• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Methodology for predicting optical system performance when subjected to static stresses

    2016-12-12 05:04:45ALLAHAMRadwanMOUSSELLYMhdFawazNAIMMamoun
    中國光學(xué) 2016年6期
    關(guān)鍵詞:物鏡傳遞函數(shù)靜態(tài)

    AL-LAHAM Radwan, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (Higher Institute for Applied Sciences and Technology,Damascus,Syria)*Corresponding author, E-mail:eng.rad.laham@gmail.com

    ?

    Methodology for predicting optical system performance when subjected to static stresses

    AL-LAHAM Radwan*, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (HigherInstituteforAppliedSciencesandTechnology,Damascus,Syria)*Correspondingauthor,E-mail:eng.rad.laham@gmail.com

    High performance optical systems are characterized by high sensitivity to assembly procedure of the system and to any sensible change in environmental conditions. This sensitivity issue is handled in this paper through a methodology allowing a computational prediction of optical performance when the opto-mechanical system is subject to some external factors. This paper explains the methodology through an example of an optical objective of excellent performance undergoing static mechanical stresses which degrade the performance expressed by an MTF diagram. Then the objective is manufactured, assembled, and an optical interferometer is used to test the objective when stress is retained; and the experimental results of degraded MTF are compared to the analytical MTF. The excellent matching between the two sets of results confirms the validity of the proposed methodology.

    predicting optical performance;assembly of optical system;tensile torque;MTF;objective;Ansys;Matlab

    1 Introduction

    Optical systems are essential components in astronomy, scientific devices, medical instruments, and military equipments. Therefore, there has been a considerable research effort dedicated to designing and optimizing optical systems, and to evaluating their performances. This evaluation has been traditionally based on optical criteria developed during the twentieth century such as the PSF or MTF resulting from the numerical analysis of optical designs[1]. But this evaluation remains practically incomplete unless it includes an analytical study on the effect of static and dynamic mechanical stress resulting from the effect of fixing optical elements within their mountings(i.e. assembly of optical systems), the expansion of the optical elements in an environment with variable temperature, or the exposure to shockwaves or vibration[3].

    In all cases, the various types of stresses adversely affect the quality of the image formed by the optical system, and the system may completely fail to accomplish its function if these stresses exceed certain limits related to opto-mechanical design. For example, tension of an optical element with a retainer leads to surface deformation and generates stresses within this element, and these stresses depend on the shape of the contact contour between the element and the metallic mounting(sharp corner-torodial contact-tangential contact-circular contact-…[4]). If these stresses exceed 345 MPa as a compression stresses, the optical element will breakdown[1,4-5].

    The available scientific articles do not offer enough information about how the optical system performances could be analytically evaluated under various environmental conditions(stresses-pressure-temperature-…). The only significant work is presented under the form of the program “SIGFIT”. This software converts finite elements analysis(FEA) thermal and structural results obtained using the program ANSYS(or NASTRAN), into any of the well-known optical analysis programs such CODE V, ZEMAX, or OSLO[6].

    The accessible publications in this field include the research presented by Victor Genberg, Gregory Michels, and Keith Doyle who studied the effect of both temperature and stresses on the refractive index of glass materials using the finite elements method and its effect on the optical path difference[6-8]. They also investigated the behavior of adaptive optics and provided the obtained results under a form appropriate for optical design programs[9]. Furthermore, their research included a comprehensive study on the resulted birefringence[10-11]. However, the validity of the mentioned results depends on the correctness of the software SIGFIT which has not been thoroughly tested by independent institutions.

    Available publications also include the work of Martin Booth and his colleagues who developed two methods to characterize membrane deformable mirrors that were used in adaptive optical systems. One of these two methods utilizes a simple interferometer, and the deformable mirror is inserted in one arms of the interferometer and then they analyzed the fringes resulted from the mirror deformation[12].

    In this paper, we present a detailed study on the effect of static stresses on optical elements, specifically in the case of optical systems of very high performances, such as projective microlithography devices and space telescopes[4]. In such systems the stresses effects are not negligible compared to optical aberrations, and they may cause the optical system to fall short of fulfilling its intended functions. Therefore, a high performance objective lens has been designed for the sake of this study, and the methodology shown in Fig.1 was adopted in order to investigate the effective optical performance of this objective under static stresses. Practical confirmation of this methodology is illustrated in Fig.2 where an interferometer with double-pass auto-collimation was used.

    Fig.1 General scheme for predicting optical performance through the static structural analysis[3]

    Fig.2 Verification of optical system performance using a double-pass auto-collimation interferometer

    2 Optical design of the objective

    The current work included the application of the proposed methodology to predict the optical performance of a variety of objectives and eyepieces of telescopes that operate in the visible, and typically have a resolution less than 100 lp/mm. The results assert that the mechanical tension has no effect on the optical performance because the optical aberrations are much higher than the degradation caused by the tensile even when increased up to the break point of the glass material of the optical element. Therefore, it is necessary to apply the suggested methodology to an optical system of high performance so that a practical confirmation could be clearly observed and quantified.

    The well-known optical design program ZEMAX was used to design an objective with a very high resolution reaching 625 lp/mm atλ=628.3 nm and for an on-axis object point. Tab.1 shows the parameters of the designed objective, and Fig.3 displays its diffraction limit performance with a cutoff frequency 625 lp/mm.

    Fig.3 Optical performance of the designed objective

    Additionally, the tolerances analysis within ZEMAX confirms that this objective has low sensitivity to inevitable tilts and decenter errors of its lenses. Therefore, when applying mechanical tension to the optical elements of the objective, any decrease of optical performance will be originated only from the tension.

    3 Applying the prediction methodology of optical performance

    The modeling of stresses and tensions is generally realized by “finite elements method” with any from a set of approaches relating all parameters of the case study:geometric form, downloading method, retaining method, the behavior of materials,etc. The modeling is commonly done within one of the specialized programs such as ANSYS or NASTRAN.

    This modeling by ANSYS was applied to the opto-mechanical objective formerly designed, with suitable conditions and restrictions(retaining force-temperature-…) governing the system. Next, the problem was resolved for the first lens of the objective and the deformations were presented. The following parameters and criteria were applied in the modeling:

    (a)Because the lens has circular symmetry in its mounting, the 3D shape had been reduced to only one quarter with restrictions on all nodes plans (a,b) in horizontal direction(levels XY-ZY)(Fig.4).

    Fig.4 One quarter of the lens

    (b)The used element for 3D structure modeling is Solid186 which consists of 20 nodes, and every node has three degrees of freedom.

    (c)The behavior of glass is “l(fā)inear elastic” within the “safe use” range, and Tab.2 presents the characteristic values of glass material of the current element. As for the behavior of the mounting material(aluminum alloy), it is nonlinear elasto-palstic, and its values shown in Tab.2 have been based on the stress-strain curve obtained from the static tension experiment carried out using a standard sample made from the alloy(Fig.5).

    Tab.2 Characteristics of the materials used in the modeling

    Fig.5 Stress-strain curve for aluminum material

    (d)With respect to the modeling of contact surfaces between the optical element and both of the mounting and retainer metal, the modeling has been represented by a “contact model” available in Ansys. The used element(Targe169-Conta172) consists of three nodes in addition to the coefficients of friction associated with them. The values of these coefficients of friction between glass and aluminum are 0.6 as it is given in Ref.[15].

    (e)The forces generated by the retainer on the optical element have been represented as “compressed transitions” along the vertical axis(the optical axis), and this is equivalent to applying a torque of 3 to 6 N·m.

    (f)The number of elements is 15 328, and the number of nodes is 251 221 nodes.

    Once the problem has been resolved, and the resulting deformation on surfaces nodes has been calculated(Fig.6), the translations(xi+Δxi,yi+Δyi,zi+Δzi) are stored in an Excel file.

    Fig.6 Original surface deformation as a result of applied tension

    Taking in calculations that the diameter of retainer(Torsion couple) is 60 mm, it is possible to numerically represent-Tab.3-the torque as a function of displacements of retainer.

    Tab.3 Tensile torques values as a function of retainer displacement

    Fig.7 illustrates the values generated within the

    optical element due to a torque of 5 N·m along the optical axis(y-axis in the current example). Note that the maximum of compression stress 36.3 MPa is much lower than the stress of 345 MPa provoking a glass failure.

    Fig.7 Generated stresses due to a torque of 5 N m along y-axis

    After obtaining and storing the displacements of all nodes, they were mathematically processed within the the software MATLAB so they could define a new surface according to the following equation (1)[14]:

    Fig.8 Expansion of deformed surface as a function of Zernike polynomials

    the spherical surface;c=1/Ris the curvature at the summit; and (Z1,Z9,Z16) are Zernike polynomial coefficients. Since the tension has circularly symmetric effect, and then the meaningful terms are those related to spherical aberrations, in addition to a piston term representing a constant phase. Fig.8 shows the perfect matching between the deformed surface and the surface defined to be the previous equation with suitable coefficients. These results were obtained for a 3 N·m torque applied to the first surface within a confidence bounds of 95%.

    Tab.4 shows Zernike polynomial coefficients at each surface of the lens for a set of tensile torques.

    Tab.4 Zernike coefficients for a set of tensile torques

    The next step involves inputting Zernike polynomial of the deformed surface into ZEMAX. These coefficients-Tab.4-were used to define a surface of the type “Zernike fringe sag surfaces”. Fig.9 shows the objective MTF under the influence of a set tensile torques.

    Fig.9 Using Zemax to output MTF as a function of tensile torque

    4 The practical investigation of the mechanical tension effect

    The practical part involved the use of the following:

    (1)Torque tool:This tool(Fig.10) is used to fasten the retainer by a certain torque whose value is in the range of 3-11 N·m. This tool was calibrated to an accuracy of 0.05 N·m.

    (2)Adapter of steel:it is an intermediate piece(Fig.10) between the torque tool and the retainer of the optical element.

    (3)Fizeau-Interferometer with an accuracy ofλ/50.

    Fig.10 Torque tool and adapter of steel used in experiments

    Firstly, all the optical and mechanical elements of the objective have been manufactured according the optical design previously presented in this paper. Then, all the elements were assembled without applying any mechanical tension on the first lens which has been selected to be subjected to the variable mechanical tension. The optical system is fixed on a movable stage with two degrees of freedom(horizontal and vertical) and facing an interferometer according to the adopted methodology.

    The stage is adjusted in both directions to minimize various optical aberrations, as seen in Fig.11(a). Good adjustment leads to straight fringes, as seen in Fig.11(b), and that affirms the excellent quality of the objective whose P-V fringes error is ΔN=0.08λ.

    Fig.11 (a)Measuring setup using an interferometer; (b)resulted fringes when no tension was applied to the optical element

    In the next phase, the tension was gradually increased using the steel adapter and the torque tool,seen in Fig.12. The tension was varied within the range from 3 N·m to only 6 N·m because the deformation became very large and thus immeasurable by the interferometer. Fig.13 presents diagrams of fringes errors for several values of the applied tensile torque to the optical element.

    Fig.12 Applying a tension on the optical element

    All diagrams of Fig.13 comprise some astigmatism, and it is directly measurable by the interferometer. The origin of this aberration is the tolerated tilt between the lens surfaces during manufacture. This tilt was within the allowed tolerance, and the third order spherical aberrations was always the dominant aberration.

    Fig.13 Diagrams of fringes errors of the optical system under test for several values of tensile torque

    6N·m5N·m4N·m3N·mSpatialfrequencyMTF(computation)MTF(experiment)MTF(computation)MTF(experiment)MTF(computation)MTF(experiment)MTF(computation)MTF(experiment)01.0001.0001.0001.0001.0001.0001.0001.00062.50.7390.7910.6570.7170.6230.6580.5950.6141250.5100.5200.4090.4080.3550.4100.3120.278187.50.3640.3100.2760.2510.2250.2090.1860.1302500.3040.2680.2250.1920.1840.1600.1540.081312.50.2750.2510.2260.1890.1990.1400.1760.1153750.2310.2390.2100.1840.1970.1650.1870.179437.50.1360.1530.1170.1350.1060.0910.0990.1255000.0570.0710.0390.0660.0300.0540.0220.037562.50.0060.0150.0170.0170.0410.0220.0120.0176250.0000.0000.0000.0000.0000.0020.0000.002

    Tab.5 shows the MTF values for the previous tensile torques, and Fig.14 shows the MTF diagram in two cases(computation-experiment) for the previous tensile torques and with deviation(2σ), since the tangential and sagittal MTF(for computational and experimental) are very close so the MTF has no significant astigmatism aberration.

    The result gives the excellent match between the analytical and measured MTF for several values of tensile torques. This match validates the reliability of the methodology presented in this paper. More significantly, it confirms the possibility of a computational prediction of the functional performance of this kind of optical systems undergoing static mechanical stresses before actually manufacturing any element of the opto-mechanical system.

    Fig.14 Computed MTF as function of tensile torque(solid circle); experimental MTF as function of tensile torque with deviation 2σ(solid rectangle)

    5 Conclusion

    This paper presented a detailed methodology capable of predicting the optical performance undergoing static tension applied to the lenses of an opto-mechanical system of high performance. The manuscript also showed the adopted setup used to demonstrate the validity of the methodology using an optical interferometer. Comparison between the computed numerical results and the experimental results assert the exactness of this methodology.

    [1] KASUNIC K J.OptomechanicalSystemsEngineering[M]. New Jersey:John Wiley & Sons,Inc.,Hoboken,2015.

    [2] SCHWERTZ K,BURGE H.FieldGuidetoOptomechanicalDesignandAnalysis[M] , Bellingham:SPIE Press,2012.

    [3] DOYLE K B,GENBERG V L,MICHELSS G J.IntegratedOptomechanicalAnalysis(2nd Edition)[M]. Bellingham:SPIE Press,2012.

    [4] KASUNIC K J,BURGE J,YODER P.MountingofOpticalComponents[M]. Bellingham:SPIE Press,2013.

    [5] YODER P R. Parametric Investigations of Mounting-Induced Axial Contact Stresses in Individual Lens Elements[J].SPIE,1993,1998:8-20.

    [6] SigFit is a product of Sigmadyne,Inc.,Rochester,New York[EB/OL]. http://www.sigmadyne.com.

    [7] GENBERG V,DOYLE K,MICHELS G. Making FEA results useful in optical analysis[J].SPIE,2002,4769:24-33.

    [8] GENBERG V,DOYLE K,MICHELS G. Opto-Mechanical I/F for ANSYS[R].SigmadyneCompany,2004:TT58.

    [9] DOYLE K B,GENBERG V L,MICHELS G J. Integrated optomechanical analysis of adaptive optical systems[J].SPIE,2004,5178:20-25.

    [10] DOYLE K B,HOFFMAN J M,GENBERG V L,etal.. Stress Birefringence Modeling for Lens Design and Photonics[J].SPIE,2002,4832:436-447.

    [11] DOYLE K,GENBERG V,MICHELS G,etal.. Numerical methods to compute optical errors due to stress birefringenc[J].SPIE,2002,4769:34-42.

    [12] BOOTH M,WILSON T,SUN H B,etal.. Methods for the characterization of deformable membrane mirrors[J].AppliedOptics,2005,44(24):5131-5139.

    [13] GENBERG V,MICHELS G,DOYLE K. Orthogonality of zernike polynomials[J].SPIE,2002,4771:33-40.

    [14]ZemaxManual:OpticalDesignProgramUser′sGuide9-6-2009[M]. ZEMAX Development Corporation.

    [15] BUCKLEY-LEWIS D H. Friction behavior of glass and metals in contact with glass in various environments[R],Nasa Technical Note,1973,Nasa TN 0-7529.

    Author biographies:

    2016-06-16;

    2016-07-19

    2095-1531(2016)06-0678-09

    靜態(tài)應(yīng)力作用下預(yù)測(cè)光學(xué)系統(tǒng)性能的計(jì)算方法

    AL-LAHAM Radwan*, MOUSSELLY Mhd.Fawaz, NAIM Mamoun

    (敘利亞應(yīng)用科學(xué)與技術(shù)高等學(xué)校,大馬士革 31983)

    本文通過計(jì)算預(yù)測(cè)光學(xué)性能的方法表征在光學(xué)系統(tǒng)組裝和外界環(huán)境因素影響下的光學(xué)系統(tǒng)靈敏度。該方法即通過調(diào)制傳遞函數(shù)來表征靜態(tài)機(jī)械應(yīng)力對(duì)光學(xué)物鏡性能的影響。采用光學(xué)干涉儀對(duì)經(jīng)過加工、組裝且存在機(jī)械應(yīng)力的光學(xué)物鏡進(jìn)行測(cè)試,并比較實(shí)驗(yàn)調(diào)制傳遞函數(shù)與計(jì)算模擬分析的調(diào)制傳遞函數(shù)。結(jié)果表明,計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果相符,證實(shí)了本文方法的有效性。

    光學(xué)性能預(yù)測(cè);光學(xué)系統(tǒng)組裝;張力轉(zhuǎn)矩;調(diào)制傳遞函數(shù);物鏡;Ansys;Matlab

    O438

    A

    AL-LAHAM Radwan(1976—), Master degree. His research interests are on optical design and optical metrology. E-mail:eng.rad.laham@gmail.com

    10.3788/CO.20160906.0678

    猜你喜歡
    物鏡傳遞函數(shù)靜態(tài)
    靜態(tài)隨機(jī)存儲(chǔ)器在軌自檢算法
    為什么能用望遠(yuǎn)鏡看遠(yuǎn)方
    基于LabVIEW的火焰?zhèn)鬟f函數(shù)測(cè)量系統(tǒng)
    紅外成像系統(tǒng)的調(diào)制傳遞函數(shù)測(cè)試
    高數(shù)值孔徑投影光刻物鏡的光學(xué)設(shè)計(jì)
    大數(shù)值孔徑物鏡的波像差測(cè)量及其特殊問題
    機(jī)床靜態(tài)及動(dòng)態(tài)分析
    具7μA靜態(tài)電流的2A、70V SEPIC/升壓型DC/DC轉(zhuǎn)換器
    基于傳遞函數(shù)自我優(yōu)化的BP網(wǎng)絡(luò)算法改進(jìn)
    50t轉(zhuǎn)爐靜態(tài)控制模型開發(fā)及生產(chǎn)實(shí)踐
    上海金屬(2013年6期)2013-12-20 07:57:59
    国产免费一级a男人的天堂| 另类亚洲欧美激情| 国产成人精品一,二区| 狂野欧美激情性xxxx在线观看| 国产成人免费无遮挡视频| 日韩亚洲欧美综合| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99| 亚洲自拍偷在线| 亚洲自偷自拍三级| 国产精品久久久久久精品电影小说 | 少妇人妻久久综合中文| 天天躁日日操中文字幕| 国产亚洲av片在线观看秒播厂| 十八禁网站网址无遮挡 | 亚洲综合精品二区| 久久久久久久大尺度免费视频| 看黄色毛片网站| 永久网站在线| 中文精品一卡2卡3卡4更新| 在线观看免费高清a一片| 亚洲成人一二三区av| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 亚洲国产av新网站| 女人十人毛片免费观看3o分钟| 国产精品一二三区在线看| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃 | 国产淫语在线视频| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 一级毛片电影观看| 男人和女人高潮做爰伦理| 在线免费观看不下载黄p国产| 欧美日韩亚洲高清精品| 成年版毛片免费区| 日韩伦理黄色片| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o| 午夜免费观看性视频| 日本免费在线观看一区| 免费av毛片视频| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 久热这里只有精品99| av天堂中文字幕网| 精品一区二区免费观看| 一区二区三区乱码不卡18| 久久久久久久久久久丰满| 白带黄色成豆腐渣| 一区二区av电影网| 男插女下体视频免费在线播放| 伊人久久国产一区二区| 欧美最新免费一区二区三区| 一级毛片 在线播放| 91精品伊人久久大香线蕉| 亚洲精品中文字幕在线视频 | 黄色视频在线播放观看不卡| 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 91久久精品国产一区二区成人| 欧美日韩亚洲高清精品| 九九在线视频观看精品| 国产黄a三级三级三级人| 久久久久网色| 国产精品不卡视频一区二区| 婷婷色综合大香蕉| 亚洲婷婷狠狠爱综合网| 免费黄频网站在线观看国产| 在线天堂最新版资源| 我的女老师完整版在线观看| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 亚洲av中文av极速乱| 91久久精品国产一区二区三区| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 一级毛片 在线播放| 性色avwww在线观看| 99久久人妻综合| 国产精品一区二区在线观看99| 国产伦精品一区二区三区视频9| 久久精品久久精品一区二区三区| 又爽又黄无遮挡网站| 日韩成人伦理影院| 国产精品成人在线| 国产免费视频播放在线视频| 真实男女啪啪啪动态图| 国产免费一级a男人的天堂| 国产成人福利小说| 少妇熟女欧美另类| www.av在线官网国产| 最新中文字幕久久久久| 高清欧美精品videossex| 99热这里只有是精品50| 永久网站在线| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频 | 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 亚洲内射少妇av| 最近的中文字幕免费完整| 91精品一卡2卡3卡4卡| 免费看a级黄色片| 美女xxoo啪啪120秒动态图| 日本黄色片子视频| 九九在线视频观看精品| 精品久久久久久久久av| 少妇人妻精品综合一区二区| 国产欧美亚洲国产| 各种免费的搞黄视频| 午夜爱爱视频在线播放| 不卡视频在线观看欧美| 我的女老师完整版在线观看| 秋霞在线观看毛片| 久久久久久久久久久免费av| 有码 亚洲区| 久久99热6这里只有精品| 亚洲,欧美,日韩| 99热国产这里只有精品6| av卡一久久| 中文在线观看免费www的网站| 亚洲第一区二区三区不卡| 日韩三级伦理在线观看| 三级国产精品片| 色综合色国产| 国产国拍精品亚洲av在线观看| 亚洲人与动物交配视频| 亚洲成色77777| 少妇人妻久久综合中文| 在线免费十八禁| 久热这里只有精品99| 久久国产乱子免费精品| 免费观看的影片在线观看| 青春草视频在线免费观看| 永久网站在线| 亚洲天堂av无毛| 久久久久久九九精品二区国产| 亚洲欧美精品自产自拍| 久久久久国产网址| 亚洲精品国产成人久久av| 欧美日韩国产mv在线观看视频 | 特大巨黑吊av在线直播| 国产淫语在线视频| 国产午夜福利久久久久久| 国内揄拍国产精品人妻在线| 我要看日韩黄色一级片| 麻豆成人午夜福利视频| 亚洲精品乱码久久久v下载方式| 亚洲国产精品999| 国内少妇人妻偷人精品xxx网站| 国产精品一及| 一级二级三级毛片免费看| 麻豆精品久久久久久蜜桃| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 成年人午夜在线观看视频| 亚洲精品一二三| 一区二区av电影网| 亚洲国产色片| 搞女人的毛片| 国产av不卡久久| 免费在线观看成人毛片| 最近中文字幕2019免费版| 午夜激情久久久久久久| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 韩国高清视频一区二区三区| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 免费黄网站久久成人精品| 亚洲电影在线观看av| 丰满乱子伦码专区| 国产 一区 欧美 日韩| 日韩人妻高清精品专区| 大片免费播放器 马上看| 老女人水多毛片| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| av专区在线播放| 国产精品无大码| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 久久久久国产精品人妻一区二区| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 成年av动漫网址| 天堂中文最新版在线下载 | 国产一区有黄有色的免费视频| 国产亚洲5aaaaa淫片| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 毛片女人毛片| 黄色一级大片看看| 综合色av麻豆| 久久久a久久爽久久v久久| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 真实男女啪啪啪动态图| 免费播放大片免费观看视频在线观看| 亚洲欧美一区二区三区国产| h日本视频在线播放| 国产成人福利小说| 久久久a久久爽久久v久久| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡动漫免费视频 | 视频区图区小说| 中文乱码字字幕精品一区二区三区| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 水蜜桃什么品种好| 国产午夜福利久久久久久| 国产黄片视频在线免费观看| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品 | 午夜福利高清视频| av卡一久久| 在线播放无遮挡| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 日日摸夜夜添夜夜添av毛片| xxx大片免费视频| 蜜桃亚洲精品一区二区三区| 亚洲精品自拍成人| 日本欧美国产在线视频| 亚洲经典国产精华液单| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 亚洲成人久久爱视频| 国产一区二区三区综合在线观看 | 亚洲欧美日韩另类电影网站 | 亚洲精品视频女| 日韩亚洲欧美综合| 精品视频人人做人人爽| 又爽又黄无遮挡网站| 99热6这里只有精品| 日韩国内少妇激情av| www.色视频.com| 精品久久久久久久末码| 久久久精品免费免费高清| 99热国产这里只有精品6| 久久久久网色| 内射极品少妇av片p| 国产一区二区在线观看日韩| 91在线精品国自产拍蜜月| 精品亚洲乱码少妇综合久久| 日韩一本色道免费dvd| 丝袜美腿在线中文| 精品一区二区三卡| 成人黄色视频免费在线看| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 黄色日韩在线| 又大又黄又爽视频免费| 大香蕉97超碰在线| 大又大粗又爽又黄少妇毛片口| 日韩欧美 国产精品| 男女国产视频网站| a级毛色黄片| 91狼人影院| 日本色播在线视频| 男男h啪啪无遮挡| 精品久久久噜噜| 91精品伊人久久大香线蕉| 丝袜喷水一区| 日韩av不卡免费在线播放| 在线观看美女被高潮喷水网站| 午夜激情福利司机影院| 伦精品一区二区三区| 亚洲熟女精品中文字幕| 卡戴珊不雅视频在线播放| 老女人水多毛片| 亚洲精品亚洲一区二区| av在线播放精品| 午夜精品国产一区二区电影 | 精品国产一区二区三区久久久樱花 | 免费播放大片免费观看视频在线观看| 香蕉精品网在线| 日韩av在线免费看完整版不卡| 亚洲最大成人手机在线| 亚洲成色77777| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 韩国av在线不卡| 国产精品一区二区性色av| 亚洲最大成人av| 欧美成人午夜免费资源| 日韩伦理黄色片| 又爽又黄无遮挡网站| 亚洲av国产av综合av卡| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 日韩欧美精品免费久久| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 亚洲国产欧美人成| 国产在线男女| 国产高清国产精品国产三级 | 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品久久久久久精品古装| 亚洲av国产av综合av卡| a级毛色黄片| 国产黄色免费在线视频| 国产成人aa在线观看| 边亲边吃奶的免费视频| 水蜜桃什么品种好| 亚洲精品乱码久久久久久按摩| 简卡轻食公司| 男女啪啪激烈高潮av片| 国产片特级美女逼逼视频| 国产精品久久久久久久电影| 亚洲va在线va天堂va国产| 免费av不卡在线播放| 久久97久久精品| 日本熟妇午夜| 超碰av人人做人人爽久久| 日韩成人伦理影院| 中国国产av一级| 国产精品人妻久久久久久| 大码成人一级视频| 日本一本二区三区精品| 黑人高潮一二区| 精品人妻一区二区三区麻豆| 亚洲av成人精品一二三区| 欧美极品一区二区三区四区| 在线观看一区二区三区| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 麻豆成人午夜福利视频| 边亲边吃奶的免费视频| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 最近手机中文字幕大全| 波野结衣二区三区在线| av卡一久久| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| 全区人妻精品视频| 精品一区二区三区视频在线| av网站免费在线观看视频| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 一本久久精品| 我的老师免费观看完整版| 毛片女人毛片| 22中文网久久字幕| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 精品亚洲乱码少妇综合久久| 日韩三级伦理在线观看| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 国产在线男女| 听说在线观看完整版免费高清| 国产伦理片在线播放av一区| 国产高清有码在线观看视频| 女人久久www免费人成看片| 女人十人毛片免费观看3o分钟| 大香蕉久久网| 久久午夜福利片| av天堂中文字幕网| 国产精品熟女久久久久浪| 1000部很黄的大片| 麻豆乱淫一区二区| 黄片无遮挡物在线观看| 成年av动漫网址| 精品一区二区免费观看| 免费少妇av软件| 日本猛色少妇xxxxx猛交久久| 午夜免费观看性视频| 亚洲精品国产成人久久av| 熟女av电影| 久久人人爽av亚洲精品天堂 | 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 我的女老师完整版在线观看| 免费人成在线观看视频色| 丰满乱子伦码专区| 内射极品少妇av片p| 久久6这里有精品| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 午夜福利视频精品| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区| 国产精品一区www在线观看| 亚洲精品视频女| 热re99久久精品国产66热6| 精品人妻视频免费看| 久热久热在线精品观看| 99热网站在线观看| 天堂网av新在线| 2018国产大陆天天弄谢| 久久久欧美国产精品| 日韩强制内射视频| 亚洲在久久综合| 舔av片在线| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 亚洲av成人精品一区久久| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 好男人在线观看高清免费视频| 99re6热这里在线精品视频| 久久久国产一区二区| 欧美3d第一页| h日本视频在线播放| 亚洲精品久久午夜乱码| 一级爰片在线观看| 久久国产乱子免费精品| 色视频www国产| 久久精品人妻少妇| 国产黄色免费在线视频| 男人和女人高潮做爰伦理| 联通29元200g的流量卡| 久久人人爽人人爽人人片va| 联通29元200g的流量卡| 国产av不卡久久| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 久久精品国产自在天天线| 如何舔出高潮| 婷婷色麻豆天堂久久| 亚洲欧美日韩另类电影网站 | 中文字幕免费在线视频6| 国产精品女同一区二区软件| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| 欧美精品国产亚洲| 中文在线观看免费www的网站| 久久久久久久久大av| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 国产v大片淫在线免费观看| 免费观看a级毛片全部| 日本黄色片子视频| 22中文网久久字幕| 下体分泌物呈黄色| 寂寞人妻少妇视频99o| 美女cb高潮喷水在线观看| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 国产老妇女一区| 一级毛片我不卡| 日本熟妇午夜| av国产精品久久久久影院| 久久鲁丝午夜福利片| 卡戴珊不雅视频在线播放| av天堂中文字幕网| 能在线免费看毛片的网站| 久久久久久久久久人人人人人人| 成人无遮挡网站| 黄色一级大片看看| 午夜免费鲁丝| 国产伦在线观看视频一区| 又粗又硬又长又爽又黄的视频| 欧美成人精品欧美一级黄| 麻豆久久精品国产亚洲av| 日韩成人av中文字幕在线观看| 最近最新中文字幕大全电影3| 日本午夜av视频| 免费黄网站久久成人精品| www.色视频.com| 欧美3d第一页| 亚洲熟女精品中文字幕| 极品教师在线视频| 日韩精品有码人妻一区| 如何舔出高潮| 26uuu在线亚洲综合色| 久久久久久久大尺度免费视频| 少妇丰满av| 国产久久久一区二区三区| 日韩av在线免费看完整版不卡| 国产精品99久久99久久久不卡 | 一级片'在线观看视频| 国产一区有黄有色的免费视频| 久久99热这里只有精品18| 国产在线一区二区三区精| 亚洲精品乱久久久久久| 黄色欧美视频在线观看| 精品一区二区免费观看| 男女那种视频在线观看| www.色视频.com| 国产 一区 欧美 日韩| 有码 亚洲区| 国产精品不卡视频一区二区| 一级a做视频免费观看| 成年女人在线观看亚洲视频 | 秋霞伦理黄片| 精品久久久久久电影网| 又黄又爽又刺激的免费视频.| 日韩不卡一区二区三区视频在线| 涩涩av久久男人的天堂| 国产国拍精品亚洲av在线观看| 免费看不卡的av| 成人特级av手机在线观看| 久久精品熟女亚洲av麻豆精品| av免费在线看不卡| 亚洲在线观看片| 日韩精品有码人妻一区| 在线观看人妻少妇| 亚洲国产欧美在线一区| 成人午夜精彩视频在线观看| 国产精品精品国产色婷婷| 国产欧美亚洲国产| 午夜老司机福利剧场| 身体一侧抽搐| 国产美女午夜福利| 国产黄频视频在线观看| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 午夜精品国产一区二区电影 | 午夜福利视频1000在线观看| 永久免费av网站大全| 久久精品国产亚洲网站| 深夜a级毛片| 亚洲图色成人| 一本色道久久久久久精品综合| 天堂网av新在线| 欧美国产精品一级二级三级 | 成人漫画全彩无遮挡| 尾随美女入室| 青青草视频在线视频观看| 另类亚洲欧美激情| 亚洲av电影在线观看一区二区三区 | 亚洲国产精品999| 久久久国产一区二区| 在线播放无遮挡| 亚洲欧美日韩卡通动漫| 你懂的网址亚洲精品在线观看| 国产精品嫩草影院av在线观看| 国产av码专区亚洲av| 在现免费观看毛片| 婷婷色麻豆天堂久久| 如何舔出高潮| 亚洲国产精品专区欧美| 亚洲不卡免费看| 亚洲av.av天堂| 日韩欧美一区视频在线观看 | 国产午夜福利久久久久久| 大香蕉97超碰在线| 国产乱人视频| 亚洲精品国产av蜜桃| 亚洲精品国产成人久久av| 在线天堂最新版资源| 蜜桃亚洲精品一区二区三区| 久久久国产一区二区| 久久久久久久久久久免费av| 久久精品国产亚洲网站| 亚洲自偷自拍三级| 成人免费观看视频高清| 最近的中文字幕免费完整| 亚洲熟女精品中文字幕| 亚洲精品国产av蜜桃| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 国产真实伦视频高清在线观看| 亚洲欧美日韩另类电影网站 | 天堂网av新在线| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 我的女老师完整版在线观看| 精品视频人人做人人爽| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 欧美日韩视频高清一区二区三区二| 日本熟妇午夜| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 国产精品嫩草影院av在线观看| 日日啪夜夜撸| 国产91av在线免费观看| 少妇人妻久久综合中文| 欧美潮喷喷水| 国产黄片视频在线免费观看| 国产高清不卡午夜福利| 国产人妻一区二区三区在| 深夜a级毛片| 涩涩av久久男人的天堂| 久久久久久久午夜电影| 免费看光身美女| 欧美日韩国产mv在线观看视频 | 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 一级毛片 在线播放|