• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    花生胚小葉對卡那霉素的敏感性研究

    2016-12-13 09:08:11王鳳歡何美敬楊鑫雷崔順立穆國俊侯名語劉立峰
    花生學(xué)報(bào) 2016年2期

    王鳳歡,何美敬,楊鑫雷,崔順立,穆國俊,侯名語,劉立峰

    (教育部華北作物種質(zhì)資源實(shí)驗(yàn)室/河北省作物種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室/河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,河北 保定 071001)

    ?

    花生胚小葉對卡那霉素的敏感性研究

    王鳳歡,何美敬,楊鑫雷,崔順立,穆國俊,侯名語,劉立峰*

    (教育部華北作物種質(zhì)資源實(shí)驗(yàn)室/河北省作物種質(zhì)資源重點(diǎn)實(shí)驗(yàn)室/河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,河北 保定 071001)

    卡那霉素是植物遺傳轉(zhuǎn)化中常用的一種篩選劑。研究花生胚小葉對卡那霉素的敏感性,對建立利用卡那霉素篩選花生遺傳轉(zhuǎn)化的有效體系具有重要意義。以3個(gè)不同基因型花生弗落蔓生、麻油1-1和濮花23號為試驗(yàn)材料,通過計(jì)算胚小葉黃化率、叢生芽誘導(dǎo)率和生根數(shù)等,并觀察外植體的生長狀態(tài),研究不同濃度卡那霉素對胚小葉生長發(fā)育、叢生芽分化和叢生芽生根階段的影響,以期確定3個(gè)品種胚小葉各個(gè)分化階段的適宜篩選濃度。結(jié)果表明,不同基因型花生對卡那霉素的敏感性不同,弗落蔓生、麻油1-1和濮花23號胚小葉叢生芽分化篩選濃度依次為: 150mg/L、100mg/L和50mg/L;叢生芽生根篩選濃度分別為:弗落蔓生20mg/L、麻油1-1 20mg/L和濮花23號10mg/L。本研究篩選到不同品種胚小葉叢生芽分化和叢生芽生根階段的適宜卡那霉素濃度,為以花生胚小葉為外植體的花生遺傳轉(zhuǎn)化陽性植株的篩選奠定了基礎(chǔ)。

    花生;卡那霉素;基因型;敏感性

    花生在我國經(jīng)濟(jì)發(fā)展中占有重要地位,是我國重要的經(jīng)濟(jì)作物和油料作物[1]。隨著基因工程的發(fā)展,利用轉(zhuǎn)基因技術(shù)提高作物產(chǎn)量和品質(zhì)已成為重要的作物育種手段。近幾年在花生遺傳轉(zhuǎn)化中常用的轉(zhuǎn)化方法主要是農(nóng)桿菌介導(dǎo)法[2]。為了快速高效地獲得轉(zhuǎn)化體,轉(zhuǎn)化過程中利用抗生素進(jìn)行篩選是必不可少的。

    目前,在植物轉(zhuǎn)基因初步檢測中使用的篩選劑主要有抗生素類和氨基酸類,其中以抗生素類應(yīng)用較多??敲顾厥悄壳爸参镞z傳轉(zhuǎn)化中應(yīng)用最廣泛的一種篩選劑[3-4],已用于多種雙子葉植物的遺傳轉(zhuǎn)化[5-11]??敲顾厥褂玫臐舛纫虿煌贩N或相同品種的不同外植體類型而不同[12-16]。如果卡那霉素濃度太低,則不能充分抑制或殺死未轉(zhuǎn)化的細(xì)胞,從而造成假陽性率過高;若卡那霉素濃度過高,又抑制甚至殺死轉(zhuǎn)化細(xì)胞,導(dǎo)致不能得到足量的轉(zhuǎn)基因植株。為了使卡那霉素對植物材料具有很好的篩選作用,需要在目的基因轉(zhuǎn)化之前,對所研究的材料進(jìn)行選擇性抗生素敏感性試驗(yàn)。

    在花生的遺傳轉(zhuǎn)化研究中有關(guān)卡那霉素的敏感性篩選多見于單個(gè)生長階段的研究[12,17-18],而對卡那霉素在花生外植體整個(gè)生長階段敏感性的系統(tǒng)篩選研究報(bào)道較少[19]。本研究以3個(gè)不同基因型的花生胚小葉為外植體,研究其整個(gè)發(fā)育期階段在添加有不同濃度卡那霉素的培養(yǎng)基中的生長情況及狀態(tài),明確各個(gè)品種胚小葉外植體在各發(fā)育階段對卡那霉素的適宜篩選濃度,以期為進(jìn)一步花生的遺傳轉(zhuǎn)化和陽性植株的篩選提供試驗(yàn)依據(jù)。

    1 材料與方法

    1.1 材 料

    供試花生(ArachishypogaeaL.)品種為弗落蔓生、麻油1-1和濮花23號,均來自河北農(nóng)業(yè)大學(xué)花生研究所種質(zhì)資源庫。胚小葉萌發(fā)培養(yǎng)基:MSB5+30 mg/L蔗糖+6.95 mg/L瓊脂,pH5.8;叢生芽誘導(dǎo)培養(yǎng)基: MSB5+30 mg/L蔗糖+6.95 mg/L瓊脂+6 mg/L 6-BA+0.2 mg/L NAA,pH5.8;芽伸長培養(yǎng)基:MSB5+30 mg/L蔗糖+6.95 mg/L瓊脂+4 mg/L 6-BA+2 mg/L GA3+0.2 mg/L NAA,pH5.8;生根培養(yǎng)基:1/2 MSB5+30 mg/L蔗糖+6.95 mg/L瓊脂+1 mg/L NAA+0.2 mg/L IAA,pH 5.8。

    1.2 方 法

    1.2.1 花生無菌苗的培養(yǎng) 選擇大小一致的無病斑且種皮完好的花生種子,用無菌水沖洗1~2次后用吸紙吸干,先后浸于75%酒精中1 min、0.1% HgCl2溶液中15 min, 進(jìn)行表面消毒,再用無菌水漂洗4~5次,剝?nèi)シN皮,浸泡于無菌水中6~7 h之后剝?nèi)∨咝∪~外植體將其接種于萌發(fā)培養(yǎng)基上培養(yǎng)。取培養(yǎng) 8 d 的胚小葉外植體,接種于叢生芽誘導(dǎo)培養(yǎng)基上,誘導(dǎo)叢生芽,待叢生芽長1mm左右,將其轉(zhuǎn)入伸長培養(yǎng)基中生長,每21~25 d繼代一次,直到叢生芽伸長至4~5 cm 后,切下伸長苗轉(zhuǎn)入生根培養(yǎng)基中進(jìn)行生根培養(yǎng)。培養(yǎng)過程中的培養(yǎng)條件均為溫度(26±0.5)℃,光照16 h/d,光照強(qiáng)度18.75~25.00 μmol/(m2·s)。

    1.2.2 花生胚小葉分化的卡那霉素選擇壓的確定 取萌發(fā) 8 d 的花生胚小葉作為外植體,接種于含卡那霉素(Kan)的叢生芽誘導(dǎo)培養(yǎng)基上進(jìn)行敏感性試驗(yàn),卡那霉素的濃度梯度為:0 mg/L、50 mg/L、100 mg/L、150 mg/L和200 mg/L共5個(gè)處理,培養(yǎng)25 d 后調(diào)查生長情況。

    1.2.3 花生胚小葉叢生芽伸長的卡那霉素選擇壓的確定 取生長到1mm左右的無菌叢生芽接到含有卡那霉素的伸長培養(yǎng)基中,卡那霉素的濃度梯度分別為:0 mg/L、50 mg/L、100 mg/L、150 mg/L 和200 mg/L 5個(gè)處理,培養(yǎng)25 d后調(diào)查生長情況。

    1.2.4 花生胚小葉叢生芽生根的卡那霉素選擇壓的確定 取無菌的待生長到4~5 cm左右的伸長苗接到含有卡那霉素的生根培養(yǎng)基中,卡那霉素的濃度梯度分別為:0 mg/L、10 mg/L、20 mg/L、30 mg/L、40 mg/L和50 mg/L,培養(yǎng)25 d后調(diào)查生根情況。

    1.3 數(shù)據(jù)統(tǒng)計(jì)與分析

    叢生芽誘導(dǎo)率=(誘導(dǎo)出叢生芽的外植體/接種總外植體數(shù))×100%

    黃化率=(誘導(dǎo)出黃化的外植體數(shù)/接種總外植體數(shù))×100%

    全部數(shù)據(jù)采用Microsoft Excel 2003與統(tǒng)計(jì)分析軟件SPSS Statistics 17.0進(jìn)行分析。

    2 結(jié)果與分析

    2.1 卡那霉素對花生胚小葉生長發(fā)育的影響

    由圖1和圖2可以看出,花生弗落蔓生胚小葉外植體的三個(gè)生長發(fā)育時(shí)期對卡那霉素的敏感性存在差異,卡那霉素濃度在50 mg/L時(shí),胚小葉外植體愈傷發(fā)育時(shí)期的黃化率達(dá)到50%,愈傷組織發(fā)白,葉片黃化,后期將未黃化的組織轉(zhuǎn)入低濃度的卡那霉素培養(yǎng)基中也未能分化出芽點(diǎn),愈傷組織體積沒有增大,且顏色逐漸變?yōu)辄S褐色至死亡。叢生芽分化時(shí)期和伸長苗生長時(shí)期的黃化率分別為37.04%和26.67%,組織正常生長沒有明顯變化??敲顾貪舛?00 mg/L時(shí),胚小葉外植體的伸長苗生長對卡那霉素較其他兩個(gè)時(shí)期敏感,生長狀態(tài)表現(xiàn)為整個(gè)伸長苗只有最頂端葉片為淡綠色,葉柄和莖都已黃化至白化??敲顾貪舛仍?50 mg/L和200 mg/L時(shí),花生胚小葉外植體的三個(gè)生長時(shí)期的黃化率都達(dá)到100%。該結(jié)果表明,胚小葉外植體在它的不同生長發(fā)育時(shí)期對卡那霉素的敏感程度是存在差異的。因此以卡那霉素作為篩選標(biāo)記時(shí),在胚小葉培養(yǎng)的不同時(shí)期階段應(yīng)選擇不同的卡那霉素適宜篩選濃度,避免濃度過高或過低而影響篩選效果。

    圖 1 卡那霉素對胚小葉生長發(fā)育的影響Fig. 1 The effect of kanamycin on leaflet development

    圖 2 卡那霉素對胚小葉生長發(fā)育的影響Fig. 2 The effect of kanamycin on leaflet development注:1~5:卡那霉素的濃度依次為:0 mg/L、50 mg/L、100 mg/L、150 mg/L和200 mg/L;A~C:花生胚小葉不同生長發(fā)育階段依次為:愈傷階段、叢生芽階段和伸長階段。Note: 1~5: The concentration of kanamycin was 0 mg/L, 50 mg/L, 100 mg/L, 150 mg/L and 200 mg/L, successively;A~C: The different growth stages of peanut leaflets were callus stage, clustered shoots stage and elongation stages, successively.

    2.2 卡那霉素對不同花生基因型胚小葉分化的影響

    附表和圖3表明,不同濃度的卡那霉素對同一品種花生的叢生芽分化的影響具有顯著性差異,隨著卡那霉素濃度的提高,叢生芽率逐漸降低,說明卡那霉素能夠抑制花生叢生芽的生長。不同品種的花生胚小葉對卡那霉素的敏感性差異較大。當(dāng)未添加卡那霉素時(shí),3個(gè)品種都有較好的叢生芽率;當(dāng)卡那霉素的濃度為50 mg/L時(shí),濮花23號的胚小葉叢生芽的分化明顯受到抑制,胚小葉的叢生芽率降為53.33%,而弗落蔓生的胚小葉的叢生芽率為87.5%,麻油1-1的胚小葉的叢生芽率為85.83%;當(dāng)卡那霉素的濃度增加為100 mg/L時(shí),麻油1-1和濮花23號的胚小葉的叢生芽率降為51%以下,未分化叢生芽的胚小葉發(fā)生黃化轉(zhuǎn)為白化最后死亡。弗落蔓生對卡那霉素的敏感性較前2個(gè)品種低,在100 mg/L卡那霉素的選擇壓力下,胚小葉的叢生芽率仍在70%以上;當(dāng)卡那霉素的濃度達(dá)到200 mg/L時(shí),其抑制效應(yīng)達(dá)到最大,3個(gè)品種的叢生芽率都下降到50%以下。由于卡那霉素隨著濃度的增高對胚小葉的前期生長有明顯的抑制作用,因此在胚小葉生長初期不宜用過高的卡那霉素濃度以免影響后期的轉(zhuǎn)化植株的生長,同時(shí)不同品種對卡那霉素的敏感性不同,因此以叢生芽率50%為標(biāo)準(zhǔn)來確定各品種的初期最適篩選濃度。由此得出,花生胚小葉叢生芽分化的卡那霉素的適宜篩選濃度:弗落蔓生為150 mg/L,麻油1-1為100 mg/L,濮花23號為 50 mg/L。

    附表 卡那霉素對不同基因型花生叢生芽誘導(dǎo)率的影響 (%)

    注:同列不同大寫字母表示差異顯著水平 (p<0.01)。

    Note: The capital letter in the same column indicated the significance of difference at 0.01 level.

    圖 3 卡那霉素對不同基因型花生叢生芽的影響Fig. 3 The effect of kanamycin on clustered shoots of different genotypes of peanut注:1~5:卡那霉素的濃度依次為:0 mg/L、50 mg/L、100 mg/L、150 mg/L和200 mg/L;A~C:花生品種依次為:弗落蔓生、麻油1-1和濮花23號。Note: 1~5: The concentration of kanamycin was 0 mg/L, 50 mg/L, 100 mg/L, 150 mg/L and 200 mg/L,successively; A~C: Peanut genotypes were Fuluomansheng, Mayou1-1 and Puhua23, successively.

    2.3 對不同花生基因型胚小葉叢生芽生根的影響

    當(dāng)花生伸長苗轉(zhuǎn)入含有不同卡那霉素濃度的生根培養(yǎng)基中,經(jīng)過5 d的培養(yǎng),未添加卡那霉素的伸長苗開始生根,而添加卡那霉素的培養(yǎng)基中的伸長苗無一生根。經(jīng)過10 d的培養(yǎng)之后含有10 mg/L和20 mg/L卡那霉素的培養(yǎng)基中的伸長苗開始生根。隨著培養(yǎng)時(shí)間的增加,生長在未添加卡那霉素的培養(yǎng)基中的根越來越長,平均生根數(shù)量越來越多,而在含有卡那霉素的培養(yǎng)基中的伸長苗隨著培養(yǎng)基中卡那霉素濃度的增加,平均生根數(shù)量和平均根長度顯著下降(圖4~5)。從圖6可以看出,不同的基因型之間存在明顯差異,當(dāng)卡那霉素濃度為0 mg/L時(shí),三個(gè)品種的根系生長發(fā)達(dá),植株生長快??敲顾貪舛仍黾拥?0 mg/L時(shí),濮花23號的生根數(shù)量明顯下降,而麻油1-1和弗落蔓生變化不明顯;卡那霉素濃度為20 mg/L時(shí),濮花23號的伸長苗不能生根,弗落蔓生的伸長苗基部有少許的根長出,根細(xì)小而脆弱,麻油1-1的伸長苗能長出明顯根系;卡那霉素濃度為30 mg/L、40 mg/L時(shí),三個(gè)基因型花生伸長苗不能生根,逐漸變黑,植株枯萎而死亡。由此得出,不同品種花生胚小葉叢生芽生根的卡那霉素的適宜篩選濃度為:弗落蔓生為20mg/L,麻油1-1為20 mg/L ,濮花23號為 10 mg/L。

    圖 4 卡那霉素對不同基因型根系長度的影響

    圖 6 卡那霉素對不同基因型花生叢生芽生根的影響Fig. 6 The effect of kanamycin on rooting of clustered shoots of different genotypes of peanut注:1~5:卡那霉素的濃度依次為:0 mg/L、10 mg/L、20 mg/L、30 mg/L和40mg/L;A~C:花生品種依次為:麻油1-1、弗落蔓生和濮花23號。Note: 1~5: The concentration of kanamycin was 0 mg/L, 10 mg/L, 20 mg/L, 30 mg/L and 40 mg/L, successively.A~C: Peanut genotypes were Mayou1-1, Fuluomansheng and Puhua23, successively.

    3 討 論

    適宜的抗生素篩選濃度是提高花生遺傳轉(zhuǎn)化效率的影響因素之一,篩選濃度過高或過低均會(huì)影響轉(zhuǎn)化體的篩選效果。卡那霉素是植物遺傳轉(zhuǎn)化中常見的一種篩選劑,其使用的濃度因不同植物類型或相同品種的不同外植體類型而不同。張春濤等[5]研究表明,不同的大豆品種有其適宜的卡那霉素篩選濃度,子葉節(jié)分化時(shí),墾農(nóng)18為 40 mg/L、綏農(nóng)14 和墾農(nóng)4為 60 mg/L;張靜妮等[11]發(fā)現(xiàn)不同的紫花苜蓿品種在下胚軸分化階段,不同品種選擇壓分別為秘魯50 mg/L、富平和甘農(nóng)3號60 mg/L;不同的煙草品種在葉片分化和生根階段,不同品種適宜的卡那霉素篩選濃度也有所不同[10]??梢姡煌参锘蛲恢参锊煌贩N以及同一品種外植體不同生長階段之間對卡那霉素的敏感性均表現(xiàn)出顯著差異,導(dǎo)致卡那霉素在使用濃度的篩選時(shí)相差很多。因此對試驗(yàn)中將要用于轉(zhuǎn)化的外植體進(jìn)行系統(tǒng)篩選在植物轉(zhuǎn)基因研究中是非常必要的。

    張甲佳等[12]以花生胚小葉外植體作為材料,對不同卡那霉素濃度下的不同花生品種的敏感性研究表明,在愈傷發(fā)育時(shí)期,D16、花育22和魯花11三個(gè)品種的卡那霉素的臨界濃度分別為100 mg/L、200 mg/L和150 mg/L。胡曉君[19]以花生胚小葉外植體為材料,研究卡那霉素對再生芽叢的影響,結(jié)果表明,對于花生品種豐花1號和豐花2號,400 mg/L的卡那霉素濃度是轉(zhuǎn)基因再生芽叢和非轉(zhuǎn)基因再生芽叢篩選的臨界濃度。本試驗(yàn)研究了花生胚小葉對卡那霉素的敏感性,表明不同花生基因型之間存在明顯差異結(jié)果,與以上研究相一致,但本研究系統(tǒng)地從胚小葉外植體的整個(gè)生長階段進(jìn)行研究,通過對生長狀態(tài)的觀察綜合考慮后確定不同生長階段所使用的卡那霉素的適宜濃度。研究結(jié)果為,胚小葉叢生芽分化的卡那霉素篩選濃度:弗落蔓生為150 mg/L,麻油1-1為100 mg/L,濮花23號為50 mg/L;叢生芽生根的卡那霉素篩選濃度:弗落蔓生為20 mg/L,麻油1-1為20 mg/L,濮花23號為10 mg/L。

    根據(jù)本試驗(yàn),通過觀察外植體的生長狀況,在用卡那霉素進(jìn)行篩選轉(zhuǎn)化時(shí),適宜的繼代時(shí)間應(yīng)盡量控制在25 d,若培養(yǎng)時(shí)間過長,由于培養(yǎng)基的營養(yǎng)消耗,再生芽會(huì)出現(xiàn)生長不正常;同時(shí)由于卡那霉素長期處于培養(yǎng)基中,活性會(huì)下降,從而使非轉(zhuǎn)化芽也生長起來,因此在轉(zhuǎn)化研究中應(yīng)在適當(dāng)?shù)暮Y選時(shí)間內(nèi)進(jìn)行外植體及轉(zhuǎn)化芽的轉(zhuǎn)移,這不僅可以使轉(zhuǎn)化芽正常生長,同時(shí)也可避免在繼代過程中有非轉(zhuǎn)化芽出現(xiàn),影響篩選效果[20]。

    本研究篩選到不同花生品種胚小葉叢生芽分化和叢生芽生根階段的適宜卡那霉素濃度,為以花生胚小葉為外植體的花生遺傳轉(zhuǎn)化提供理論基礎(chǔ),應(yīng)用于花生遺傳轉(zhuǎn)化中可以有效提高轉(zhuǎn)化效率。

    [1] 潘月紅,錢貴霞. 中國花生生產(chǎn)現(xiàn)狀及發(fā)展趨勢[J]. 中國食物與營養(yǎng),2014,20(10):18-21.

    [2] 黃冰艷,張新友,苗利娟,等. 花生基因工程研究進(jìn)展[J]. 分子植物育種,2015,13(1):228-234.

    [3] 王紫萱,易自力. 卡那霉素在植物轉(zhuǎn)基因中的應(yīng)用及其抗性基因的生物安全性評價(jià)[J]. 中國生物工程雜志,2003, 23(6):9-13.

    [4] Yao J L, Cohen D, Atkinson R, et al. Regeneration of transgenic plants from the commercial apple cultivar Royal Gala[J]. Plant Cell Reports, 1995, 14(7):407-412.

    [5] 張春濤,朱洪德,殷奎德. 大豆子葉節(jié)對卡那霉素的敏感性研究[J]. 安徽農(nóng)業(yè)科學(xué),2012, 40(23):11584-11586.

    [6] Liu J M, Yin Y T, Li H, et al. Effects of antibiotics on seed germination of different rape cultivars [J]. Agricultural Science & Technology, 2013, 14(5):707-709,721.

    [7] 何云龍,段紅英,段志強(qiáng). 卡那霉素對擬南芥幼苗生長的影響[J]. 貴州農(nóng)業(yè)科學(xué),2010,38(3):12-14.

    [8] Ivarson E, Ahlman A, Li X, et al. Development of an efficient regeneration and transformation method for the new potential oilseed cropLepidiumcampestre[J]. BMC Plant Biol, 2013,13:115.[9] Li M R, Li H Q, Wu G J. Study on factors influencing Agrobacterium-mediated transformation ofJatrophacurcas[J]. J Mol Cell Biol, 2006, 39(1): 83-89.

    [10] 劉玉匯,張俊蓮,王蒂,等. 不同煙草品種對卡那霉素抗性及耐鹽性的差異[J]. 中國農(nóng)學(xué)通報(bào),2008,24(3):180-185.

    [11] 張靜妮,馬暉玲,曹致中. 紫花苜蓿不同品種對卡那霉素敏感性分析[J]. 草原與草坪,2005(5):32-35.

    [12] 張甲佳,張廷婷,徐娟,等. 不同花生品種對卡那霉素的敏感性研究[J]. 山東農(nóng)業(yè)科學(xué),2014,46(4):36-38.

    [13] 馬玲玲,魏延宏,朱華國,等. 棉花不同外植體對卡那霉素敏感性的研究[J]. 生物學(xué)雜志,2013,30(4):50-53.

    [14] 肖婭萍,胡雅琴,王喆之. 卡那霉素對地靈愈傷組織誘導(dǎo)和生長的影響[J]. 西北植物學(xué)報(bào),2003,23(2):318-322.

    [15] 李俊蘭,張寒霜,高鵬,等. 卡那霉素對棉花下胚軸愈傷組織生長的影響[J]. 棉花學(xué)報(bào),1997,9(4):42-45.

    [16] 郭秋云,王萍,劉兆普. 大豆下胚軸不定芽對卡那霉素和氯化鈉耐性的研究[J].大豆科學(xué),2013,32(2):211-215.

    [17] 張?jiān)骆?,桂大萍,黃家權(quán),等. 花生胚小葉的離體再生及篩選壓力選擇[J]. 中國油料作物學(xué)報(bào),2012,34(3):316-320.

    [18] 方小平,許澤永,張宗義,等. 花生小葉外植體植株再生及農(nóng)桿菌介導(dǎo)的基因遺傳轉(zhuǎn)化[J]. 中國油料,1996,18(4):52-56.

    [19] 胡曉君,劉風(fēng)珍,萬勇善,等. 花生組織培養(yǎng)及苗期npt Ⅱ標(biāo)記基因篩選劑適宜濃度的研究[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2007,38(1):28-34.

    [20] 楊廣東,朱禎,李燕娥,等. 幾種抗生素對大白菜種子發(fā)芽及離體子葉再生的影響[J]. 華北農(nóng)學(xué)報(bào),2002,17(1): 55-59.

    DOI:10.14001/j.issn.1002-4093.2016.02.004

    收稿日期:2016-1-13

    基金項(xiàng)目:國家花生產(chǎn)業(yè)技術(shù)體系(CARS-14);山東省農(nóng)業(yè)科學(xué)院科技創(chuàng)新重點(diǎn)項(xiàng)目(2014CGPY09);青島市民生計(jì)劃(14-2-3-34-nsh)

    作者簡介:張青云(1989-),女,河北承德人,吉林農(nóng)業(yè)大學(xué)碩士研究生,主要從事花生種用品質(zhì)研究。

    *通訊作者:王傳堂(1968-),研究員,博士,主要從事高油酸花生育種研究。E-mail: chinapeanut@126.com

    Abstract: As high in oil, common peanuts may quickly deteriorate and lose seed vigor under ambient conditions. That is the reason why only seeds harvested in previous season/year can be used as seeds in north China, and only the fall crops producd seeds can be chosen for next spring's crop in south regions of China. The present study revealed, for the first time, that high-oleic (HO) peanuts after an extended period of storage at ambient temperature (19 months), were still as good as those harvested from previous year in most of the seed quality characteristics. For each of the 3 HO peanut cultivars used, seeds of 2013 and 2014 did not differ significantly in standard seed germination on the 7th day and field emergence. Use of HO peanuts may therefore sustain the vigor of seed, in addition to health benefits for humans and longer shelf life of food products.

    Key words: peanut; electric conductivity; field emergence; germination; high-oleic; seed vigor

    摘要:普通花生含油量高,在自然溫度下易快速劣變喪失種子活力。這是我國北方僅上年或上一季花生而我國南方僅秋花生來年可做種的原因。本研究首次證實(shí),高油酸花生經(jīng)過19個(gè)月自然條件下貯藏,在多數(shù)種用特性上不差于上年收獲的花生。所有參試的3個(gè)高油酸品種,其2013年種子與2014年種子在第7天的發(fā)芽率和田間出苗率均無顯著差異。由此證明,高油酸品種不僅有利于健康,能延長制品貨架期,而且可保持種子活力。

    關(guān)鍵詞:花生;電導(dǎo)率;田間出苗率;萌發(fā);高油酸;種子活力

    1 Introduction

    Undoubtedly, high oleate has become and will continue to be one of the most important breeding objectives of peanut. Earlier studies have showed that peanuts high in oleate are advantageous over their normal-oleic counterparts. Food products made from high-oleic (HO) peanuts have longer shelf life and are heart-healthier[1]. Research concerning seed storability of peanuts has been concentrated on normal-oleic (NO) genotypes. Perez and Arguello (1995) studied deterioration in peanut (ArachishypogaeaL. cv. Florman) seeds under natural and accelerated ageing, and concluded that while germination percentage was not a sensitive assay for detecting the degree of deterioration, changes in membrane integrity associated with seed deterioration occurred first in the embryonic axes, which could best be monitored by the conductivity seed vigor test[2]. Promchote et al. (2005) used hull-scrape method to divide NO peanut seeds into three different maturity groups to study the influence of maturity on seed storability[3]. They found that artificial and natural ageing of immature peanut seeds deteriorated faster than intermediate and mature seeds[3]. Using relative germination as an indicator for accelerated ageing tolerance (AAT), Shen et al. (2014) noted that AAT was correlated positively to oleate content, and negatively to linoleate in some treatments, without mentioning if HO peanut genoptypes were used in their study[4]. Up to now, no attempts have been made to ascertain if HO peanuts, after a longer duration of storage, is still usable as seeds without compromise in field emergence and productivity.

    The aim of the present study is to make it clear if natural ageing affects seed germination and field emergence of HO peanut cultivars.

    2 Materials and methods

    3 HO peanut cultivars bred by Shandong Peanut Research Institute (SPRI) were used in this study (Table 1). Among them, Huayu661 and Huayu662 are small-seeded varieties, and Huayu961 is a large-seeded cultivar.

    Table 1 Some quality characteristics of the 3 HO peanut cultivars used in the study

    Note: *Based on a report from Supervising and Testing Center for Oilseeds and Their Products (Wuhan), Ministry of Agriculture, China.

    Peanut seeds used in the study were either from the 2014 crop or from the 2013 crop. Peanuts were sown in spring (early May), and harvested in fall (before mid-September). At the end of September of the same year, after sundried, pods or seeds (shells removed by hands) were stored at ambient temperature on the SPRI Experimental Farm in Laixi, Qingdao, China. All seeds used were sound mature kernels (SMKs).

    In-house seed test began on May 8, 2015, when the seed dormancy of the entries vanished. For each entry, a total of 60 seeds were used for analysis (2 replications). For the samples stored as pods, shells were removed by hands just before initiation of the seed test. The roll towel method (between paper) as depicted by Upadhyaya and Gowda (2009)[5]and an incubation temperature of 28℃was used in the test. Only seeds with extruding hypocotyl and radicle no shorter than the length of the individual single seeds were counted as sprouts. Germination was recorded daily, and germination index (GI), vigor index (VI) and simplified vigor index (SVI)[6]were calculated using the following formulas:

    GI= ∑(Gt/Dt)

    Gt= No. of new sprouts counted on a specific day (Dt)

    VI=GI×(Average radicle length in cm)

    SVI=G3×(Length of radicle and hypocotyl in cm)

    G3= No. of total sprouts by the 3rdday

    Electric conductivity (EC) analysis was conducted according to the protocol described by Zhang et al. (2012)[7]with minor modifications.ECwas measured with a METTLER TOLEDO's FiveEasyTMConductivity Meter, model FE30 (Mettler-Toledo, LLC, Columbus, OH, USA). Two 30-seed subsamples were weighted to an accuracy of 0.01 g (W) and placed in 200 mL of de-ionized water in Erlenmeyer flasks, and the initial EC (d1) was measured. Flasks were covered to avoid loss of water and interference of dust and held at 20℃ for 24h, and conductivity (d2) was then measured. Absolute conductivity of seed leachate post boiling (d3) was also recorded. Electric conductivity of seed leachate (ECsl), reported as μS·cm-1·g-1, and relative electric conductivity (ECr) were calculated using the following formulas:

    ECs l= (d2-d1)/W

    ECr= (d2-d1)/(d3-d1)×100%

    To test field performance, peanuts were sown with an expected population of 141176 hills per ha (one seed per hill) under polythene mulch

    (Herbicide was sprayed prior to the placement of

    the polythene film) on the same day with 1 replication in Experiment I (60 seeds/entry) and 4 replications in Experiment II and III (Totally 240 seeds/entry, randomized block design). Field emergence was counted 20 days after sowing.

    Statistical analysis were performed with the DPS package (version 14.50)[8]. Data transformation was exploited where appropriate. Multiple comparison was conducted using Duncan's Multiple Range Test.

    3 Results and analysis

    3.1 In-house standard seed germination test

    For seed germination (%) on the 3rdday (G3), significant difference was only detected in In-house Experiment II (x2=5.00234,df=1,p=0.02531<0.05), whereG3of Huayu662 seeds harvested in 2014 more than doubled that of naturally aged Huayu662 seeds of 2013 harvest (Table 2). Seed germination (%) on the 7thday (G7) ranged from 96.67%~100.00%, with no significant difference in all the 3 in-house experiments (Table 2). ForGI,VIandSVI, significant difference was solely reported from In-house Experiment II, where seeds of the 2013 crop had a much lessSVIthan the 2014 seeds (Table 2).

    Table 2 Seed germination (%) on the 3rd(G3) and the 7thday (G7), germination Index (GI),

    Note: *Figures marked with different letters were statistically differed at 0.05 probability level.

    3.2 Electric conductivity analysis

    Relative electric conductivity (ECr) of the entries within individual in-house experiment did not differ significantly (Table 2). Only electric conductivity of seed leachate (ECsl) from In-house Experiment III was statistically different (p= 0.0448<0.05) (Table 2). 2013 seeds of Huayu661 stored as seeds had anECslvalue significantly greater than that of 2013 seeds stored as pods or 2014 seeds of the same variety (Table 2).

    3.3 Field studies

    Field emergence in the 3 experiments was listed in Table 3. No significant difference in field emergence in Field Experiment I was detected as analyzed withx2test (x2=0.00444,df=1,p=0.94687). No significant difference in field emergence in Field Experiment II and III was detected as analyzed with ANOVA (Using arsine square root data transformation and Duncan's Multiple Range Test) orx2test (In Field Experiment II,x2=0.01093,df=1,p=0.91674. In Field Experiment III,x2=0.12087,df=2,p=0.94135). Field survey showed that plants grown from different seed lots of each HO peanut cultivar developed equally well (Fig.).

    Table 3 Field emergence (FE) of the entries

    Fig. Plants grown from two seed lots of Huayu661 (75 days after sowing)Left row: 2014 seeds. Right row: 2013 pods.

    3.4 Correlation analysis of seed quality characteristics

    As shown in Table 4,G3was positively correlated withSVIandECr, whileG7was negatively related toECsl. A significant positive correlation also existed betweenGIandVIand betweenGIandSVI. Generally speaking, a HO peanut cultivar with a higherSVIorECralso has a greaterG3. Likewise, a lowECslmay be, however, an indicator of higherG7. We failed to establish a relationship between field emergence and any of the rest parameters. Please note that NO peanut seeds were not included in the present study. Inclusion of NO peanuts will possibly reveal relationships unidentified in the study.

    Table 4 Pearson's correlation between seed quality characteristics of HO peanut cultivar

    Note: Figures above the diagonal were probability levels, and figures below the diagonal were correlation coefficients. *Significant at 0.05 level. ** Significant at 0.01 level.

    4 Conclusions and discussion

    This communication reported, for the first time, the advantage of HO peanuts as seeds over common peanuts. On SPRI Experimental Farm (N36°48'40.44", E120°29'59.65"), the seeds from the 3 HO peanut cultivars, after an extended period of storage (19 months) under ambient conditions, viz., the seeds harvested in fall 2013, were still usable as seeds in spring 2015. For these seeds, according to the results from in-house seed test, only one of the 3 cultivars germinated slowly at early stage (Day 3), but at later stage (Day 7), germination percentage of the cultivar was roughly the same as that of seeds harvested in fall 2014. As expected, in field studies, for a specific HO peanut cultivar, the emergence ofoldandnewseeds lots was almost equivalent. It is interesting to find if theoldpeanuts may achieve yields as high as thenewones.

    As reviewed by Sun et al. (2007)[9], lipid peroxidation, chromosome/gene aberrance, and embryo protein degradation are among the reasons causing seed vigor losses, seed ageing and deterioration. Peanut seeds contain about 50% oil and 26% protein. As such, ageing may adversely affect seed oil and protein. Sung and Jeng (1994) demonstrated that accelerated aging (AA) stimulated lipid peroxidation, and inhibited the activity of radical- and peroxide-scavenging enzymes[10]. Vasudevan et al. (2012) observed alteration in band number/intensity of protein/ peroxidase profiles in naturally and artificially aged peanut seeds[11]. As compared to linoleate, oleate is less prone to oxidization. NO peanuts generally have an oleate to linoleate ratio (O/L) of less than 2.5, with lower than 60% oleate, whereas linoleate may be as high as 50%. In contrast, HO peanuts have an O/L of no lower than 9[12], with more than 72% oleate, and linoleate may be as low as around 3%. The good storability of HO peanut seeds in the present study may be largely ascribed to their high oleate and low linoleate content. In addition, it is believed that other components, such as tocopherols and non-tocopherol antioxidants, may also have some roles[13]. But this has not been validated.

    Anyway, the results from the present study is good news to peanut seed industry. In north regions in China (cooler areas), only peanuts harvested from the previous year/season can be used as seeds; NO peanuts harvested in the year before last year, when used as seeds, will encounter marked reduction in field emergence, incurring large yield losses. In south peanut production regions of China (warmer areas), peanuts may be sown in spring, fall, and even in winter. But, in general, merely the low-yielding fall peanuts can be used as seeds for next year's spring crop[14], in spite of their highly variable seed size, which is a stumbling block for mechanized sowing. Spring peanuts, though well developed and high yielding, subjected to high humidity coupled with high ambient temperature after harvest, will quickly lose their seed vigor under ordinary storage conditions, rendering them unusable as seeds for next year's crop. In China, HO peanuts provide a good opportunity to regulate seed supplies between years in north regions and may be of some help to find a solution to use spring peanuts as seeds for the subsequent year in south regions, with minimal storage measures taken. Similar needs also exist in other peanut producing countries worldwide. Hopefully, with the application of HO peanuts in seed industry, sufficient seed supply will result in reduced seed costs, eventually benefiting the whole peanut industry and consumers.

    [1] Wang C T, Wang X Z, Tang Y Y, et al. Chapter 6. Genetic improvement in oleate content in peanuts [M]// Cook R W. Peanuts: Production, Nutritional Content and Health Implications. Nova Science Publisher, New York, 2014:95-140.

    [2] Perez M A, Arguello J A. Deterioration in peanut (ArachishypogaeaL. cv. Florman) seeds under natural and accelerated aging[J]. Seed Science and Technology, 1995,23(2):439-445.

    [3] Promchote P, Duanungpatra J, Chanprasert W. Influences of seed maturity and lipid composition on seed deterioration in large-seeded and medium-seeded peanut [C]// Summary International Peanut Conference 2005: Prospects and Emerging Opportunities for Peanut Quality and Utilization Technology. Kasetsart University, Bangkok, 2005:41.

    [4] Shen Y, Liu Y H, Chen Z D. Identification and estimation of aging resistant varieties in peanut [J/OL]. Chinese Agricultural Science Bulletin, 2013, 29(18): 67-71.[2015-09-28]http://www.casb.org.cn/PublishRoot/casb/2013/18/2012-1775.pdf.

    [5] Upadhyaya H D, Gowda C L L. Managing and Enhancing the Use of Germplasm-Strategies and Methodologies. Technical Manual No. 10 [M/OL]. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 2009:236. [2015-09-28] http://oar.icrisat.org/1316/1/40_2009_TME10_managing_and_enhancing.pdf.

    [6] Chen R Z, Qiao Y Z, Fu J R. A study on the seed vigor of spring and fall peanuts [J/OL]. Seed. 1987 (2):43-46. [2015-09-28] http://www.cnki.com.cn/Article/CJFDTotal-ZHZI198702012.htm.

    [7] Zhang S Z, Xu P F, Wu J J. Experiments in Seed Physiology of Crops [M]. Beijing: Chemical Industry Press, 2012:39-45.

    [8] Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research [J/OL]. Insect Science. 2013, 20(2): 254-260. [2015-09-28] http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7917.2012.01519.x/pdf.

    [9] Sun Q, Wang J H, Sun B Q. Advances on seed vigor physiological and genetic mechanisms[J/OL]. Scientia Agricultura Sinica, 2007, 40(1):48-53. [2015-09-28] http://111.203.21.2:81/Jwk_zgnykx/CN/article/downloadArticleFile.do?attachType=PDF&id=9056.

    [10] Sung J M, Jeng, T L. Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed [J/OL]. Physiologia Plantarum, 1994, 91: 51-55. [2015-09-28]http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1994.tb00658.x/pdf.

    [11] Vasudevan S N, Shakuntala N M, Doddagoudar S R, et al. Biochemical and molecular changes in aged peanut seeds [J]. The Ecoscan, 2012,1:347-352.

    [12] Davis J P, Sweigart D S, Price K M, et al. Refractive index and density measurements of peanut oil for determining oleic and linoleic acid contents [J/OL]. Journal of the American Oil Chemists' Society. 2013, 90:199-206. [2015-09-28] http://dx.doi.org/10.1007/s11746-012-2153-4.

    [13] Ahmed E M, Young C T. Composition, quality and flavor of peanuts[M]// Pattee H E, Young C T. Peanut Science and Technology. Yoakum: American Peanut Research and Education Society, 1982:655-688.

    [14] Zhuang W J, Zhang S B, Wu Z H, et al. A comparative study on cytochemistry between spring and fall peanut seeds [J]. Acta Biologiae Experimentalis Sinica, 2001,34(4):299-305.

    Study on Sensitivity of Peanut Leaflet to Kanamycin

    WANG Feng-huan, HE Mei-jing, YANG Xin-lei, CUI Shun-li, MU Guo-jun, HOU Ming-yu, LIU Li-feng*

    (NorthChinaLaboratoryofCropGermplasmResourcesofEducationMinistry/KeyLab.forCropGermplasmResourcesofHebei/CollegeofAgronomy,Agr.Univ.ofHebei,Baoding071001,China)

    Kanamycin is a screening agent commonly used in plant genetic transformation. The study of susceptibility of peanut leaflet to kanamycin is important to the genetic transformation of peanut. 3 different genotypes of peanut (Fuluomansheng, Mayou1-1 and Puhua23) were used to study the impact of different concentration of kanamycinon on the development, differentiation and rooting of clustered shoots of peanut leaflet by calculating their yellowing rate, clustered shoots induction rate, rooting percentage and observing the growing status of explants, so as to confirm the suitable screening concentration. The results showed that different genotypes of peanut had different degrees of susceptibility to kanamycin. The suitable concentration of kanamycin for the differentiation of leaflet clustered shoots was 150 mg/L for Fuluomansheng, 100 mg/L for Mayou1-1 and 50 mg/L for Puhua 23; while for rooting of clustered shoots, the suitable concentration of kanamycin was 20 mg/L for Fuluomansheng, 20 mg/L for Mayou1-1 and 10 mg/L for Puhua 23. In this study, suitable screening concentration of kanamycin in stages of differentiation and rooting of clustered shoots was obtained, which laid foundation for the screening of positive plant in genetic transformation of peanut leaflet.

    peanut (ArachishypogaeaL.); kanamycin; genotype; susceptibility

    Effect of Natural Ageing on Seed Quality of High-Oleic Peanut

    ZHANG Qing-yun1, WANG Chuan-tang1,2*, TANG Yue-yi2, WANG Xiu-zhen2, WU Qi2, SUN Quan-xi2, ZHANG Jian-cheng2, HU Dong-qing3, YU Shu-tao4, CHEN Ao5

    (1.CollegeofAgronomy,JilinAgriculturalUniversity,Changchun130118,China; 2.ShandongPeanutResearchInstitute,Qingdao266100,China; 3.QingdaoEntry-ExitInspectionandQuarantineBureau,Qingdao266001,China; 4.LiaoningPeanutResearchInstitute,LiaoningAcademyofAgriculturalSciences,Fuxin123000,China; 5.InstituteofPeanut,ZhanjiangAcademyofAgriculturalSciences,Zhanjiang524094,China)

    自然老化對高油酸花生種用品質(zhì)的影響

    張青云1,王傳堂1,2*,唐月異2,王秀貞2,吳 琪2,孫全喜2,張建成2,胡東青3,于樹濤4,陳 傲5

    (1. 吉林農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,吉林 長春 130118; 2. 山東省花生研究所,山東 青島 266100; 3. 青島出入境檢驗(yàn)檢疫局,山東 青島 266001; 4. 遼寧省農(nóng)業(yè)科學(xué)院花生研究所, 遼寧 阜新 123000; 5. 湛江市農(nóng)業(yè)科學(xué)院花生研究所,廣東 湛江 524094)

    10.14001/j.issn.1002-4093.2016.02.003

    2016-04-18

    國家自然科學(xué)基金(31471523);農(nóng)業(yè)部引進(jìn)國際先進(jìn)農(nóng)業(yè)科學(xué)技術(shù)計(jì)劃(“948”計(jì)劃)(2013-Z65);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(2012130211002);河北省高等院??茖W(xué)技術(shù)研究重點(diǎn)項(xiàng)目(ZH2011209)

    王鳳歡(1991-),女,河北滄縣人,河北農(nóng)業(yè)大學(xué)在讀碩士,研究方向?yàn)榧?xì)胞、分子遺傳及其育種應(yīng)用。

    *通訊作者:劉立峰,教授,博士,主要從事花生基因組學(xué)與分子育種研究。E-mail:lifengliucau@126.com

    S565.2;Q

    A

    565.2; S330.3+1 文獻(xiàn)標(biāo)識(shí)碼:A

    国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影 | 亚洲一区高清亚洲精品| 80岁老熟妇乱子伦牲交| 国产午夜福利久久久久久| 日韩不卡一区二区三区视频在线| 偷拍熟女少妇极品色| 精品人妻熟女av久视频| 久久久久久久亚洲中文字幕| 高清午夜精品一区二区三区| 国产精品久久久久久精品电影| 免费观看性生交大片5| 人妻系列 视频| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 日韩伦理黄色片| 一个人免费在线观看电影| 精品一区二区三区视频在线| 国产激情偷乱视频一区二区| av网站免费在线观看视频 | 亚洲av不卡在线观看| 我的女老师完整版在线观看| 好男人视频免费观看在线| 亚洲av电影不卡..在线观看| 看十八女毛片水多多多| 国产成人免费观看mmmm| 一本久久精品| 午夜久久久久精精品| 少妇高潮的动态图| 国产伦精品一区二区三区视频9| 日本爱情动作片www.在线观看| av国产久精品久网站免费入址| 18禁动态无遮挡网站| 国产午夜精品论理片| 亚洲精品日韩在线中文字幕| 国产亚洲91精品色在线| 午夜激情福利司机影院| 中国美白少妇内射xxxbb| 国产永久视频网站| 久久精品综合一区二区三区| 久久人人爽人人片av| av专区在线播放| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 女人十人毛片免费观看3o分钟| 人妻系列 视频| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 午夜免费激情av| 国产在视频线在精品| 免费av不卡在线播放| 热99在线观看视频| 久久久久九九精品影院| 天堂影院成人在线观看| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 精品久久久久久久久久久久久| .国产精品久久| 99久久精品热视频| 最近手机中文字幕大全| 免费观看精品视频网站| 免费高清在线观看视频在线观看| 亚洲欧美日韩卡通动漫| 免费黄频网站在线观看国产| av网站免费在线观看视频 | 免费黄频网站在线观看国产| 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 在线免费十八禁| 久久精品熟女亚洲av麻豆精品 | 午夜老司机福利剧场| 高清在线视频一区二区三区| 国产爱豆传媒在线观看| 青青草视频在线视频观看| 亚洲精品中文字幕在线视频 | 综合色av麻豆| 久热久热在线精品观看| .国产精品久久| 久久久久久伊人网av| 亚洲综合精品二区| 赤兔流量卡办理| 亚洲av国产av综合av卡| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 女人久久www免费人成看片| 亚洲精品成人久久久久久| 国产高清有码在线观看视频| 观看免费一级毛片| 男女边摸边吃奶| 国产高清国产精品国产三级 | 国产成人aa在线观看| 国产在线男女| 精品久久久久久久久亚洲| 欧美激情在线99| 欧美成人午夜免费资源| 亚洲av日韩在线播放| 色哟哟·www| 亚洲精品成人av观看孕妇| 欧美日本视频| 亚洲欧美成人综合另类久久久| 六月丁香七月| 国产免费又黄又爽又色| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 亚洲av电影不卡..在线观看| 成人毛片60女人毛片免费| 床上黄色一级片| 亚洲国产色片| 日韩欧美国产在线观看| 午夜免费男女啪啪视频观看| 人妻制服诱惑在线中文字幕| 最近中文字幕2019免费版| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影| 国产精品爽爽va在线观看网站| 欧美性感艳星| 99久国产av精品国产电影| 久久人人爽人人片av| 精品人妻一区二区三区麻豆| 少妇的逼水好多| 久久精品国产亚洲av涩爱| 免费av不卡在线播放| 22中文网久久字幕| 亚洲精品,欧美精品| 国内揄拍国产精品人妻在线| 亚洲国产av新网站| 天堂√8在线中文| 日韩av免费高清视频| 日韩av免费高清视频| 嫩草影院新地址| 国产视频内射| 国产在线男女| 日韩精品有码人妻一区| 精品一区二区三区视频在线| 少妇熟女aⅴ在线视频| 婷婷六月久久综合丁香| 三级毛片av免费| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 在线观看一区二区三区| 精品人妻熟女av久视频| 波野结衣二区三区在线| 综合色av麻豆| 日韩欧美国产在线观看| 自拍偷自拍亚洲精品老妇| 久久97久久精品| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 免费看美女性在线毛片视频| 99热这里只有是精品50| 97人妻精品一区二区三区麻豆| 六月丁香七月| 日韩成人伦理影院| 丰满人妻一区二区三区视频av| 亚洲国产色片| 日本熟妇午夜| 国产精品三级大全| 18禁动态无遮挡网站| 在线天堂最新版资源| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看| 精品久久久久久久久av| 欧美成人午夜免费资源| av网站免费在线观看视频 | 大又大粗又爽又黄少妇毛片口| 亚洲精品,欧美精品| 精品久久久久久久末码| 免费av观看视频| 男人舔女人下体高潮全视频| 精品一区二区三区视频在线| h日本视频在线播放| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 亚洲精品中文字幕在线视频 | 在线a可以看的网站| 日韩精品青青久久久久久| 亚洲乱码一区二区免费版| 亚洲国产欧美人成| 中文乱码字字幕精品一区二区三区 | 欧美性猛交╳xxx乱大交人| 高清欧美精品videossex| 亚洲av在线观看美女高潮| 中文字幕av在线有码专区| 欧美区成人在线视频| 美女大奶头视频| 一级毛片电影观看| 久久久色成人| 日本一本二区三区精品| 精品酒店卫生间| 人人妻人人澡欧美一区二区| 午夜激情久久久久久久| 婷婷色综合www| 在线观看人妻少妇| 天天一区二区日本电影三级| 少妇人妻一区二区三区视频| 嫩草影院新地址| 国产成人精品一,二区| 中文欧美无线码| 男插女下体视频免费在线播放| 日韩成人伦理影院| 久久久国产一区二区| 晚上一个人看的免费电影| 免费观看av网站的网址| 69人妻影院| 免费少妇av软件| 亚洲欧美日韩无卡精品| 国产精品一区www在线观看| 久久久久国产网址| 国产高清国产精品国产三级 | 麻豆精品久久久久久蜜桃| av福利片在线观看| 嫩草影院精品99| 免费看av在线观看网站| 免费观看精品视频网站| 美女高潮的动态| 欧美潮喷喷水| 精品一区二区三区人妻视频| 男人舔女人下体高潮全视频| 嫩草影院新地址| 非洲黑人性xxxx精品又粗又长| 亚洲丝袜综合中文字幕| av国产免费在线观看| 国内精品宾馆在线| 亚洲av二区三区四区| 久久久精品94久久精品| 亚洲在线自拍视频| 精品久久久久久久久亚洲| 成人av在线播放网站| 久久久久久久久久久免费av| 舔av片在线| 极品少妇高潮喷水抽搐| 美女主播在线视频| 午夜激情福利司机影院| 永久网站在线| 免费观看性生交大片5| 欧美潮喷喷水| 日韩大片免费观看网站| 国产69精品久久久久777片| 国产免费福利视频在线观看| 久久韩国三级中文字幕| 国产伦一二天堂av在线观看| 亚洲精品国产成人久久av| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 性色avwww在线观看| 成人美女网站在线观看视频| 男女边摸边吃奶| 精品久久久精品久久久| 波多野结衣巨乳人妻| 日韩av不卡免费在线播放| 最后的刺客免费高清国语| av在线亚洲专区| 亚洲av福利一区| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 免费观看的影片在线观看| 免费看光身美女| 丰满乱子伦码专区| 成年女人在线观看亚洲视频 | 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 亚洲国产高清在线一区二区三| 久久97久久精品| 免费av观看视频| 国产男人的电影天堂91| 中文在线观看免费www的网站| 街头女战士在线观看网站| 日韩亚洲欧美综合| 国产熟女欧美一区二区| 美女内射精品一级片tv| 欧美不卡视频在线免费观看| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 国产成人91sexporn| 亚洲精品中文字幕在线视频 | 欧美日韩综合久久久久久| 欧美性感艳星| 欧美日本视频| 有码 亚洲区| 国产综合懂色| 亚洲欧洲国产日韩| 18禁动态无遮挡网站| 免费高清在线观看视频在线观看| 午夜激情欧美在线| 男的添女的下面高潮视频| 国产在视频线精品| 插逼视频在线观看| 精品久久久久久久末码| 亚洲经典国产精华液单| 日韩av在线大香蕉| 精品酒店卫生间| 免费大片18禁| 在线播放无遮挡| 亚洲欧洲日产国产| 国产伦精品一区二区三区四那| 日韩大片免费观看网站| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 欧美日韩国产mv在线观看视频 | 成人综合一区亚洲| 国产精品人妻久久久影院| 伊人久久国产一区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人一二三区av| 日韩精品青青久久久久久| 成年人午夜在线观看视频 | 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月| 亚洲精品一二三| 国产成人91sexporn| 中文字幕免费在线视频6| 国产黄频视频在线观看| 99热全是精品| 亚洲精品久久久久久婷婷小说| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 午夜免费激情av| 国产精品1区2区在线观看.| 两个人视频免费观看高清| 国产精品99久久久久久久久| 超碰av人人做人人爽久久| 午夜免费男女啪啪视频观看| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 一边亲一边摸免费视频| 精品一区二区三卡| 天堂√8在线中文| 欧美一级a爱片免费观看看| 美女黄网站色视频| 亚洲在线自拍视频| 国产 亚洲一区二区三区 | 又爽又黄无遮挡网站| 国产乱人视频| 久久久久网色| 亚洲欧美一区二区三区黑人 | 熟女人妻精品中文字幕| ponron亚洲| 大片免费播放器 马上看| 高清视频免费观看一区二区 | 人人妻人人看人人澡| 亚洲自偷自拍三级| videos熟女内射| 黄片wwwwww| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 最近手机中文字幕大全| 99视频精品全部免费 在线| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 男女那种视频在线观看| 亚洲伊人久久精品综合| 亚洲久久久久久中文字幕| 中文欧美无线码| 免费黄色在线免费观看| 国产精品综合久久久久久久免费| 国语对白做爰xxxⅹ性视频网站| 欧美激情久久久久久爽电影| 综合色丁香网| 亚洲欧美日韩东京热| 乱人视频在线观看| 97超碰精品成人国产| 亚洲欧洲日产国产| 秋霞伦理黄片| 亚洲内射少妇av| av在线老鸭窝| 七月丁香在线播放| 国产在视频线在精品| 久久精品久久久久久噜噜老黄| 婷婷色av中文字幕| 亚洲乱码一区二区免费版| 国产麻豆成人av免费视频| 亚洲激情五月婷婷啪啪| 非洲黑人性xxxx精品又粗又长| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 蜜臀久久99精品久久宅男| 非洲黑人性xxxx精品又粗又长| 蜜臀久久99精品久久宅男| 国产视频内射| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 亚洲怡红院男人天堂| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线在精品| 我的女老师完整版在线观看| 免费少妇av软件| 床上黄色一级片| 久久这里有精品视频免费| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 岛国毛片在线播放| 亚洲va在线va天堂va国产| 久久久久久久久久人人人人人人| 春色校园在线视频观看| 永久免费av网站大全| 好男人在线观看高清免费视频| 国产高潮美女av| 51国产日韩欧美| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 日韩中字成人| 亚洲av在线观看美女高潮| 国产精品国产三级国产av玫瑰| 国产成人a区在线观看| 国产成人精品婷婷| 亚洲国产日韩欧美精品在线观看| 一夜夜www| 成人亚洲精品一区在线观看 | 日韩三级伦理在线观看| 夜夜爽夜夜爽视频| 国国产精品蜜臀av免费| kizo精华| 日韩av在线大香蕉| 一级毛片黄色毛片免费观看视频| 国产精品一区www在线观看| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 免费观看a级毛片全部| 99热这里只有精品一区| 黑人高潮一二区| 日韩一区二区视频免费看| 最近视频中文字幕2019在线8| 人妻一区二区av| 日韩av在线大香蕉| 精品熟女少妇av免费看| 在线免费观看不下载黄p国产| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 日本wwww免费看| 国产色爽女视频免费观看| 久久人人爽人人爽人人片va| 久久久久免费精品人妻一区二区| 色播亚洲综合网| 成人亚洲欧美一区二区av| 久久国内精品自在自线图片| 午夜福利高清视频| 欧美丝袜亚洲另类| 久久精品国产自在天天线| 日韩欧美国产在线观看| 国产精品三级大全| 天天一区二区日本电影三级| 最后的刺客免费高清国语| 午夜福利网站1000一区二区三区| 淫秽高清视频在线观看| 97超碰精品成人国产| 搡老妇女老女人老熟妇| 大陆偷拍与自拍| 老司机影院成人| 男女边摸边吃奶| 国产精品伦人一区二区| 高清日韩中文字幕在线| 一级毛片aaaaaa免费看小| 听说在线观看完整版免费高清| 黄色配什么色好看| 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区| 麻豆av噜噜一区二区三区| 在线观看一区二区三区| 精品久久久噜噜| 狂野欧美激情性xxxx在线观看| 免费大片黄手机在线观看| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 成年免费大片在线观看| 热99在线观看视频| 亚洲丝袜综合中文字幕| 久久99热这里只频精品6学生| 精品不卡国产一区二区三区| 最近的中文字幕免费完整| 国产精品国产三级专区第一集| 成年av动漫网址| 美女黄网站色视频| 国产又色又爽无遮挡免| 中文乱码字字幕精品一区二区三区 | 18禁在线播放成人免费| 大陆偷拍与自拍| 最近2019中文字幕mv第一页| 少妇丰满av| 天堂网av新在线| 最近视频中文字幕2019在线8| 网址你懂的国产日韩在线| 性色avwww在线观看| 亚洲精品自拍成人| 亚洲人成网站在线播| 国产男人的电影天堂91| 国产探花极品一区二区| 毛片女人毛片| 2021天堂中文幕一二区在线观| 国产在线一区二区三区精| 国产亚洲午夜精品一区二区久久 | 91av网一区二区| 日韩欧美国产在线观看| 日韩欧美三级三区| av在线老鸭窝| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 插阴视频在线观看视频| 亚洲成人av在线免费| 国产精品久久久久久av不卡| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 日韩,欧美,国产一区二区三区| 深爱激情五月婷婷| 亚洲精华国产精华液的使用体验| 综合色av麻豆| 久久久久免费精品人妻一区二区| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看| or卡值多少钱| 欧美人与善性xxx| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 夜夜看夜夜爽夜夜摸| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 日韩精品有码人妻一区| 国产激情偷乱视频一区二区| 色播亚洲综合网| 91午夜精品亚洲一区二区三区| 成年av动漫网址| 欧美另类一区| 老司机影院毛片| 99热6这里只有精品| 菩萨蛮人人尽说江南好唐韦庄| 看黄色毛片网站| 亚洲精品影视一区二区三区av| 国产爱豆传媒在线观看| 亚洲图色成人| or卡值多少钱| 亚洲电影在线观看av| 成人二区视频| 欧美精品国产亚洲| 日韩,欧美,国产一区二区三区| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 大又大粗又爽又黄少妇毛片口| 亚洲精品影视一区二区三区av| 日韩精品青青久久久久久| 直男gayav资源| 91久久精品国产一区二区三区| 大陆偷拍与自拍| 青春草国产在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品蜜桃在线观看| 2018国产大陆天天弄谢| 女人久久www免费人成看片| 午夜激情欧美在线| 高清日韩中文字幕在线| 熟妇人妻久久中文字幕3abv| 男人和女人高潮做爰伦理| 国产真实伦视频高清在线观看| 国产日韩欧美在线精品| 久久精品久久精品一区二区三区| 午夜福利高清视频| 精品亚洲乱码少妇综合久久| 乱人视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 国产一区二区三区综合在线观看 | 亚洲精品国产av成人精品| 深夜a级毛片| 国产探花在线观看一区二区| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 尤物成人国产欧美一区二区三区| 免费看美女性在线毛片视频| 两个人的视频大全免费| 亚洲av在线观看美女高潮| 美女xxoo啪啪120秒动态图| 免费观看在线日韩| 女的被弄到高潮叫床怎么办| 国产精品三级大全| 精品不卡国产一区二区三区| 久久草成人影院| 久久精品综合一区二区三区| 在线天堂最新版资源| 晚上一个人看的免费电影| 久久久精品94久久精品| 国产精品久久久久久久电影| 欧美日韩亚洲高清精品| 搡老乐熟女国产| 亚洲国产高清在线一区二区三| 亚洲精品国产av蜜桃| 久久人人爽人人爽人人片va| 国产男女超爽视频在线观看| 三级国产精品片| 日韩av免费高清视频| 老司机影院毛片| 极品教师在线视频| 色综合站精品国产| 成人亚洲欧美一区二区av|