站| 欧美av亚洲av综合av国产av| 99久久国产精品久久久| 中文亚洲av片在线观看爽| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 久久香蕉国产精品| 久久国产精品人妻蜜桃| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 2021天堂中文幕一二区在线观| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| av超薄肉色丝袜交足视频| 又黄又粗又硬又大视频| 中文字幕熟女人妻在线| 看片在线看免费视频| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 亚洲 国产 在线| 久久香蕉激情| 叶爱在线成人免费视频播放| 成人精品一区二区免费| 国产一区二区在线av高清观看| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av | 18禁美女被吸乳视频| 9191精品国产免费久久| 久久久久久大精品| 国产探花在线观看一区二区| 99热只有精品国产| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 特大巨黑吊av在线直播| 亚洲国产精品999在线| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 我的老师免费观看完整版| 成年人黄色毛片网站| 一区二区三区激情视频| 麻豆av在线久日| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| 国产亚洲精品一区二区www| 久久久久久大精品| 色综合婷婷激情| videosex国产| 色综合婷婷激情| 久久久国产精品麻豆| 可以在线观看毛片的网站| 天堂动漫精品| 啦啦啦观看免费观看视频高清| 岛国视频午夜一区免费看| 两个人看的免费小视频| 亚洲男人天堂网一区| 欧美久久黑人一区二区| 88av欧美| 精品一区二区三区av网在线观看| 国产高清视频在线观看网站| 久久国产精品人妻蜜桃| 岛国视频午夜一区免费看| 欧美久久黑人一区二区| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 波多野结衣高清作品| 怎么达到女性高潮| 黄色视频不卡| 天堂av国产一区二区熟女人妻 | 91大片在线观看| 国产精品,欧美在线| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 99re在线观看精品视频| 校园春色视频在线观看| 两个人免费观看高清视频| 亚洲第一电影网av| 丰满人妻一区二区三区视频av | 日韩大码丰满熟妇| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 夜夜看夜夜爽夜夜摸| 一本一本综合久久| 欧美一区二区精品小视频在线| 日本一区二区免费在线视频| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 欧美中文日本在线观看视频| 国产又色又爽无遮挡免费看| 蜜桃久久精品国产亚洲av| 国产免费av片在线观看野外av| 中文在线观看免费www的网站 | netflix在线观看网站| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 五月玫瑰六月丁香| 国产激情久久老熟女| 精品久久久久久,| 欧美中文日本在线观看视频| 亚洲全国av大片| 久久久久九九精品影院| 午夜两性在线视频| 久久久国产成人免费| 91字幕亚洲| e午夜精品久久久久久久| 国产在线观看jvid| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 99在线人妻在线中文字幕| 精品高清国产在线一区| 免费观看人在逋| 成人国产综合亚洲| 十八禁人妻一区二区| 我的老师免费观看完整版| 无人区码免费观看不卡| 亚洲欧美日韩无卡精品| √禁漫天堂资源中文www| 在线永久观看黄色视频| 亚洲第一电影网av| 亚洲av成人av| 亚洲午夜理论影院| 成人午夜高清在线视频| 777久久人妻少妇嫩草av网站| 一级片免费观看大全| 一区二区三区激情视频| 亚洲成人久久爱视频| 国产野战对白在线观看| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 一级毛片女人18水好多| 舔av片在线| 搞女人的毛片| 欧美成人一区二区免费高清观看 | 深夜精品福利| 国产精品一区二区免费欧美| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 欧美精品亚洲一区二区| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 女人高潮潮喷娇喘18禁视频| 国产熟女午夜一区二区三区| 全区人妻精品视频| 欧美黑人巨大hd| 不卡av一区二区三区| 国产精品精品国产色婷婷| 两个人的视频大全免费| 久久久久国内视频| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 国产亚洲欧美98| 国产av在哪里看| 中文字幕精品亚洲无线码一区| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 亚洲人成网站在线播放欧美日韩| 最近最新免费中文字幕在线| 亚洲一区中文字幕在线| 我要搜黄色片| 99久久99久久久精品蜜桃| 亚洲国产欧美人成| 丁香六月欧美| 变态另类丝袜制服| 99国产精品一区二区三区| 在线观看午夜福利视频| 久久精品人妻少妇| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 老司机深夜福利视频在线观看| 亚洲精品久久国产高清桃花| 精品电影一区二区在线| 特大巨黑吊av在线直播| www.999成人在线观看| 看黄色毛片网站| 久久久久久久精品吃奶| 我的老师免费观看完整版| 久久久久久亚洲精品国产蜜桃av| 黄色女人牲交| 成人一区二区视频在线观看| 亚洲七黄色美女视频| 亚洲电影在线观看av| 免费在线观看成人毛片| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 性色av乱码一区二区三区2| 午夜两性在线视频| 99久久精品国产亚洲精品| 国产高清激情床上av| 夜夜躁狠狠躁天天躁| 听说在线观看完整版免费高清| 精品福利观看| 国产真实乱freesex| 18禁黄网站禁片免费观看直播| 两个人看的免费小视频| 丝袜美腿诱惑在线| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 色综合亚洲欧美另类图片| 成人一区二区视频在线观看| 岛国在线免费视频观看| 亚洲成人久久性| 99久久综合精品五月天人人| 亚洲精品美女久久久久99蜜臀| 一本综合久久免费| 午夜福利视频1000在线观看| 亚洲美女黄片视频| 黑人欧美特级aaaaaa片| 欧美日韩乱码在线| 妹子高潮喷水视频| 免费看日本二区| 亚洲av美国av| 国产伦在线观看视频一区| 午夜免费激情av| 人人妻人人澡欧美一区二区| 黄色丝袜av网址大全| 一个人免费在线观看的高清视频| 久热爱精品视频在线9| 中文字幕精品亚洲无线码一区| 国产av一区二区精品久久| 成人精品一区二区免费| 亚洲精华国产精华精| 午夜视频精品福利| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| 亚洲一区中文字幕在线| 免费在线观看黄色视频的| 国内揄拍国产精品人妻在线| 99国产精品99久久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久亚洲av鲁大| 伦理电影免费视频| 国产精品av久久久久免费| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美98| 久久久久久久久久黄片| 无限看片的www在线观看| 国产亚洲av嫩草精品影院| 无遮挡黄片免费观看| 久久久精品大字幕| 精品久久久久久久毛片微露脸| 一本综合久久免费| 免费人成视频x8x8入口观看| 老司机在亚洲福利影院| 午夜免费激情av| 悠悠久久av| 美女 人体艺术 gogo| 欧美日本亚洲视频在线播放| 91麻豆av在线| 久久婷婷人人爽人人干人人爱| 亚洲精品国产一区二区精华液| 男女下面进入的视频免费午夜| 国产成人啪精品午夜网站| 国产精品久久久人人做人人爽| 男女那种视频在线观看| 18禁国产床啪视频网站| 脱女人内裤的视频| 久久久精品欧美日韩精品| 日本熟妇午夜| 18美女黄网站色大片免费观看| 国产一区二区三区视频了| 99久久国产精品久久久| 亚洲自拍偷在线| 日本三级黄在线观看| 99精品欧美一区二区三区四区| 久久 成人 亚洲| 日韩欧美免费精品| 国产精品国产高清国产av| a在线观看视频网站| 色哟哟哟哟哟哟| 免费在线观看成人毛片| 国产一区二区在线观看日韩 | 成人av一区二区三区在线看| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 欧美成人免费av一区二区三区| 国产精品九九99| 国产视频一区二区在线看| 成年女人毛片免费观看观看9| 国产一区二区在线av高清观看| 在线观看66精品国产| xxxwww97欧美| 一二三四社区在线视频社区8| 精品福利观看| av片东京热男人的天堂| 长腿黑丝高跟| 久热爱精品视频在线9| 欧美中文日本在线观看视频| 麻豆国产97在线/欧美 | 国产黄色小视频在线观看|