• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Homogenized Function to Recover Wave Source by Solving a Small Scale Linear System of Differencing Equations

    2016-12-12 05:38:59CheinShanLiuWenChenJiLin

    Chein-Shan Liu,Wen Chen,Ji Lin

    A Homogenized Function to Recover Wave Source by Solving a Small Scale Linear System of Differencing Equations

    Chein-Shan Liu1,2,3,Wen Chen1,Ji Lin1

    In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x,t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.

    Wave source recovery problem,Eigenfunctions,Homogenized function,Differencing equations

    1 Introduction

    The wave motions are appeared in many engineering problems,for example the stress wave in solids,the wave propagation in fluids,the scattering problems of electromagnetic waves,and the sound wave propagation in media.There are many available methods for solving the wave equations of direct problems[Young and Ruan(2005);Shu,Wu,and Wang(2005);Godinho,Tadeu,and Amado Mendes(2007);Ma(2007);Young,Gu,and Fan(2009);Gu,Young,and Fan(2009);Kuo,Gu,Young,and Lin(2013);Dong,Alotaibi,Mohiuddine,and Atluri(2015)].

    For a given wave propagation problem if one can find a solution satisfying both the governing equation and initial conditions/boundary conditions,then it is the exact solution of that problem.In general,it is very difficult to find the exact solution.In the numerical algorithm to solve the wave propagation problem,we can expand a trial solution by using the bases which automatically fulfil the governing equation but not necessary the initial conditions/boundary conditions.This sort method is known as the Trefftz method,including the method of fundamental solutions[Lin,Chen and Sun(2015)],and the method of wave polynomials[Maciag and Wauer(2005);Maciag(2005 2011)].Sometimes if the boundary conditions are homogeneous,one can use the eigenfunctions to expand the trial solution,where the eigenfunctions exactly satisfy the homogeneous boundary conditions.This inspires us to introduce the homogenized function,which renders the trial solution automatically satisfying the initial condition/boundary conditions and a measured supplementary condition at a final time.

    For the hyperbolic systems there have been many works on the identifications of the point sources[Jang(2000);El Badia and Ha-Duong(2001);Komornik and Yamamoto(2002,2005);Ohe,Inui and Ohnaka(2011)].This study has an important application in the seismology detection,which could be regarded an approximation of elastic waves generated from point dislocation.The excitation force is assumed to have known time profile,and the problem is to determine the spatial variation from supplementary measurements.

    The homogenized technique is used to find the unknown wave source in the following wave equation:

    We intend to recover G(x)or H(t)in F(x,t)=G(x)H(t)under a supplementary condition measured at a final time t=tf,which may be polluted by noise:

    where R(x)∈ [?1,1]is a random function.When the wave source only depends on x we set H(t)=1,and sometimes H(t)is given and we may need to estimate G(x)and the position of point sources.On the other hand,we may want to know the time varying wave source H(t),when G(x)is given.

    2 A homogenized function method

    Let

    is a homogenized function.We can verify that

    Inserting Eq.(7)into Eqs.(1)–(4)and(6)and using Eq.(9)we can derive

    such that u given by Eq.(7)automatically satisfies the conditions(2)–(4)and(6).For this reason we call w(x,t)a homogenized function,which lends v(x,t)only subject to homogeneous initial/final/boundary conditions when we solve it by using Eq.(10).In view of Eq.(8)the homogenized function w(x,t)always exists,when Eqs.(2),(3),(4)and(6)are given.

    We have transformed Eqs.(1)–(6)into Eqs.(10)and(11).Both are the inverse wave source recovery problems to find F(x,t)=G(x)H(t);however,Eqs.(10)and(11)are simpler than Eqs.(1)–(6).

    We can expand v(x,t)and u(x,t)by using the eigenfunctions:

    such that when v(x,t)automatically fulfills the homogeneous conditions in Eq.(11),u(x,t)automatically fulfills the conditions(2)–(4)and(6).Consequently,we may name the presented method the eigenfunction expansion method.

    3 Collocation on lines along the space direction

    The remaining problem is how to determine the coefficients cijin Eqs.(12)and(13).When cijare obtained,by Eq.(10)we can solve v(x,t);hence,G(x)is computed by

    For the above purpose,the coefficients cijcan be arranged to be an n-dimensional vector c with components ck,k=1,...,n given by

    To find the solution by using the eigenfunctions expansion method we must reduce the number of equations such that the condition number of the resultant linear system is greatly reduced.If we solve Eq.(10)we do not need to consider Eq.(11),because they are automatically fulfilled by the expansion of v in Eq.(12).

    be a horizontal line inside ? for each j=1,...,m2+1.At these m2+1 horizontal lines,Eq.(10)is satisfied:

    Multiplying Eq.(16)by H(tj+1)and Eq.(17)by H(t1)we have

    Subtracting Eq.(19)by Eq.(18),we can obtain

    Then,by moving the terms about w into the right-hand side of Eq.(20),we have

    Because the unknown function G(x)is eliminated in Eq.(21),it can be simply used to solve v(x,t)by the collocation method,and then by using Eq.(14)to determine G(x).

    By letting j run from 1 to m2in Eq.(21)and collocating points on t=0 to satisfy Eq.(5)we can derive a linear system:

    where b presents the right-hand side of Eq.(21).Usually,Eq.(24)is an overdetermined system for that we may collocate more points to obtain more equations,which are used to find n coefficients in c with n<nc.The dimension of A is nc×n,where nc=m1×m2.

    Instead of Eq.(24),we can solve a normal linear system:

    The algorithm of conjugate gradient method(CGM)for solving Eq.(25)is summarized as follows.

    (i)Give an initial c0and then compute r0=Dc0?b1and set p0=r0.

    (ii)For k=0,1,2,...,we repeat the following iterations:

    If ck+1converges according to a given stopping criterion ‖rk+1‖ < ε,then stop;otherwise,go to step(ii).

    4 Numerical examples to recover G(x)

    In this section we test the proposed methodology for the recovery of G(x)inF(x,t)=G(x)H(t)when H(t)/=0 is given.All the required boundary conditions initial condition and a supplementary condition can be derived from exact solution.Here we consider the noise being imposed on the measured data by

    where R(i)are random numbers in[?1,1],and σ is the intensity of noise.

    4.1 Example 1

    In order to explore the applicability of the present method we consider

    where H(t)=1.

    In this case we take ?=4,tf=1,nc=600,and n=16.Under the convergence criterion ε=10?10the CGM is convergence with 34 steps.The noise is taken to be σ=0.5.InFig.1(a)we compare the numerically recovered and exact wave sources G(x),which can be seen very close,so that in Fig.1(b)we plot the numerical error.The maximum error of G(x)is 0.498.We can recover very well the unknown wave source in a large space range to ?=4,and under a large noise with σ =50%.

    Figure 1:For the space-dependent wave source recovery problem of example 1,(a)comparing recovered and exact wave sources,(b)numerical error.

    4.2 Example 2

    Next,we consider a more complex inverse wave source problem with a bell shape function of G(x):

    In this case we take ?=1,tf=1,nc=700,and n=9.Under the convergence criterion ε=10?10the CGM is convergence with 16 steps.We take σ =0.5.In Fig.2(a)we compare the numerically recovered and exact wave sources F(x,tf)=exp(tf)G(x),which can be seen very close,so that in Fig.2(b)we plot the numerical error.Upon comparing with the maximum value of wave source with 550,the maximum error 3 is very accurate.

    Figure 2:For the space-time-dependent wave source recovery problem of example 2,(a)comparing recovered and exact wave sources,(b)numerical error.

    4.3 Example 3

    Then,we test a pointwise wave source with

    Under zero initial values and boundary conditions we solve a direct problem to obtain g(x)as shown in Fig.3(a).

    In this case we take ?=1,tf=1,nc=693,n=36.Under the convergence criterion ε=10?10the CGM is convergence with 136 steps.We take σ =0.01.In Fig.3(b)we compare the numerically recovered and exact wave sources F(x,tf)=exp(tf)δ(x?0.5),which can be seen very close,with the maximum error being 9.97×10?3.The solution of u(x,t)is plotted in Fig.3(c).

    5 Numerical method to recover H(t)

    In this section we recover H(t)in F(x,t)=G(x)H(t),where G(x)/=0.All the required boundary conditions,initial condition and a supplementary condition are the same as that used previously,which can be derived from exact solution.

    We take x1as a reference position,and other positions are given by xi+1=x1+i(x0?x1)/m2,where x1<x0≤?.Let

    be a vertical line inside ? for each i=1,...,m2+1.At these m2+1 vertical lines,Eq.(10)is satisfied:

    Multiplying Eq.(32)by G(xi+1)and Eq.(33)by G(x1)we have

    Subtracting Eq.(35)by Eq.(34),we can obtain

    Figure 3:For a point time-dependent wave sourc recovery problem of example 3,(a)final time data,(b)comparing recovered and exact wave sources,and(c)recovered solution.

    Then,by moving the terms about w into the right-hand side of Eq.(36),we have

    Now we can apply the CGM to solve the above linear system with dimensions m1m2×n of the coefficient matrix A to determine the n coefficients cijin Eqs.(12)and(13).

    Figure 4:For the time-dependent wave source recovery problem of example 4,(a)comparing recovered and exact wave sources,(b)numerical error.

    5.1 Example 4

    We consider a complex inverse wave source problem with a bell shape function of t:

    is a time-dependent source we attempt to recover.

    In this case we take ?=1,tf=1,nc=700,and n=9.Under the convergence criterion ε=10?10the CGM is convergence with 15 steps.In Fig.4(a)we compare the numerically recovered and exact wave sources H(t),which can be seen very close,so that in Fig.4(b)we plot the numerical error.Upon comparing with the value of wave source with 200,the maximum error 0.93 is very accurate,although under a large noise with σ=0.5.

    5.2 Example 5

    We consider a complex inverse wave source problem with a sin function of t:

    In this case we take ?=1,tf=2,σ =0.5,nc=600,and n=9.Under the convergence criterion ε=10?10the CGM is convergence with 15 steps.In Fig.5(a)we compare the numerically recovered and exact wave sources H(t),which are very close,and in Fig.5(b)we plot the numerical error.Upon comparing with the maximum value of wave source with π2,the maximum error 0.13 is small.

    6 Conclusions

    In this paper we have proposed a very simple homogenized function technique by including the initial condition/boundary conditions and a supplementary condition,to simplify the governing equation for the recovery of a space-dependent or a timedependent wave source,such that we can use the eigenfunctions to expand the trial solutions.Because all conditions are satisfied automatically we can collocate only a few points in the problem domain to satisfy the derived differencing equations system,whose dimension is much smaller than the collocation method in the whole problem domain.Although the supplementary data were polluted by a large noise 50%,the presented method is quite simple,very stable and very accurate to recover the space-dependent or time-dependent wave source.

    Figure 5:For the time-dependent wave source recovery problem of example 5,(a)comparing recovered and exact wave sources,(b)numerical error.

    Acknowledgement:Taiwan’s Ministry of Science and Technology project NSC-102-2221-E-002-125-MY3 granted to the first author is highly appreciated.CS has been nominated to be a Chair Professor of Hohai University.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,pp.1–85.

    El Badia,A.;Ha-Duong,T.(2001):Determination of point wave sources by boundary measurements.Inv.Prob.,vol.17,pp.1127–1139.

    Godinho,L.;Tadeu,A.;Amado Mendes,P.(2007):Wave propagation around thin structures using the MFS.CMC:Computers,Materials&Continua,vol.5,pp.117–128.

    Gu,M.H.;Young,D.L.;Fan,C.M.(2009):The method of fundamental solutions for one-dimensional wave equations.CMC:Computers,Materials&Continua,vol.11,pp.185–208.

    Jang,T.S.;Choi,H.S.;Kinoshita,T.(2000):Solution of an unstable inverse problem:wave source evaluation from observation of velocity distribution.J.Mar.Sci.Tech.,vol.5,pp.181–188.

    Komornik,V.;Yamamoto,M.(2002):Upper and lower estimates in determining point sources in a wave equation.Inv.Prob.,vol.18,pp.319–329.

    Komornik,V.;Yamamoto,M.(2005):Estimation of point sources and applications to inverse problems.Inv.Prob.,vol.21,2051–2070.

    Kuo,L.H.;Gu,M.H.;Young,D.L.;Lin,C.Y.(2013):Domain type kernelbased meshless methods for solving wave equations.CMC:Computers,Materials&Continua,vol.33,pp.213–228.

    Lin,J.;Chen,W.;Sun,L.(2015):Simulation of elastic wave propagation in layered materials by the method of fundamental solutions.Eng.Anal.Bound.Elem.,vol.57,pp.88–95.

    Ma,Q.W.(2007):Numerical generation of freak waves using MLPGRand QALEFEM methods.CMES:Computer Modeling in Engineering&Sciences,vol.18,pp.223–234.

    Maciag,A.(2005):Three-dimensional wave polynomials.Math.Prob.Eng.,vol.2005,pp.583–598.

    Maciag,A.(2011):The usage of wave polynomials in solving direct and inverse problems for two-dimensional wave equation.Int.J.Numer.Meth.Bio.Eng.,vol.27,pp.1107–1125.

    Maciag,A.;Wauer,J.(2005):Solution of the two-dimensional wave equation by using wave polynomials.J.Eng.Math.,vol.51,pp.339–350.

    Ohe,T.;Inui,H.;Ohnaka,K.(2011):Real-time reconstruction of time varying point sources in a three-dimensional scalar wave equation.Inv.Prob.,vol.27,pp.115011.

    Shu,C.;Wu,W.X.;Wang,C.M.(2005):Analysis of metallic waveguides by using least square-based finite difference method.CMC:Computers,Materials&Continua,vol.2,pp.189–200.

    Young,D.L.;Gu,M.H.;Fan,C.M.(2009):The time-marching method of fundamental solutions for wave equations.Eng.Anal.Bound.Elem.,vol.33,pp.1411–1425.

    Young,D.L.;Ruan,J.W.(2005):Method of fundamental solutions for scattering problems of electromagnetic waves.CMES:Computer Modeling in Engineering&Sciences,vol.7,pp.223–232.

    1Center for Numerical Simulation Software in Engineering and Sciences,College of Mechanics and Materials,Hohai University,Nanjing,Jiangsu 210098,China

    2Department of Civil Engineering,National Taiwan University,Taipei 106-17,Taiwan

    3Corresponding author,E-mail:liucs@ntu.edu.tw

    亚洲少妇的诱惑av| 精品一区二区免费观看| 一级,二级,三级黄色视频| 亚洲精品自拍成人| 1024视频免费在线观看| 一区二区三区精品91| av播播在线观看一区| av在线观看视频网站免费| 亚洲美女黄色视频免费看| 一级,二级,三级黄色视频| 18在线观看网站| 国产精品偷伦视频观看了| 亚洲av欧美aⅴ国产| 蜜臀久久99精品久久宅男| 新久久久久国产一级毛片| 在线观看人妻少妇| 美女中出高潮动态图| 午夜免费观看性视频| 免费看光身美女| 国产女主播在线喷水免费视频网站| 国产熟女午夜一区二区三区| 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 亚洲欧美清纯卡通| 热re99久久精品国产66热6| 国产一区有黄有色的免费视频| 欧美+日韩+精品| 成人毛片60女人毛片免费| 国产国语露脸激情在线看| 丰满乱子伦码专区| 午夜91福利影院| 黄网站色视频无遮挡免费观看| 男人舔女人的私密视频| 夫妻性生交免费视频一级片| 色吧在线观看| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 日本与韩国留学比较| 国产亚洲最大av| 国产黄色视频一区二区在线观看| 亚洲欧美成人精品一区二区| 国产 一区精品| 黑人欧美特级aaaaaa片| 女的被弄到高潮叫床怎么办| 亚洲av电影在线进入| 日韩伦理黄色片| 久久97久久精品| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 最新中文字幕久久久久| 色视频在线一区二区三区| 建设人人有责人人尽责人人享有的| 午夜免费男女啪啪视频观看| 街头女战士在线观看网站| 亚洲国产精品一区三区| 精品99又大又爽又粗少妇毛片| 在线天堂中文资源库| 国产一区二区在线观看日韩| 男男h啪啪无遮挡| 中文字幕免费在线视频6| 日本黄色日本黄色录像| 少妇人妻久久综合中文| 老司机影院成人| 巨乳人妻的诱惑在线观看| 国产成人精品久久久久久| 日日撸夜夜添| 久久久久精品性色| 久久av网站| 这个男人来自地球电影免费观看 | 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡| 日本wwww免费看| 精品卡一卡二卡四卡免费| 久久精品国产鲁丝片午夜精品| 免费av不卡在线播放| 色婷婷av一区二区三区视频| 国产片特级美女逼逼视频| 日韩精品免费视频一区二区三区 | 精品久久久精品久久久| 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 大香蕉久久网| 少妇人妻 视频| 18禁在线无遮挡免费观看视频| 伊人久久国产一区二区| 22中文网久久字幕| 色视频在线一区二区三区| 飞空精品影院首页| av.在线天堂| 欧美精品国产亚洲| 婷婷色av中文字幕| 99国产综合亚洲精品| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久成人av| 日本欧美视频一区| 一区二区三区精品91| 午夜免费鲁丝| 国产乱人偷精品视频| 中文字幕人妻丝袜制服| 91久久精品国产一区二区三区| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| 日本av免费视频播放| 亚洲,一卡二卡三卡| 久久久久久人妻| 大陆偷拍与自拍| 少妇的丰满在线观看| 国产精品一区www在线观看| 国产不卡av网站在线观看| 制服诱惑二区| 久久午夜福利片| 丝袜喷水一区| 久久久亚洲精品成人影院| 久久久久人妻精品一区果冻| 热re99久久精品国产66热6| 久久久国产欧美日韩av| 亚洲图色成人| 精品亚洲成a人片在线观看| 人妻 亚洲 视频| 黑丝袜美女国产一区| 蜜臀久久99精品久久宅男| 最近最新中文字幕免费大全7| 成人漫画全彩无遮挡| 热99国产精品久久久久久7| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 亚洲在久久综合| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久| 精品午夜福利在线看| 热re99久久国产66热| 欧美成人午夜精品| 亚洲国产毛片av蜜桃av| 90打野战视频偷拍视频| 一区二区三区精品91| 不卡视频在线观看欧美| 国产欧美另类精品又又久久亚洲欧美| 久久99热6这里只有精品| 国产在线免费精品| 一级a做视频免费观看| 激情视频va一区二区三区| 久久久久国产网址| 一边亲一边摸免费视频| 国产一级毛片在线| 亚洲国产精品一区二区三区在线| av天堂久久9| 晚上一个人看的免费电影| 久久久久久久久久人人人人人人| www.熟女人妻精品国产 | 日本wwww免费看| a级毛片黄视频| 欧美+日韩+精品| 久久久久久伊人网av| 水蜜桃什么品种好| 夫妻性生交免费视频一级片| 成人18禁高潮啪啪吃奶动态图| 免费黄网站久久成人精品| 亚洲av日韩在线播放| 久久久久人妻精品一区果冻| 国产高清三级在线| 欧美日韩视频精品一区| 在现免费观看毛片| 九草在线视频观看| 男女边吃奶边做爰视频| av线在线观看网站| 久久99精品国语久久久| 我要看黄色一级片免费的| 国产av一区二区精品久久| 精品国产乱码久久久久久小说| 99久国产av精品国产电影| 久久av网站| 色婷婷av一区二区三区视频| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 久久影院123| 日韩制服丝袜自拍偷拍| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 日本午夜av视频| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 色婷婷av一区二区三区视频| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 国产成人av激情在线播放| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 国产老妇伦熟女老妇高清| 欧美+日韩+精品| 日韩大片免费观看网站| 建设人人有责人人尽责人人享有的| 久久国产精品大桥未久av| 精品一区在线观看国产| 亚洲国产毛片av蜜桃av| 成人手机av| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 七月丁香在线播放| 国产69精品久久久久777片| 国产av精品麻豆| 制服人妻中文乱码| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 蜜桃国产av成人99| 亚洲精品视频女| 精品少妇内射三级| 欧美+日韩+精品| 大码成人一级视频| 日日啪夜夜爽| 欧美精品一区二区免费开放| 久久久久网色| 99国产综合亚洲精品| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 伊人亚洲综合成人网| 卡戴珊不雅视频在线播放| 久久久精品免费免费高清| 亚洲国产av新网站| 亚洲五月色婷婷综合| 波野结衣二区三区在线| av天堂久久9| 久久久国产欧美日韩av| 一区二区av电影网| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 18+在线观看网站| av片东京热男人的天堂| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片| 久久精品夜色国产| 边亲边吃奶的免费视频| 欧美人与性动交α欧美软件 | videossex国产| 亚洲国产精品999| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 国产免费一级a男人的天堂| 美女福利国产在线| 不卡视频在线观看欧美| 欧美性感艳星| 亚洲人成网站在线观看播放| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 精品酒店卫生间| 狂野欧美激情性xxxx在线观看| 国产精品麻豆人妻色哟哟久久| 最黄视频免费看| 久久精品夜色国产| 成人毛片a级毛片在线播放| 午夜91福利影院| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频 | 日韩一区二区三区影片| a级毛片在线看网站| videossex国产| 久久精品国产亚洲av涩爱| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| 99热国产这里只有精品6| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 婷婷色综合www| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站| 国产精品不卡视频一区二区| 亚洲色图 男人天堂 中文字幕 | 韩国av在线不卡| 欧美激情国产日韩精品一区| 国产极品粉嫩免费观看在线| 最后的刺客免费高清国语| tube8黄色片| 22中文网久久字幕| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 边亲边吃奶的免费视频| 国产综合精华液| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 日韩av免费高清视频| 99热6这里只有精品| 免费大片黄手机在线观看| 国产一区亚洲一区在线观看| 久久人人爽人人片av| 国产免费现黄频在线看| 亚洲色图综合在线观看| 久久av网站| 欧美另类一区| 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 一级爰片在线观看| 一本色道久久久久久精品综合| 高清毛片免费看| 男人操女人黄网站| 妹子高潮喷水视频| 日本与韩国留学比较| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 免费黄色在线免费观看| 久久免费观看电影| 国产成人aa在线观看| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 久久久久久久久久久免费av| 午夜福利视频精品| 久久久久久久久久久免费av| 丝袜美足系列| 国产免费现黄频在线看| 亚洲婷婷狠狠爱综合网| 久久久久久久久久人人人人人人| 午夜91福利影院| 国产白丝娇喘喷水9色精品| 久久久久久久精品精品| 色5月婷婷丁香| 精品一区在线观看国产| 蜜桃在线观看..| 亚洲欧洲日产国产| 午夜视频国产福利| 中文字幕最新亚洲高清| 国产不卡av网站在线观看| 色哟哟·www| 国产淫语在线视频| 国产精品欧美亚洲77777| 国产免费又黄又爽又色| 在线观看三级黄色| 成年女人在线观看亚洲视频| 97在线视频观看| 男女无遮挡免费网站观看| xxx大片免费视频| 欧美精品高潮呻吟av久久| 日本vs欧美在线观看视频| 精品99又大又爽又粗少妇毛片| 欧美日韩视频精品一区| 纯流量卡能插随身wifi吗| 男人操女人黄网站| 美女视频免费永久观看网站| 日韩伦理黄色片| 亚洲国产成人一精品久久久| 一区二区av电影网| 97在线人人人人妻| 七月丁香在线播放| 天天影视国产精品| 国产精品三级大全| kizo精华| 天美传媒精品一区二区| 欧美日本中文国产一区发布| 国精品久久久久久国模美| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 看十八女毛片水多多多| 99九九在线精品视频| 亚洲成色77777| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 婷婷色综合www| av.在线天堂| 2021少妇久久久久久久久久久| 精品熟女少妇av免费看| www日本在线高清视频| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 精品少妇久久久久久888优播| 中文乱码字字幕精品一区二区三区| 韩国精品一区二区三区 | 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 日本vs欧美在线观看视频| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 亚洲国产av影院在线观看| 黄网站色视频无遮挡免费观看| 成年美女黄网站色视频大全免费| 天堂8中文在线网| 国产精品久久久av美女十八| 免费观看a级毛片全部| 中文乱码字字幕精品一区二区三区| 大香蕉久久网| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 欧美人与性动交α欧美精品济南到 | 香蕉国产在线看| 成年人午夜在线观看视频| 看十八女毛片水多多多| 国产片内射在线| 欧美精品高潮呻吟av久久| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 香蕉丝袜av| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 多毛熟女@视频| 久久久欧美国产精品| 人人澡人人妻人| 精品酒店卫生间| 亚洲国产最新在线播放| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 青春草国产在线视频| 日本午夜av视频| 内地一区二区视频在线| 亚洲成国产人片在线观看| 青春草视频在线免费观看| 一级毛片电影观看| 精品人妻熟女毛片av久久网站| 美女福利国产在线| 亚洲欧美精品自产自拍| 久久人人爽人人片av| 国产 一区精品| 亚洲图色成人| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| 久久久久久久精品精品| 人体艺术视频欧美日本| 国产片特级美女逼逼视频| 婷婷色麻豆天堂久久| 丝袜在线中文字幕| 搡女人真爽免费视频火全软件| 男女午夜视频在线观看 | 十八禁网站网址无遮挡| 最后的刺客免费高清国语| 国产女主播在线喷水免费视频网站| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 97在线人人人人妻| 国产精品欧美亚洲77777| 欧美激情国产日韩精品一区| 国产精品久久久久久av不卡| 日本-黄色视频高清免费观看| 午夜激情av网站| 如日韩欧美国产精品一区二区三区| 欧美成人午夜免费资源| 2018国产大陆天天弄谢| 在线精品无人区一区二区三| 久久这里只有精品19| 亚洲av国产av综合av卡| 亚洲av男天堂| 久久人人97超碰香蕉20202| 69精品国产乱码久久久| 国产日韩欧美视频二区| 满18在线观看网站| 一本大道久久a久久精品| 欧美日韩综合久久久久久| 高清欧美精品videossex| 国产成人精品在线电影| 久久99热这里只频精品6学生| 久久久欧美国产精品| 多毛熟女@视频| 久久这里有精品视频免费| 九色成人免费人妻av| 久久久久久久亚洲中文字幕| 搡女人真爽免费视频火全软件| 国产精品蜜桃在线观看| 久久久久视频综合| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 天天躁夜夜躁狠狠躁躁| 亚洲综合色网址| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 男女啪啪激烈高潮av片| 免费黄网站久久成人精品| 亚洲av福利一区| 伦精品一区二区三区| 日韩欧美精品免费久久| 最新的欧美精品一区二区| 精品99又大又爽又粗少妇毛片| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲综合色惰| 18+在线观看网站| 少妇猛男粗大的猛烈进出视频| 90打野战视频偷拍视频| 咕卡用的链子| 国产av码专区亚洲av| 亚洲精品日本国产第一区| 婷婷成人精品国产| 在线观看免费日韩欧美大片| 国产精品国产三级国产专区5o| 免费观看a级毛片全部| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区| 国产成人欧美| 成年美女黄网站色视频大全免费| 亚洲,一卡二卡三卡| 国产亚洲精品第一综合不卡 | 日韩一区二区三区影片| 波多野结衣一区麻豆| 韩国精品一区二区三区 | 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 中国国产av一级| 国产欧美亚洲国产| 在线观看国产h片| 精品视频人人做人人爽| 少妇的逼好多水| 免费看不卡的av| 天堂8中文在线网| videosex国产| 好男人视频免费观看在线| 少妇高潮的动态图| 男男h啪啪无遮挡| 插逼视频在线观看| 久久精品久久精品一区二区三区| 五月开心婷婷网| 人妻人人澡人人爽人人| 天天操日日干夜夜撸| 国产日韩欧美视频二区| 免费人妻精品一区二区三区视频| 成人二区视频| 亚洲美女视频黄频| videos熟女内射| av片东京热男人的天堂| 久久久a久久爽久久v久久| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线| 在线观看人妻少妇| 国产成人精品婷婷| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说| 婷婷成人精品国产| 亚洲av国产av综合av卡| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| 欧美日韩av久久| 一区二区三区精品91| 99九九在线精品视频| 永久免费av网站大全| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 美国免费a级毛片| 成年美女黄网站色视频大全免费| 黑人猛操日本美女一级片| 蜜桃在线观看..| 亚洲色图综合在线观看| 亚洲国产精品999| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 一区二区三区乱码不卡18| 久久99一区二区三区| 国产成人av激情在线播放| 久久久国产精品麻豆| 有码 亚洲区| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 男人添女人高潮全过程视频| 久久久久人妻精品一区果冻| 纯流量卡能插随身wifi吗| 亚洲av成人精品一二三区| 国产无遮挡羞羞视频在线观看| 亚洲国产av新网站| 免费人成在线观看视频色| 美女xxoo啪啪120秒动态图| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 80岁老熟妇乱子伦牲交| 国产精品一国产av| 亚洲精品一区蜜桃| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 免费大片18禁| 色94色欧美一区二区| 中文字幕最新亚洲高清| 少妇高潮的动态图| 国产精品嫩草影院av在线观看| 国产欧美亚洲国产| 婷婷色综合www| av.在线天堂| 国产精品一国产av| 国产精品一区二区在线不卡| 久久久久精品人妻al黑| 卡戴珊不雅视频在线播放| 尾随美女入室| 好男人视频免费观看在线| 在线看a的网站| 免费观看无遮挡的男女| 成年美女黄网站色视频大全免费| 欧美人与性动交α欧美软件 | 一本久久精品| 视频在线观看一区二区三区| 久久久久网色| 国产 一区精品| 欧美亚洲日本最大视频资源| 亚洲伊人久久精品综合| 亚洲精品一区蜜桃| 亚洲国产av新网站|