• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer

    2016-12-13 11:16:09NishaGuptaDanDuda
    THE JOURNAL OF BIOMEDICAL RESEARCH 2016年3期

    Nisha Gupta, Dan G. Duda

    Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Research Institute, Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA.

    Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer

    Nisha Gupta, Dan G. Duda?

    Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Research Institute, Harvard Medical School, 100 Blossom Street, Boston, MA 02114, USA.

    Metastatic prostate cancer is one of the leading causes of cancer-related death in men. The primary site of metastasis from prostate cancers is the bone. During the last decade, multiple studies have pointed to the role of the stromal cell-derived factor 1 alpha (SDF1α)/CXCR4 axis in the metastatic spread of the disease, but the mechanisms that underlie this effect are still incompletely understood. In this review, we summarize the current understanding of the role of the SDF1α/CXCR4 pathway in bone metastatic prostate cancer. We also discuss the therapeutic potential of disrupting the interaction between prostate tumor cells and bone environment with focus on the SDF1α pathway.

    SDF1α, CXCR4, bone metastasis, prostate cancer

    Introduction

    Prostate cancer is the second most common cancer among men and the second leading cause of cancerrelated death in men in the United States. Most prostate cancers (93%) are found when the disease is confined to the prostate and nearby organs, is indolent, and has a good prognosis. However, the 5-year survival rate sharply declines from 90% for localized prostate cancer to 28% for metastatic prostate cancer[1]. The skeletal bones are the preferential sites of metastasis from prostate cancer[2]. In fact, homing of metastatic prostate cancer cells to bone tissue is associated with the presence and activity of osteoblast lineage cells[3-6]. However, the precise mechanism leading to prostate cancer bone metastasis remains poorly understood. The process of metastasis is known to be the result of several necessary sequential steps - including the survival of tumor cells at distant locations and adaption to the foreign microenvironment, thereby facilitating cell proliferation and the formation of a metastatic lesion. The aggressive and highly metastatic capacity makes the treatment of advanced prostate cancer a major challenge[7]. The therapeutic options currently available (local radiation, cytotoxics, vaccine therapy, and hormonal therapies) are palliative and cannot control disease progression. Despite the clinical significance of bone metastatic prostate cancer, we only know little about the molecular mechanisms underlying the progression of this disease.

    Role of chemokines in metastatic prostate cancer: the SDF1α pathway

    Chemokines are a family of small (8 to 12 kDa) peptides that function as chemo-attractant cytokines that mediate and regulate cell activation, differentiation and trafficking. Chemokines are known to interact with a superfamily of 20 C-C or C-X-C trans-membrane domainheterotrimeric G protein-coupled receptors (GPCR)[8]. The stromal-derived factor 1 alpha (SDF1α), also referred to as CXCL12, binds and initiates signaling through its receptors C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7)[9,10]. The SDF1α/CXCR4 signaling has been recognized as a critical pathway for the homing and tissue retention of hematopoietic progenitor/stem cells in the bone marrow microenvironment[11]. Several studies have shown that CXCR4 plays a crucial and pleiotropic role in malignant tumor progression, including prostate cancer, particularly in the metastatic spread of the disease. High levels of the chemokine receptor CXCR4 induce a more aggressive phenotype in prostate cancer cells[12,13]. Interestingly, the bone environment - in which SDF1α is particularly highly expressed - is also the most common metastatic site of prostate cancer. Moreover, metastatic prostate cancer cells localized in the bone metastatic lesions express higher SDF1α/CXCR4 levels relative to the cells present in primary tumors and lymph node metastatic lesions[6,14].

    These findings suggest that the activation of the SDF1α/ CXCR4 pathway may play a pivotal role in prostate cancer bone metastases. This review focuses primarily on the SDF1α/CXCR4 axis regulation, on the pre-clinical observations made in bone metastatic prostate cancer metastases, and their implication for development of more effective treatment strategies in the future.

    The SDF1α/CXCR4 axis: Role in bone metastatic prostate cancer

    SDF1α signaling can be activated via CXCR4 in prostate cancer cells driven by the loss of phosphatase and tensin homolog (PTEN) and subsequent activation of PI3K/Akt pathway. Akt1-associated SDF1α/CXCR4 signaling can promote prostate tumor growth[15]. Moreover, silencing of CXCR4 can lead to a significant down- regulation in the secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9), to a delay in primary tumor growth and to inhibition of the incidence of prostate cancer bone metastases[16].

    SDF1α is also produced by the bone marrow stromal cells of mesenchymal origin, including osteoblasts, and by vascular endothelial cells[5,17,18]. SDF1a transiently regulates the number and affinity of αvβ3receptors by prostate cancer cells, and increases the expression of the β3subunit to enhance their metastatic behavior by increasing adhesiveness and invasiveness in bone marrow[19]. Additionally, SDF1α induces the expression of CD164 and blockade of CD164 in prostate cancer cell lines decreases the ability of these cells to adhere to human bone marrow endothelial cells[20]. This suggests that activation and increased expression of CD164 and αvβ3may be important in the metastatic spread of prostate cancer cells to the skeleton. In addition, inhibition of CXCR4 activity alters the homing of quiescent prostate cancer cells to bone. These cells have more potential to form bone metastases than rapidly proliferating prostate cancer cells. Higher levels of CXCR4 are associated with mitotic dormancy that facilitates tumor cell colonization of the bone marrow in prostate cancer[21-23]. These dormant or slow-cycling disseminated prostate cancer cells in bone marrow are more resistant to conventional therapies. It was shown that these cells predominantly express transforming growth factor-beta 2 (TGF-β2) to maintain SDF1α/CXCR4 overexpression[24].

    Several studies showed that metastatic prostate cancers recruit mesenchymal stem cells, which are converted into cancer-associated fibroblasts and facilitate metastasis. In prostate tumors, CXCL16, a ligand for CXCR6, stimulates the differentiation of mesenchymal stem cells into cancer-associated fibroblasts, which secrete higher levels of SDF1α. SDF1α binds to CXCR4 on prostate cancer cells and induces an epithelial-to-mesenchymal transition (EMT)[25]. Inhibition of the SDF1α/CXCR4 axis leads to suppression of the bone marrow mesenchymal stem cell-induced prostate cancer stem cell population increase, and to downregulation of the expression of MMP-9, ZEB-1, CD133 and CXCR4[26]. Accumulating evidence suggests that activated hypoxia-inducible factors, HIF-1α and HIF-2α, may induce the expression of EMT program-associated molecules, including Snail, Twist, CXCR4 and angiogenic factors such as VEGF[27]. Interestingly, in an osteosarcoma study, hypoxia-induced CXCR4 expression persisted even after cultured cells were returned to normoxic conditions, suggesting more persistent phenotypic changes[28]. In summary, activation of the SDF1α/CXCR4 pathway may play a critical role via multiple mechanisms: by promoting prostate tumor growth, homing of prostate cancer cells to bone, and facilitating interactions among cancer cells and bone environment (Fig. 1).

    The SDF1α/CXCR4 axis in bone metastasis: Beyond prostate cancer

    As summarized above, a large amount of data strongly suggest a key role of the SDF1α/CXCR4 pathway in bone metastases from prostate cancer patients. However, the evidence for the involvement of this pathway in other frequent bone metastatic cancers, such as breast cancer, is very limited. Same as in prostate cancer, high levels of CXCR4 expression in breast cancer are associated with early distant and bone metastases. In various bone metastatic breast models, SDF1α expression was regulated by cytokines such as interleukin (IL)-17A, IL-6, macrophage colony-stimulating factor (M-CSF), liver-enriched inhibitory protein (LIP), neuregulin 1 (NRG1), SMAD4, HIF-1, BACH1 and MMP-1[29-32]. Since tumor-stroma interactionsinvolving the SDF1α/CXCR4 are likely to be equally important in these settings, further understanding in this area may have important implications for understanding bone metastasis in general. Moreover, this improved understanding could potentially allow the development of novel strategies to reduce morbidity and mortality in bone metastatic cancer patients.

    Fig. 1 Pleiotropic role of SDF1α/CXCR4 Axis in Prostate Cancer Bone Metastasis. SDF-1α/CXCR4 axis activation in prostate cancer cells could be driven by oncogenic events (e.g., the loss of PTEN and subsequent activation of PI3K/Akt pathway), or by microenvironmental factors (e.g., hypoxia, fibrosis, inflammation). When CXCR4 is inhibited, it could lead to inhibition of VEGF and MMP-9 expression, a delay in tumor growth and reduction in metastasis. SDF1α can induce CD164 expression in prostate cancer cells and there by increase their ability to adhere to human bone marrow endothelial cells. In bone metastases, CXCL16 (a ligand for CXCR6) can stimulate the differentiation of mesenchymal stem/stromal cells (MSCs) into cancer-associated fibroblasts (CAFs), which secrete high levels of SDF1α. SDF1α could also be locally produced by osteoblasts. SDF1α and CXCR4 overexpression could also be stimulated by TGF-β2, which is expressed by dormant disseminated prostate cancer cells in bone marrow. Finally, hypoxiainduced factor (HIF)-1a and HIF-2a may induce the expression of epithelial-to mesenchymal-transition (EMT)-associated molecules snail and twist. In turn, inhibition of SDF-1α could lead to downregulation of the expression of MMP-9, ZEB-1, CD133 and CXCR4 in bone metastatic prostate tumors. Figure courtesy of Rekha Gupta and Priscilla R.C. Jainandunsing.

    SDFlα and bone metastatic prostate cancer therapy: Future perspective

    The increasing evidence that SDF1α/CXCR4 signaling may contribute to prostate cancer progression and relapse warrants studies of SDF1α/CXCR4 inhibition to target both primary or metastatic lesions. The most studied SDF1α/CXCR4 inhibitor is the CXCR4 antagonist AMD3100, an FDA-approved drug known as plerixafor or Mozobil?and used for hematopoietic stem cell mobilization by bolus injection. AMD3100 has been shown to inhibit primary tumor growth and decrease the incidence of metastases in multiple animal models[33-37]. However, the safety of chronic treatment with a chemokine receptor antagonist remains to be confirmed in patients, given the obvious concerns related to hematologic toxicities.

    An alternative approach would be to inhibit the expression of SDF1α/CXCR4 in primary and metastatic prostate cancers, without directly inhibiting CXCR4 signaling. In this respect, it is critical to identify the mechanism by which CXCR4 expression is activated in prostate cancer bone metastases, in particular by hypoxia induced by tumor growth or by therapeutic interventions[38,39]. Moreover, multiple molecular pathways are likely required to work in concert with the SDF1α/CXCR4 pathway for the homing of metastatic prostate cancer cells to the bone. Many of the interactions among prostate cancer cells and the bone environment remain to be characterized. Finally, sustained responses in this disease, same as in other cancers, will most likely require the development ofefficacious immunotherapies. The currently available vaccine has only limited efficacy, and checkpoint inhibitors have failed so far to show promising efficacy in advanced prostate cancer patients. Combining CXCR4 inhibition with checkpoint blockade, with or without radiation therapy, may be a potential strategy to achieve synergy[33]. Once this improved understanding is achieved, preclinical and clinical studies should translate this knowledge into real benefits for bone metastatic prostate cancer patients.

    Acknowledgments

    DGD’s research is supported by NIH grants R01-CA159258 and P01-CA080124 and by American Cancer Society Grant 120733-RSG-11-073-01-TBG.

    References

    [1] American Cancer Society American Cancer Society:Cancer Facts and Figures 2015.

    [2] Jimenez-Andrade JM, Mantyh WG, Bloom AP, et al. Bone cancer pain[J]. Ann N Y Acad Sci, 2010,1198:173-181.

    [3] Hart CA, Brown M, Bagley S, et al. Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process[J]. Br J Cancer, 2005,92:503-512.

    [4] Wang N, Docherty FE, Brown HK, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models[J]. J Bone Miner Res, 2014,29(12):2688-2696.

    [5] Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo[J]. J Bone Miner Res, 2005,20(2):318-329.

    [6] Miwa S, Mizokami A, Keller ET, et al. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer[J]. Cancer Res, 2005,65(19):8818-8825.

    [7] Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited[J]. Nat Rev Cancer, 2003, 3(6):453-458.

    [8] Duda DG, Kozin SV, Kirkpatrick ND, et al. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?[J] Clin Cancer Res, 2011,17(8):2074-2080.

    [9] Sun X, Cheng G, Hao M, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression[J]. Cancer Metastasis Rev, 2010,29(4):709-722.

    [10] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature, 2001,410(6824):50-56.

    [11] Hirbe AC, Morgan EA, Weilbaecher KN. The CXCR4/ SDF-1 chemokine axis: a potential therapeutic target for bone metastases?[J] Curr Pharm Des, 2010,16(11):1284-1290.

    [12] Saylor PJ, Kozak KR, Smith MR, et al. Changes in biomarkers of inflammation and angiogenesis during androgen deprivation therapy for prostate cancer[J]. Oncologist, 2012,17(2):212-219.

    [13] Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis[J]. FASEB , 2004,18(11): 1240-2.

    [14] Domanska UM, Timmer-Bosscha H, Nagengast WB, et al. CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy[J]. Neoplasia, 2012,14(8): 709-718.

    [15] Conley-LaComb MK, Saliganan A, Kandagatla P, et al. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling[J]. Mol Cancer, 2013,12(1):85.

    [16] Wang Q, Diao X, Sun J, et al. Regulation of VEGF, MMP-9 and metastasis by CXCR4 in a prostate cancer cell line[J]. Cell Biol Int, 2011,35(9):897-904.

    [17] Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor- 1/CXCR4 pathway in prostate cancer metastasis to bone[J]. Cancer Res, 2002,62(6):1832-1837.

    [18] Al Nakouzi N, Bawa O, Le Pape A, et al. The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer[J]. Neoplasia, 2012,14:376-387.

    [19] Sun YX, Fang M, Wang J, et al. Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells[J]. Prostate, 2007, 67(5):61-73.

    [20] Havens AM, Jung Y, Sun YX, et al. The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis[J]. BMC Cancer, 2006,6:195.

    [21] Wang N, Docherty F, Brown HK, et al. Mitotic quiescence, but not unique “sternness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer[J]. FASEB J, 2015,29(8):3141-3150.

    [22] Xing Y, Liu M, Du Y, et al. Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach[J]. Cancer Biol Ther, 2008,7(11):1839-1848.

    [23] Du YF, Shi Y, Xing YF, et al. Establishment of CXCR4-small interfering RNA retrovirus vector driven by human prostate-specific antigen promoter and its biological effects on prostate cancer in vitro and in vivo[J]. J Cancer Res Clin Oncol, 2008,134(11):1255-1264.

    [24] Nakamura T, Shinriki S, Jono H, et al. Intrinsic TGF-beta2-triggered SDF-1-CXCR4 signaling axis is crucial for drug resistance and a slow-cycling state in bone marrow-disseminated tumor cells[J]. Oncotarget, 2015,6(2):1008-1019.

    [25] Jung Y, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis[J]. Nat Commun, 2013,4:1795.

    [26] Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling[J]. Oncogene, 2014,33(21):2768-78.

    [27] Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells[J]. J Cell Mol Med, 2013,17(1):30-54.

    [28] Guan G, Zhang Y, Lu Y, et al. The HIF-1alpha/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells[J]. Cancer Lett, 2015,357(1):254-264.

    [29] Hung CS, Su HY, Liang HH, et al. High-level expression of CXCR4 in breast cancer is associated with early distant and bone metastases[J]. Tumour Biol, 2014,35(2):1581- 1588.

    [30] Liang Y, Wu H, Lei R, et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis[J]. J Biol Chem, 2012,287(40):33533-33544.

    [31] Park BH, Kook S, Lee S, et al. An isoform of C/EBPbeta, LIP, regulates expression of the chemokine receptor CXCR4 and modulates breast cancer cell migration[J]. J Biol Chem, 2013,288(40):28656-28667.

    [32] Roy LD, Sahraei M, Schettini JL, et al. Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/ SDF-1 expression in the metastatic niches[J]. BMC Cancer, 2014,14:225.

    [33] Chen Y, Ramjiawan RR, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib- treated hepatocellular carcinoma in mice[J]. Hepatology, 2015,61(5):1591-1602.

    [34] Kozin SV, Kamoun WS, Huang Y, et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation[J]. Cancer Res, 2010,70:5679-5685.

    [35] Liao YX, Fu ZZ, Zhou CH, et al. AMD3100 reduces CXCR4-mediated survival and metastasis of osteosarcoma by inhibiting JNK and Akt, but not p38 or Erk1/2, pathways in in vitro and mouse experiments[J]. Oncol Rep, 2015,34(1):33-42.

    [36] Rabenstein M, Hucklenbroich J, Willuweit A, et al. Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4[J]. Stem Cell Res Ther, 2015,6:99.

    [37] Hiratsuka S, Duda DG, Huang Y, et al. C-X-C receptor type 4 promotes metastasis by activating p38 mitogenactivated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells[J]. Proc Natl Acad Sci USA, 2011, 108(1):302-7.

    [38] Chen Y, Huang Y, Reiberger T, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromalderived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice[J]. Hepatology, 2014,59(4): 1435-1447.

    [39] Jain RK. Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia[J]. Cancer Cell, 2014, 26(5):605-622.

    ? Dan G. Duda, DMD, PhD, Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Research Institute, 100 Blossom Street, Boston, MA 02114, USA. E-mail: gduda@partners.org.

    8 August 2015, Accepted 10 October 2015, Epub 2 November 2015

    R737.25, Document code: A

    The author reported no conflict of interests.

    丁香欧美五月| 日韩国内少妇激情av| 久久中文看片网| 国产伦一二天堂av在线观看| 午夜激情福利司机影院| 久久人妻福利社区极品人妻图片| 88av欧美| 日韩三级视频一区二区三区| 99国产综合亚洲精品| 性色av乱码一区二区三区2| 88av欧美| 日韩欧美国产一区二区入口| 真人做人爱边吃奶动态| 亚洲国产精品合色在线| 中文字幕av在线有码专区| 最新在线观看一区二区三区| 在线观看免费日韩欧美大片| 亚洲熟妇熟女久久| 香蕉av资源在线| 亚洲国产日韩欧美精品在线观看 | 国产精品香港三级国产av潘金莲| 黄色成人免费大全| 韩国av一区二区三区四区| 久久热在线av| 首页视频小说图片口味搜索| 国产三级中文精品| 黑人巨大精品欧美一区二区mp4| 欧美乱码精品一区二区三区| 国产1区2区3区精品| 成人国产综合亚洲| 999精品在线视频| 成人三级黄色视频| 国产成年人精品一区二区| 国产精品自产拍在线观看55亚洲| 久久精品91无色码中文字幕| 老鸭窝网址在线观看| 听说在线观看完整版免费高清| 免费电影在线观看免费观看| 欧美黑人精品巨大| 村上凉子中文字幕在线| 波多野结衣高清无吗| 国产一级毛片七仙女欲春2| 99久久99久久久精品蜜桃| 亚洲国产欧美网| 又紧又爽又黄一区二区| 午夜两性在线视频| 男人舔奶头视频| 亚洲美女黄片视频| 女人高潮潮喷娇喘18禁视频| av免费在线观看网站| 特级一级黄色大片| 日韩欧美三级三区| √禁漫天堂资源中文www| 国产视频内射| 青草久久国产| 51午夜福利影视在线观看| 一a级毛片在线观看| 男人舔奶头视频| 在线观看免费视频日本深夜| 91九色精品人成在线观看| 亚洲 欧美一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 可以免费在线观看a视频的电影网站| 香蕉久久夜色| 青草久久国产| 免费看美女性在线毛片视频| 两个人视频免费观看高清| 搡老妇女老女人老熟妇| 久久久久久国产a免费观看| 精品乱码久久久久久99久播| 久久这里只有精品中国| 一区二区三区激情视频| 久久精品亚洲精品国产色婷小说| 久久久久九九精品影院| 日本熟妇午夜| 老司机深夜福利视频在线观看| 国产精品一区二区精品视频观看| 中文资源天堂在线| 婷婷亚洲欧美| 日本黄色视频三级网站网址| av福利片在线观看| 久久久久久免费高清国产稀缺| 又紧又爽又黄一区二区| 老司机靠b影院| 国产精品98久久久久久宅男小说| 在线a可以看的网站| 国产高清视频在线播放一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 18美女黄网站色大片免费观看| 精品人妻1区二区| 淫妇啪啪啪对白视频| 日韩欧美在线乱码| 黄色成人免费大全| 亚洲一区中文字幕在线| 亚洲中文日韩欧美视频| 三级国产精品欧美在线观看 | 色尼玛亚洲综合影院| 制服人妻中文乱码| 亚洲中文日韩欧美视频| 久久久久国产精品人妻aⅴ院| 久久热在线av| 嫩草影视91久久| 久久婷婷成人综合色麻豆| 18禁观看日本| 成人特级黄色片久久久久久久| 国产一级毛片七仙女欲春2| 久久精品91蜜桃| 亚洲熟女毛片儿| 午夜两性在线视频| av片东京热男人的天堂| 一边摸一边抽搐一进一小说| 亚洲色图 男人天堂 中文字幕| 国产精华一区二区三区| 成人亚洲精品av一区二区| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 91麻豆精品激情在线观看国产| 欧美zozozo另类| 亚洲免费av在线视频| 精品高清国产在线一区| 妹子高潮喷水视频| 日本 av在线| 琪琪午夜伦伦电影理论片6080| 免费看美女性在线毛片视频| 最近最新免费中文字幕在线| 两性夫妻黄色片| 欧美日韩福利视频一区二区| 欧美一级毛片孕妇| 黄色a级毛片大全视频| 久久精品国产综合久久久| 欧美精品啪啪一区二区三区| 在线观看免费视频日本深夜| av天堂在线播放| 午夜影院日韩av| 亚洲av第一区精品v没综合| 国产欧美日韩一区二区精品| 亚洲第一电影网av| 观看免费一级毛片| 欧美乱色亚洲激情| 少妇粗大呻吟视频| 久久精品人妻少妇| 美女大奶头视频| 国产精品综合久久久久久久免费| 天堂√8在线中文| netflix在线观看网站| 又黄又爽又免费观看的视频| www.熟女人妻精品国产| 亚洲国产精品999在线| 亚洲av成人不卡在线观看播放网| 一本大道久久a久久精品| 在线国产一区二区在线| 国产亚洲精品综合一区在线观看 | 欧美绝顶高潮抽搐喷水| 国产精品精品国产色婷婷| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 香蕉久久夜色| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边做爽爽视频免费| 99re在线观看精品视频| 淫秽高清视频在线观看| 欧美色视频一区免费| 色av中文字幕| 欧美久久黑人一区二区| 国产乱人伦免费视频| 欧美av亚洲av综合av国产av| 久久久水蜜桃国产精品网| av在线天堂中文字幕| 99久久无色码亚洲精品果冻| 日本一二三区视频观看| 亚洲欧美精品综合久久99| 国产又黄又爽又无遮挡在线| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 日韩欧美国产一区二区入口| 午夜视频精品福利| 嫩草影视91久久| 99re在线观看精品视频| 久久久久亚洲av毛片大全| 久久久国产欧美日韩av| 国产三级中文精品| 国产精品免费一区二区三区在线| 亚洲精品粉嫩美女一区| 99国产综合亚洲精品| 19禁男女啪啪无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 悠悠久久av| 五月玫瑰六月丁香| 香蕉国产在线看| 国产高清videossex| 脱女人内裤的视频| 变态另类成人亚洲欧美熟女| 国产一区在线观看成人免费| 国产成人精品无人区| 夜夜夜夜夜久久久久| 国产视频内射| 色综合婷婷激情| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜一区二区| 桃红色精品国产亚洲av| 精品久久蜜臀av无| 国内精品久久久久精免费| 久久久精品国产亚洲av高清涩受| 窝窝影院91人妻| 三级国产精品欧美在线观看 | 精品人妻1区二区| 亚洲人成77777在线视频| 欧美日韩福利视频一区二区| 日日夜夜操网爽| 嫩草影视91久久| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 少妇熟女aⅴ在线视频| 国产精品久久久久久久电影 | 久久 成人 亚洲| 久久精品人妻少妇| 亚洲国产欧美人成| 久久人人精品亚洲av| 久久亚洲精品不卡| 99国产综合亚洲精品| 狂野欧美白嫩少妇大欣赏| 成人欧美大片| 精品一区二区三区视频在线观看免费| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 在线播放国产精品三级| 不卡一级毛片| 色综合站精品国产| 欧美色欧美亚洲另类二区| 99国产精品一区二区三区| 午夜a级毛片| www.www免费av| 亚洲国产中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品在线观看二区| 深夜精品福利| 欧美高清成人免费视频www| 亚洲天堂国产精品一区在线| 91九色精品人成在线观看| 黄色成人免费大全| 村上凉子中文字幕在线| 日韩三级视频一区二区三区| 日韩av在线大香蕉| 人妻久久中文字幕网| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 男女下面进入的视频免费午夜| 国产男靠女视频免费网站| 啦啦啦韩国在线观看视频| 欧美日韩国产亚洲二区| 悠悠久久av| 丁香欧美五月| 国产精品av久久久久免费| 女警被强在线播放| 淫妇啪啪啪对白视频| 日韩国内少妇激情av| 国产男靠女视频免费网站| 欧美黑人欧美精品刺激| 99久久无色码亚洲精品果冻| av超薄肉色丝袜交足视频| 国产高清视频在线播放一区| 97人妻精品一区二区三区麻豆| 亚洲人成77777在线视频| a在线观看视频网站| 欧美另类亚洲清纯唯美| 亚洲国产日韩欧美精品在线观看 | 午夜成年电影在线免费观看| 男人舔女人的私密视频| av福利片在线观看| 日本黄色视频三级网站网址| 亚洲成人久久性| 我的老师免费观看完整版| 国产av在哪里看| 久久精品人妻少妇| 国产免费av片在线观看野外av| 美女黄网站色视频| 在线永久观看黄色视频| 国产黄a三级三级三级人| 亚洲男人天堂网一区| 国产91精品成人一区二区三区| 国产黄a三级三级三级人| 日本五十路高清| 亚洲成人中文字幕在线播放| 成在线人永久免费视频| 99在线视频只有这里精品首页| 一本精品99久久精品77| 日韩国内少妇激情av| 午夜福利在线在线| 久久久国产精品麻豆| 亚洲aⅴ乱码一区二区在线播放 | 欧美乱色亚洲激情| 村上凉子中文字幕在线| 99国产综合亚洲精品| 老司机福利观看| 免费无遮挡裸体视频| 亚洲中文字幕一区二区三区有码在线看 | 久久久久免费精品人妻一区二区| 免费在线观看影片大全网站| 亚洲片人在线观看| or卡值多少钱| x7x7x7水蜜桃| 50天的宝宝边吃奶边哭怎么回事| 久久精品亚洲精品国产色婷小说| 少妇粗大呻吟视频| 亚洲熟妇中文字幕五十中出| 亚洲精品久久国产高清桃花| 一级毛片女人18水好多| 亚洲真实伦在线观看| av视频在线观看入口| 久久久久精品国产欧美久久久| 夜夜看夜夜爽夜夜摸| 变态另类丝袜制服| av片东京热男人的天堂| 欧美日本视频| 日韩成人在线观看一区二区三区| 亚洲av美国av| 亚洲成av人片免费观看| 国产激情偷乱视频一区二区| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 欧美日韩精品网址| 免费搜索国产男女视频| 国产精品国产高清国产av| 久久久精品欧美日韩精品| 看免费av毛片| АⅤ资源中文在线天堂| 九色国产91popny在线| 日韩成人在线观看一区二区三区| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 国产精品一区二区精品视频观看| 欧美黑人巨大hd| 久久精品亚洲精品国产色婷小说| 久久国产精品人妻蜜桃| 久久人人精品亚洲av| 午夜福利在线观看吧| 久久精品影院6| 国产精品美女特级片免费视频播放器 | 丰满人妻一区二区三区视频av | 久久草成人影院| 色老头精品视频在线观看| 一a级毛片在线观看| 中国美女看黄片| 日日爽夜夜爽网站| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 美女午夜性视频免费| 欧美丝袜亚洲另类 | 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9| 亚洲色图av天堂| 国产高清视频在线播放一区| 免费在线观看视频国产中文字幕亚洲| av中文乱码字幕在线| 国产亚洲精品久久久久5区| 一卡2卡三卡四卡精品乱码亚洲| 日本熟妇午夜| 两个人免费观看高清视频| 嫁个100分男人电影在线观看| 亚洲人与动物交配视频| 国产成人精品久久二区二区91| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 国产亚洲欧美98| 熟女电影av网| 九九热线精品视视频播放| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 色综合婷婷激情| 国产av在哪里看| 亚洲国产精品成人综合色| 91大片在线观看| 精品人妻1区二区| 99久久无色码亚洲精品果冻| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 老鸭窝网址在线观看| 丁香六月欧美| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 欧美日韩国产亚洲二区| 少妇裸体淫交视频免费看高清 | 女人高潮潮喷娇喘18禁视频| 女人被狂操c到高潮| 亚洲成人精品中文字幕电影| 桃色一区二区三区在线观看| 亚洲国产精品999在线| 国产单亲对白刺激| 99re在线观看精品视频| 国产精品 欧美亚洲| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3| 18禁国产床啪视频网站| 黄色a级毛片大全视频| 波多野结衣高清作品| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 亚洲精品av麻豆狂野| 国产三级黄色录像| 欧美日本视频| 亚洲精品中文字幕一二三四区| 99国产精品一区二区三区| 久久精品国产亚洲av高清一级| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 亚洲人成电影免费在线| 日本熟妇午夜| 天堂√8在线中文| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久黄片| 又爽又黄无遮挡网站| 精品不卡国产一区二区三区| 成在线人永久免费视频| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 757午夜福利合集在线观看| 在线免费观看的www视频| 婷婷丁香在线五月| 999久久久精品免费观看国产| 国产亚洲欧美在线一区二区| √禁漫天堂资源中文www| 好男人电影高清在线观看| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻 | 丰满的人妻完整版| 两人在一起打扑克的视频| 熟女电影av网| 极品教师在线免费播放| 欧美久久黑人一区二区| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 日韩欧美 国产精品| 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| 91麻豆av在线| 久久精品国产清高在天天线| 夜夜躁狠狠躁天天躁| 国产精品九九99| 欧美日本视频| 色播亚洲综合网| 一边摸一边做爽爽视频免费| 亚洲色图 男人天堂 中文字幕| av视频在线观看入口| 精品久久久久久久久久免费视频| 色综合站精品国产| 日本熟妇午夜| 日韩高清综合在线| 亚洲成人久久性| 精品无人区乱码1区二区| 亚洲成人精品中文字幕电影| 日本三级黄在线观看| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频| 欧美日韩乱码在线| 黄色成人免费大全| 久久久国产成人免费| 亚洲精品在线观看二区| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区免费| 精品免费久久久久久久清纯| 女同久久另类99精品国产91| 免费在线观看黄色视频的| 女人高潮潮喷娇喘18禁视频| 精品久久久久久成人av| 欧美黄色片欧美黄色片| 亚洲av片天天在线观看| 亚洲国产精品成人综合色| 18禁国产床啪视频网站| 丁香六月欧美| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女| 别揉我奶头~嗯~啊~动态视频| 亚洲真实伦在线观看| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 男男h啪啪无遮挡| 18禁美女被吸乳视频| 777久久人妻少妇嫩草av网站| 成年人黄色毛片网站| 神马国产精品三级电影在线观看 | 午夜免费观看网址| 一级毛片高清免费大全| 日日干狠狠操夜夜爽| 女同久久另类99精品国产91| 国产麻豆成人av免费视频| 一级a爱片免费观看的视频| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色毛片三级朝国网站| 一夜夜www| 精品不卡国产一区二区三区| 国产成人av教育| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 叶爱在线成人免费视频播放| 在线a可以看的网站| 久99久视频精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美大码av| 久久久久久大精品| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 亚洲自拍偷在线| 国产高清videossex| 麻豆国产97在线/欧美 | 色综合站精品国产| 老熟妇乱子伦视频在线观看| 一级作爱视频免费观看| 一级a爱片免费观看的视频| 欧美极品一区二区三区四区| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 搡老岳熟女国产| 国产单亲对白刺激| 欧美av亚洲av综合av国产av| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| www.自偷自拍.com| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 免费在线观看日本一区| 亚洲精品国产精品久久久不卡| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 日韩欧美三级三区| 91大片在线观看| АⅤ资源中文在线天堂| 中文字幕高清在线视频| 90打野战视频偷拍视频| 欧美乱码精品一区二区三区| av在线天堂中文字幕| 日韩欧美在线乱码| 天堂√8在线中文| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 久久久久免费精品人妻一区二区| 精品国产乱码久久久久久男人| 欧美 亚洲 国产 日韩一| 在线观看美女被高潮喷水网站 | 三级毛片av免费| 日韩欧美 国产精品| 一级作爱视频免费观看| 精品国产亚洲在线| 欧美成人一区二区免费高清观看 | 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 真人做人爱边吃奶动态| 琪琪午夜伦伦电影理论片6080| 丁香六月欧美| 在线免费观看的www视频| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 黄色a级毛片大全视频| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 国产精品av久久久久免费| 老司机深夜福利视频在线观看| 精品免费久久久久久久清纯| 日韩中文字幕欧美一区二区| 欧美中文日本在线观看视频| 五月玫瑰六月丁香| 亚洲国产精品合色在线| 免费在线观看黄色视频的| 婷婷六月久久综合丁香| 国产成人精品久久二区二区免费| www.www免费av| 最好的美女福利视频网| 91老司机精品| 大型av网站在线播放| 亚洲专区中文字幕在线| 蜜桃久久精品国产亚洲av| 91成年电影在线观看| 欧美不卡视频在线免费观看 | av天堂在线播放| 久久国产精品人妻蜜桃| 51午夜福利影视在线观看| 两个人的视频大全免费| 欧美中文综合在线视频| 天天添夜夜摸| 999久久久精品免费观看国产| 特大巨黑吊av在线直播| 琪琪午夜伦伦电影理论片6080| 在线观看66精品国产| 99久久精品国产亚洲精品| 亚洲片人在线观看| 国产精品一区二区免费欧美| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 一夜夜www| 全区人妻精品视频| 无人区码免费观看不卡| 欧美日韩黄片免| 国模一区二区三区四区视频 | 黄片小视频在线播放| 高潮久久久久久久久久久不卡| www.999成人在线观看| 人人妻人人看人人澡| 精品国产乱码久久久久久男人| 欧美激情久久久久久爽电影| 亚洲九九香蕉| 国产精品98久久久久久宅男小说| 麻豆成人午夜福利视频|