• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Does more data mean higher efficiency? An experience from pre- and post-treatment study with missing data

    2016-12-09 07:45:58HongyueWANGJingPENGJuilaZHENGBokaiWANGTUChangyongFENG
    上海精神醫(yī)學(xué) 2016年4期
    關(guān)鍵詞:結(jié)果表明案例效率

    Hongyue WANG, Jing PENG, Juila Z. ZHENG, Bokai WANG, J. X. TU, Changyong FENG,2,*

    ·Biostatistics in psychiatry (34)·

    Does more data mean higher efficiency? An experience from pre- and post-treatment study with missing data

    Hongyue WANG1, Jing PENG1, Juila Z. ZHENG3, Bokai WANG1, J. X. TU4, Changyong FENG1,2,*

    paired t-test; likelihood ratio test; asymptotical relative efficiency

    1. Introduction

    It is well known in data analysis that more data usually offer more information to make statistical inferences.For example, suppose we want to find the average body weight of 2-year-old boys in New York City. For this purpose, we can randomly select 100 boys from the targeted population, obtain their individual body weight,and calculate the average body weight and the standard deviation. If possible, we can also randomly select 10,000 boys and do the same calculations. Usually, the average weights in both cases are very similar. However,the standard deviation of the latter is only about 10% of the former one.

    Student’s t-test[1]is one of the most popular statistical tools used to compare the mean value with continuously distributed data. Let be a random sample from a population of interest with mean value μ and variance σ2. The sample mean and sample variance are

    which are unbiased estimators of μ and σ2,respectively[2]. A widely used method to test the hypothesis H0: μ=μ0is the test statistic defined by

    If the data follows normal distribution, then under the null hypothesis H0, the test statistic T in (1) has a t-distribution with n-1 degrees of freedom[3]. If the data is not normally distributed, the exact distribution of T is usually not available. However, as long as the sample size n is large enough, we can use the standard normal distribution to approximate the distribution of T,which is the direct result of the central limit theorem in probability theory[4]. The test statistic in (1) is also called the one-sample t-test in statistics[3].

    Now consider the case of two independent samples. Suppose Xi1, Xi2, …, Xin, i=1,2 are data from two independent populations with means μiand variances σi2, i=1, 2. Letand Si2be the sample means and sample variances in these two samples. The widely used test statistic for testing the hypothesis is H0: μ1=μ2is

    If data are normally distributed in both samples and σ12=σ22, under H0, T in (2) has a t-distribution with degrees of freedom n1+ n2? 2. If σ12≠σ22, the distribution of T in (2) is not so straightforward. This is the well-known Behrens-Fisher problem[3]in statistics and is out of the scope of this paper. However, if both n1and n2are large enough, we can still use the standard normal distribution to approximate the distribution of T.The test statistic in (2) is also called the two-sample t-test in statistics[3]. In two-sample t-test, the groups usually have different sample sizes.

    Consider another scenario. Suppose we have a set of randomly selected, matched pair observations(Xi1, Xi2), i=1, . . .n, from a study population. This kind of data is very typical in pre- and post- treatment study.For example, in a hypertension study, Xi1and Xi2are the blood pressure of patient i before and after the treatment. This is different from the two independent samples considered above. For matched pair data, Xi1and Xi2are correlated as they are two measurements on the same individual. Suppose in the study population,the mean blood pressures before and after the treatment are μ1and μ2, respectively. The treatment effect can be measured by μ1- μ2. Let Yi=Xi1? Xi2, the difference of measurements before and after treatment.Let Y and SY

    2be the sample mean and sample variance of Yi, i=1, ... n. The test statistic widely used in statistics to test the hypothesis H0: μ1=μ2is

    If (Xi1, Xi2) has a bivariate distribution[2], the test statistic in (3) has t-distribution with degrees of freedom n ? 1,and is called the paired t-test in statistics[3].

    Note that the two-sample t-test and the paired t-test can be written in the same form

    In this paper we focus on the matched pair data.In the construction of test statistic (3) we assume that the pre- and post-treatment data are available for each individual. The power of the test increases with the sample size. However, missing data is very typical for pre- and post-treatment studies. Usually the pretreatment measurement is available for each individual.However, the post-treatment data may be missing for some individuals. This puts some challenges on the data analysis. For example, to test the hypothesis of no treatment effect, we may construct the test statistics of the same structure as (4). However, for the estimation of the mean value of the pre-treatment measurements,should we use all individuals, or only the individuals with complete pairs? What is the relative efficiency of the test statistics based these two different estimations?

    The paper is organized as follows. Section 2 introduces two widely used moment-based test statistics, and calculates their relative efficiency. In Section 3 we construct a test which is more powerful that the tests in Section 2, and is equivalent to the likelihood ratio test when the data is from bivariate normal distribution. In Section 4, we do some simulation studies to compare the powers of these tests. Our conclusion and further discussion are reported in Section 5.

    2. Two moment-based tests and their relative efficiency

    Suppose the full data is (Xi1, Xi2), i=1, . . . n, where Xi1and Xi2are pre- and post-treatment measurements,respectively. The pre-treatment measurement is observed for every individual. However, for some individuals, the post-treatment measurements are not observed. For individual i, we define an indicator Ri,with Ri=1 if Xi2is observed, and Ri=0 otherwise. Hence the number of complete pairs (i.e. both pre- and posttreatment measurements are observed) isData can be missing in very complicated patterns in biomedical research, especially in longitudinal followup studies. See Rubin[5], Little and Rubin[6]for more theoretical discussions about the missing patterns.In this manuscript, we consider a very simple missing patter where the post-treatment is assumed to be missing completely at random (MCAR)[5,6], which means that the probability that Xi2is missing does not dependent on Xi1. This is a strong assumption. For example, suppose Xi1and Xi2are the blood pressures before and after the treatment. If the patient skips the post-treatment because he accidently forgets the appointment, the MCAR assumption is satisfied.However, if the patient thinks his blood pressure at the first appointment is in the normal range and he doesn’t want to waste time to do the second measurement, the MCAR assumption is invalid in this case as the missing depends on the first measurement.2

    We assume the mean and variance of Xijare μjand σj, j=1, 2. Since Xi1and Xi2are from the same individual,they are usually correlated (assuming their correlation coefficient is ρ). Given the data, these parameters need to be estimated in order to make appropriate statistical inference. With MCAR data-consistent estimators can be easily obtained for all these parameters.

    For the pre- and post-treatment data, we are interested in the treatment effect which can be measured by μ1?μ2. Statistically, the hypothesis for no treatment effect is the same as H0: μ1=μ2.

    2.1 Test statistic based on all available data

    From formula (4) we know that test statistic depends on the estimation of the pre- and post- treatment means and the (estimator of) the variance of the sample mean difference. In this section, the sample mean (denoted by) of the pre-treatment measurement is calculated based on all individuals, and the sample mean (denoted by) of the post-treatment is calculated only based on the post-treatment measurements, i.e.

    The t-test based on all available data is

    The exact distribution of TAis difficult to calculate.However, under MCAR, when sample size n is large enough, the normal distribution can b[3].used to appropriate the asymptotic distribution of TA

    2.2 Test statistic based on complete pairs

    In this method, the sample mean (denoted by)of the pre-treatment measurement is only based on individuals with complete pairs, i.e.

    The t-test is exactly the paired t-test

    Similarly, under MCAR, the asymptotic distribution of TCcan be approximated by normal distribution for large sample size.

    2.3 Asymptotic relative efficiency

    The relative efficiency of two tests is used to characterize their powers[3]. Let rσ=σ1/σ2, the ratio of the standard deviations of the pre- and post-treatment measurements. Let π denote the probability that the post-treatment measurement is observed. It can be proved that the asymptotic relative efficiency of TCwith respect to TAis

    Here ARECA> (or <) 1 means that TCis more (or less)powerful than TAto detect the pre- and post- treatment difference if it exists. From formula (5) we can see that the relative efficiency depends on the proportion of missing (1 - π), the ratio of the variances of the pre- and post-treatment measurements, and their correlation.More speci fically, we have the following conclusions about ARECA:

    (i) Formula (5) shows that ARECAis always greater than π.This is very intuitive as π is the proportion of patients without missing data.

    (ii) If rσ ≥ 2, TAis more powerful than TC.

    (iii) If rσ /2 ≤ ρ < 1, TCis more powerful than TA.

    (iv) If ?1 ≤ ρ < rσ /2 < 1, TAis more powerful than TC.

    (v) If rσ1, i.e. σ1=σ2, then . This means that for highly(positively) correlated data, TCis more powerful than TA.

    It is interesting to see that TAis not always more powerful than TC, as one would have expected since the former test is based on more data than the latter one. When σ1< 2σ2, TCis actually more efficient than TAif rσ/2 ≤ ρ ≤ 1. In addition, in the special case of σ1=σ2,TCcan be much more efficient than TAif the pre- and post-treatment measurements are highly correlated.

    3. An optimal combination of moment-based tests

    Section 2 shows that although TAand TCare the same when data is not missing; none of them is uniformly more powerful than the other when data is missing completely at random. A very intuitive idea to find an intermediate point between those two tests which may be at least as powerful as both of them. More precisely,consider the following set

    Each element in F is a valid test, and TAand TCare two special elements in this family.

    Theorem 1. Among all tests defined in (7), T(λo) is the most powerful one, where

    and

    The proof of this theorem is out of the scope of this paper, but it is available from the authors upon request.Remark: It is well known that if the data is from bivariate normal distribution, the likelihood ratio test(LRT) is the most efficient test[3]. We can prove that T(λo) in Theorem 1 is equivalent to the likelihood ratio test for bivariate normal data. It only depends on the first two moments of the data, is easy to use, and is more powerful than currently widely used two tests TA and TC. Same idea of combination has been used in other area of statistics. For example, Oakes and Feng[7]constructed of an optimal linear combination of the stratified and unstratified log-rank tests[8].

    4. Simulation results

    In this section we compare the empirical power of TA,TCand T(λo) for different sample sizes and different parameters in the distribution of the data. The significance level was set at 5% for all cases. About 30%of the post-treatment data is missing. For each test statistic T, we first standardize it to make its (asymptotic)variance equal 1. The empirical power is obtained from 10, 000 Monte Carlo replications. The empirical power is the proportion of times that |T|>1.96.

    Case 1. Bivariate normal data

    In this case, the matched pair (Xi1, Xi2) are generated from bivariate normal distribution[2]. We report the powers of TA, TC, T(λo) and LRT. The result is in Table 1.

    Table 1: Comparison of powers of test statistics (bivariate normal data)

    (1) As expected, given the parameters in the distribution of the data, the power of each test increases with the sample size.

    (2) For TAand TC, none of them is always more powerful than the other. For example, given sample size n=200, when μ1=0, μ2=0.5, σ1=3.0, σ2=1.0, and ρ=0.6, the powers of TAand TCare 0.77 and 0.65,respectively. However, when μ1=0, μ2=0.5, σ1=1.0,σ2=2.0, and ρ=0.6, their powers are 0.93 and 0.95,respectively.

    (3) In any scenario, T(λo) is more powerful than TAand TCeven when sample size is relatively small (e.g. n=50),and it always has the same power as the likelihood ratio test.

    Case 2. Mixed normal-exponential data

    The data is generated in the following form:

    where Xi11, Xi21, and Xi12are independent random variables; Xi11and Xi21have normal distribution, and Xi12has exponential distribution. In this case, the data does not have bivariate normal distribution. However,as long as the sample size is large enough, we can still use the t-test to compare the pre- and post-treatment mean values. Table 2 reports the empirical powers of TA, TC, and T(λo). It shows that neither TAnor TCis more powerful than the other in all situations. However, T(λo)is always more powerful than both of them.

    Table 2. Comparison of powers of test statistics (mixed normal-exponential data)

    5. Conclusion

    In the pre- and post-treatment studies, if the data is missing completely at random, we can construct test statistics either using all available data or using the complete pairs. These two methods only use the first two moments of the data and are very easy to implement. However, none of these two methods is uniformly better than the other in all cases. The relative efficiency of these two methods depends on the proportion of missing, the ratio of the variances,and the correlation of two measurements on the same individuals. In this paper, we propose a databased method which is more powerful than those two methods. In fact, it is the most efficient test when data has bivariate normal distribution.

    Missing data is a typical problem in pre- and posttreatment studies, and the missing pattern may be very complicated. MCAR is an over-simplified assumption.Another more realistic and still mathematically tractable missing pattern is missing at random (MAR).Generalizing our method to MAR data is in progress.

    Acknowledgements

    This study was supported by a pilot grant (PI: Feng) from the Clinical and Translational Sciences Institute at the University of Rochester Medical Center.

    Conflict of interest statement

    The authors report no conflict of interest related to this manuscript.

    Author’s contribution

    Hongyue Wang, Bokai Wang, and Changyong Feng:theoretical derivation and revision. Julia Zheng, Jing Peng, and J. X. Tu: Simulation manuscript drafting

    1.Student. The probable error of a mean. Biometrika. 1908;6(1): 1-25

    2.Lehmann EL. Theory of Point Estimation. New York:Springer-Verlag; 1983

    3.Lehmann EL. Testing Statistical Hypotheses (2nd ed). New York: Springer-Verlag; 1982

    4.Durrett R. Probability: Theory and Examples (4th ed). New York: Cambridge University Press; 2010

    5.Rubin DB. Inference and missing data. Biometrika. 1976;63(3): 581-592. doi: http://dx.doi.org/10.2307/2335739

    6.Little RJA, Rubin DR. Statsitical Analysis with Missing Data(2nd ed). New York: Wiley; 2002

    7.Oakes D, Feng C. Combining stratified and unstratified log-rank tests in paired survival data. Stat Med. 2010;29(16):1735-1745. doi: http://dx.doi.org/10.1002/sim.3921

    8.Andersen PK, Borgan ?, Gill RD, Keiding N. Statistical Models Based on Counting Processes. New York: Springer; 1993

    Dr. Hongyue Wang obtained her BS in Scientific English from the University of Science and Technology of China (USTC) in 1995, and PhD in Statistics from the University of Rochester in 2007. She is a Research Associate Professor in the Department of Biostatistics and Computational Biology at the University of Rochester Medical Center. Her research interests include longitudinal data analysis,missing data, survival data analysis, and design and analysis of clinical trials. She has extensive and successful collaboration with investigators from various areas, including Infectious Disease, Nephrology,Neonatology, Cardiology, Neurodevelopmental and Behavioral Science, Radiation Oncology, Pediatric Surgery, and Dentistry. She has published more than 70 statistical methodology and collaborative research papers in peer-reviewed journals.

    更多的數(shù)據(jù)意味著更高的效率嗎?治療前后缺失數(shù)據(jù)的研究經(jīng)驗

    H WANG, J PENG, JZ ZHENG, B WANG, JX TU, C FENG

    配對t檢驗,似然比檢驗,漸近相對效率

    In this paper we compare two moment-based methods which have been widely used to test the hypothesis of no treatment effect in pre- and post-treatment studies with data missing completely at random. Our theoretical derivation and simulation results show that the method based on all available data is not necessarily more efficient than the method that uses only complete data pairs. We propose an optimal linear combination of these two methods which turns to be more powerful in all cases.

    [Shanghai Arch Psychiatry. 2016; 28(4): 235-240.

    http://dx.doi.org/10.11919/j.issn.1002-0829.216058]

    1Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY

    2Department of Anesthesiology, University of Rochester, Rochester, NY

    3Department of Microbiology and Immunology, McGill University, Montreal, QC

    4State University of New York Upstate Medical University, Syracuse, NY

    *correspondence: Dr. Changyong Feng. Mailing address: Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Ave., Box 630, Rochester, NY, USA. Postcode: NY 14642. E-mail: Changyong_feng@urmc.rochester.edu

    概述:在本文中,我們比較兩個以時間為基礎(chǔ)的方法,這兩個方法已被廣泛用于治療前后隨機(jī)缺失數(shù)據(jù)的研究中來測試沒有治療效果的假設(shè)。我們的理論推導(dǎo)和模擬結(jié)果表明,基于所有可用的數(shù)據(jù)的方法并不比使用完整配對數(shù)據(jù)更有效。我們提出了一個合并這兩個方法最佳的線性組合使其在所有案例中更有效。

    猜你喜歡
    結(jié)果表明案例效率
    案例4 奔跑吧,少年!
    少先隊活動(2021年2期)2021-03-29 05:40:48
    提升朗讀教學(xué)效率的幾點思考
    甘肅教育(2020年14期)2020-09-11 07:57:42
    隨機(jī)變量分布及統(tǒng)計案例拔高卷
    發(fā)生在你我身邊的那些治超案例
    中國公路(2017年7期)2017-07-24 13:56:38
    一個模擬案例引發(fā)的多重思考
    跟蹤導(dǎo)練(一)2
    “錢”、“事”脫節(jié)效率低
    提高講解示范效率的幾點感受
    體育師友(2011年2期)2011-03-20 15:29:29
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
    国产成人欧美在线观看| 久久精品影院6| 久久香蕉精品热| 麻豆成人av在线观看| 搡老熟女国产l中国老女人| 一个人看视频在线观看www免费| 日日夜夜操网爽| 人妻丰满熟妇av一区二区三区| 国产在线精品亚洲第一网站| 亚洲美女搞黄在线观看 | 日韩欧美 国产精品| 色综合站精品国产| 亚洲av五月六月丁香网| 在线观看一区二区三区| 久久久久九九精品影院| 色哟哟·www| www日本黄色视频网| 91午夜精品亚洲一区二区三区 | 91久久精品电影网| 欧美日韩黄片免| 亚洲成人久久性| 国产午夜福利久久久久久| 99久久久亚洲精品蜜臀av| av在线蜜桃| 国产极品精品免费视频能看的| 国产精品亚洲一级av第二区| 午夜两性在线视频| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区人妻视频| 日本免费一区二区三区高清不卡| 午夜福利高清视频| 日韩精品青青久久久久久| 成人国产一区最新在线观看| av天堂在线播放| 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 亚洲精品在线观看二区| 国产乱人视频| ponron亚洲| 国产高清视频在线播放一区| 日本黄色视频三级网站网址| 一区二区三区激情视频| 日韩欧美 国产精品| 婷婷精品国产亚洲av在线| 国产精品综合久久久久久久免费| 999久久久精品免费观看国产| 999久久久精品免费观看国产| 12—13女人毛片做爰片一| 999久久久精品免费观看国产| 国内精品美女久久久久久| 午夜福利在线观看免费完整高清在 | 久久这里只有精品中国| 少妇被粗大猛烈的视频| 欧美在线黄色| 色综合亚洲欧美另类图片| 国产精品一及| 色哟哟·www| 俄罗斯特黄特色一大片| 欧美激情在线99| 99久久无色码亚洲精品果冻| 欧美黑人巨大hd| 亚洲精华国产精华精| 欧美成人性av电影在线观看| av国产免费在线观看| 亚洲成人久久性| 免费在线观看影片大全网站| 99国产极品粉嫩在线观看| 日韩精品青青久久久久久| 亚洲精品在线观看二区| 无遮挡黄片免费观看| 自拍偷自拍亚洲精品老妇| 亚洲片人在线观看| 久久精品国产清高在天天线| 亚州av有码| 国产成年人精品一区二区| 亚洲熟妇熟女久久| 丰满乱子伦码专区| 亚洲av一区综合| 欧美黑人巨大hd| 欧美成狂野欧美在线观看| 首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| www.熟女人妻精品国产| 成人永久免费在线观看视频| x7x7x7水蜜桃| 国产人妻一区二区三区在| 国产淫片久久久久久久久 | 欧洲精品卡2卡3卡4卡5卡区| 直男gayav资源| 怎么达到女性高潮| 窝窝影院91人妻| 中文资源天堂在线| 一本综合久久免费| h日本视频在线播放| 亚洲一区二区三区色噜噜| 97碰自拍视频| 久久欧美精品欧美久久欧美| 无遮挡黄片免费观看| 免费看a级黄色片| 婷婷色综合大香蕉| 欧美午夜高清在线| 亚洲激情在线av| 国产成年人精品一区二区| 久久久久久久午夜电影| 观看美女的网站| 毛片女人毛片| 国产中年淑女户外野战色| 色视频www国产| 乱码一卡2卡4卡精品| 99久久精品一区二区三区| 91狼人影院| 婷婷精品国产亚洲av| av福利片在线观看| 熟妇人妻久久中文字幕3abv| 欧美+日韩+精品| 国产精品1区2区在线观看.| 身体一侧抽搐| 日韩欧美国产一区二区入口| 亚洲自拍偷在线| 国产91精品成人一区二区三区| 国产成人福利小说| 亚洲欧美日韩卡通动漫| 午夜免费激情av| 少妇人妻精品综合一区二区 | 日韩亚洲欧美综合| 成人鲁丝片一二三区免费| 中文在线观看免费www的网站| 夜夜躁狠狠躁天天躁| 特级一级黄色大片| 99久久久亚洲精品蜜臀av| 国产高清激情床上av| 久久久久久国产a免费观看| 99久久无色码亚洲精品果冻| 51国产日韩欧美| 黄色丝袜av网址大全| 一本综合久久免费| 1000部很黄的大片| 五月伊人婷婷丁香| 少妇的逼好多水| 啪啪无遮挡十八禁网站| 99在线视频只有这里精品首页| 首页视频小说图片口味搜索| 精品一区二区三区av网在线观看| 亚洲欧美日韩东京热| 欧美区成人在线视频| 久久欧美精品欧美久久欧美| 久久精品久久久久久噜噜老黄 | 亚洲专区国产一区二区| 又粗又爽又猛毛片免费看| 热99在线观看视频| 亚洲av电影在线进入| 毛片一级片免费看久久久久 | 亚洲av一区综合| 99在线视频只有这里精品首页| 99久久成人亚洲精品观看| 国产伦一二天堂av在线观看| 三级国产精品欧美在线观看| 黄色女人牲交| 国产精品女同一区二区软件 | 亚洲人与动物交配视频| 亚洲国产精品久久男人天堂| 一本综合久久免费| 国产一级毛片七仙女欲春2| 丁香欧美五月| 久久精品综合一区二区三区| www.www免费av| 男人狂女人下面高潮的视频| 午夜视频国产福利| 成人特级黄色片久久久久久久| 日本与韩国留学比较| 亚洲熟妇熟女久久| 最后的刺客免费高清国语| 男人狂女人下面高潮的视频| av专区在线播放| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 亚洲18禁久久av| 欧美激情在线99| 97超级碰碰碰精品色视频在线观看| 在线播放国产精品三级| 日本熟妇午夜| 国产av在哪里看| 有码 亚洲区| 99久久无色码亚洲精品果冻| 国内精品久久久久久久电影| 国产精品一区二区免费欧美| 久久久久国产精品人妻aⅴ院| 麻豆一二三区av精品| 日日摸夜夜添夜夜添av毛片 | 嫩草影视91久久| 亚洲自偷自拍三级| 国模一区二区三区四区视频| 亚洲精品456在线播放app | a级一级毛片免费在线观看| 国产一级毛片七仙女欲春2| 黄色女人牲交| 狠狠狠狠99中文字幕| 欧美色欧美亚洲另类二区| 真实男女啪啪啪动态图| 国产成+人综合+亚洲专区| 麻豆久久精品国产亚洲av| 亚洲av美国av| 亚洲精品影视一区二区三区av| 欧美色欧美亚洲另类二区| 赤兔流量卡办理| 亚洲成人久久性| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 国产精品亚洲av一区麻豆| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 亚洲片人在线观看| 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 99热精品在线国产| 免费在线观看影片大全网站| 免费av毛片视频| 毛片一级片免费看久久久久 | 深爱激情五月婷婷| 国产淫片久久久久久久久 | 99久久精品一区二区三区| 精品一区二区三区人妻视频| 免费电影在线观看免费观看| 久久久久久久精品吃奶| 成人鲁丝片一二三区免费| 在线播放无遮挡| 欧美+亚洲+日韩+国产| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片免费观看| 国产大屁股一区二区在线视频| 国产黄片美女视频| 亚洲精品成人久久久久久| 免费观看人在逋| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 波多野结衣高清无吗| 天堂√8在线中文| 国产精华一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费在线观看影片大全网站| 日本精品一区二区三区蜜桃| 给我免费播放毛片高清在线观看| 日本在线视频免费播放| 欧美最新免费一区二区三区 | 国产精品久久久久久人妻精品电影| 欧美3d第一页| 亚洲一区二区三区不卡视频| 精品人妻1区二区| 国产一区二区三区在线臀色熟女| 99热这里只有是精品在线观看 | 国产国拍精品亚洲av在线观看| 欧美成狂野欧美在线观看| 国产高清三级在线| 女同久久另类99精品国产91| 国产精品,欧美在线| 色精品久久人妻99蜜桃| 国产av一区在线观看免费| 熟女电影av网| 精品乱码久久久久久99久播| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片免费观看直播| 免费大片18禁| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 又粗又爽又猛毛片免费看| 丰满乱子伦码专区| 亚洲成人久久爱视频| 天堂av国产一区二区熟女人妻| 久久欧美精品欧美久久欧美| 丰满乱子伦码专区| 99久久精品国产亚洲精品| 国产亚洲精品av在线| 亚洲国产精品999在线| 91在线精品国自产拍蜜月| 欧美极品一区二区三区四区| 黄色配什么色好看| 少妇丰满av| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 热99在线观看视频| 俺也久久电影网| 夜夜躁狠狠躁天天躁| 国产三级中文精品| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲色图av天堂| 精品午夜福利在线看| 国产精品嫩草影院av在线观看 | 日本一二三区视频观看| 免费观看精品视频网站| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| 亚洲国产精品合色在线| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站高清观看| 免费在线观看影片大全网站| 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 亚洲在线观看片| 12—13女人毛片做爰片一| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 久久亚洲精品不卡| a在线观看视频网站| 久久久精品大字幕| 久久欧美精品欧美久久欧美| 亚洲av一区综合| 高清在线国产一区| 免费在线观看影片大全网站| 久久精品综合一区二区三区| 成人鲁丝片一二三区免费| 国产精品99久久久久久久久| 男女做爰动态图高潮gif福利片| 观看美女的网站| 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 一个人免费在线观看的高清视频| 男人狂女人下面高潮的视频| 免费无遮挡裸体视频| 亚洲av美国av| 精品人妻熟女av久视频| 欧美日韩国产亚洲二区| 久久精品国产清高在天天线| 最近在线观看免费完整版| 91在线观看av| 一级a爱片免费观看的视频| www.www免费av| 99精品在免费线老司机午夜| 亚洲 国产 在线| 欧美性感艳星| 国产成人欧美在线观看| 99久久九九国产精品国产免费| 男人舔女人下体高潮全视频| 桃红色精品国产亚洲av| 欧美高清成人免费视频www| 国产不卡一卡二| 国产真实乱freesex| 欧美激情国产日韩精品一区| 美女免费视频网站| 色精品久久人妻99蜜桃| 国产av麻豆久久久久久久| 久久精品久久久久久噜噜老黄 | 亚洲国产精品sss在线观看| 一a级毛片在线观看| 1024手机看黄色片| 看片在线看免费视频| 一级a爱片免费观看的视频| 青草久久国产| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩| 亚洲最大成人手机在线| 免费观看精品视频网站| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 好看av亚洲va欧美ⅴa在| www.色视频.com| 午夜激情欧美在线| 国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出| 真人一进一出gif抽搐免费| 欧美高清成人免费视频www| 久久亚洲精品不卡| 精品一区二区三区视频在线| 天堂av国产一区二区熟女人妻| 热99在线观看视频| 国产真实乱freesex| 日韩精品中文字幕看吧| 波多野结衣高清作品| 成年免费大片在线观看| 国产老妇女一区| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一区二区三区不卡| 中文字幕熟女人妻在线| 日本在线视频免费播放| 久久热精品热| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| 国产午夜精品久久久久久一区二区三区 | 免费电影在线观看免费观看| 99热6这里只有精品| 免费av不卡在线播放| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 日韩精品青青久久久久久| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 天堂影院成人在线观看| 97碰自拍视频| 亚洲五月婷婷丁香| 免费看光身美女| 国产黄a三级三级三级人| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 久久久久久久精品吃奶| 国产精品电影一区二区三区| 成人三级黄色视频| 毛片一级片免费看久久久久 | 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 在线观看免费视频日本深夜| 舔av片在线| 日本一本二区三区精品| 婷婷色综合大香蕉| 简卡轻食公司| 在线观看66精品国产| 亚洲av一区综合| 一本精品99久久精品77| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 高清在线国产一区| 91av网一区二区| 国内精品久久久久久久电影| 欧美区成人在线视频| 搡老妇女老女人老熟妇| 国产在线男女| 一二三四社区在线视频社区8| 校园春色视频在线观看| 欧美又色又爽又黄视频| www.www免费av| 成人高潮视频无遮挡免费网站| 国产三级黄色录像| 久久国产精品人妻蜜桃| 一边摸一边抽搐一进一小说| av欧美777| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 黄片小视频在线播放| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 在线观看午夜福利视频| 精品福利观看| 我要搜黄色片| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品亚洲一区二区| 国产亚洲精品久久久com| 欧美精品啪啪一区二区三区| 亚洲最大成人av| 日日夜夜操网爽| 亚洲av.av天堂| 国产v大片淫在线免费观看| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 小说图片视频综合网站| 亚洲黑人精品在线| 在线观看舔阴道视频| 国产黄a三级三级三级人| 日本一本二区三区精品| 久久久成人免费电影| 色综合欧美亚洲国产小说| 此物有八面人人有两片| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| 亚洲av成人av| 中文字幕人妻熟人妻熟丝袜美| av欧美777| 国产成人欧美在线观看| 97碰自拍视频| 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 亚洲无线观看免费| a级毛片a级免费在线| 免费人成在线观看视频色| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 色哟哟哟哟哟哟| 99riav亚洲国产免费| av福利片在线观看| 欧美成人a在线观看| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 9191精品国产免费久久| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 中文字幕人妻熟人妻熟丝袜美| 99久久精品热视频| 国产成人啪精品午夜网站| av欧美777| 精品日产1卡2卡| 色噜噜av男人的天堂激情| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美精品免费久久 | 岛国在线免费视频观看| 国产精品99久久久久久久久| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 国产三级黄色录像| av专区在线播放| 久久久久久国产a免费观看| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 国产黄a三级三级三级人| 免费人成在线观看视频色| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 宅男免费午夜| 国产精品一区二区免费欧美| 亚洲自偷自拍三级| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 国产色爽女视频免费观看| 黄片小视频在线播放| av在线老鸭窝| 亚洲自偷自拍三级| 可以在线观看毛片的网站| 床上黄色一级片| 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 最近视频中文字幕2019在线8| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 色综合婷婷激情| 18禁在线播放成人免费| 韩国av一区二区三区四区| 99国产综合亚洲精品| 搞女人的毛片| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 嫩草影院入口| 在线观看免费视频日本深夜| 性色avwww在线观看| 久久精品91蜜桃| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 久久性视频一级片| 欧美精品啪啪一区二区三区| 国产精品,欧美在线| 俺也久久电影网| 色综合婷婷激情| 午夜a级毛片| 性色avwww在线观看| 天堂网av新在线| 国产精品一区二区性色av| 国产三级黄色录像| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 亚洲无线在线观看| 国产精品人妻久久久久久| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 亚洲五月婷婷丁香| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区 | 一区二区三区高清视频在线| 一级黄片播放器| 亚洲自拍偷在线| 免费黄网站久久成人精品 | 日本一本二区三区精品| 九色成人免费人妻av| 99久久精品一区二区三区| 极品教师在线免费播放| 伊人久久精品亚洲午夜| 亚洲黑人精品在线| 亚洲电影在线观看av| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 极品教师在线视频| 一进一出好大好爽视频| 国内精品久久久久精免费| 一个人免费在线观看的高清视频| 日韩国内少妇激情av| 中亚洲国语对白在线视频| 动漫黄色视频在线观看| 午夜激情欧美在线| 97人妻精品一区二区三区麻豆| 国产精品永久免费网站| 深夜精品福利| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| 看十八女毛片水多多多| 青草久久国产| 午夜免费成人在线视频| 亚洲avbb在线观看| 深夜精品福利| 亚洲人与动物交配视频| 成人三级黄色视频| 国产大屁股一区二区在线视频| 哪里可以看免费的av片| 欧美日韩国产亚洲二区| 一个人观看的视频www高清免费观看|