王文林,劉 波,韓睿明,王 燁,劉 筱,徐 喬,李文靜,唐曉燕
(1.環(huán)境保護部南京環(huán)境科學研究所,江蘇 南京 210042;2.南通大學地理科學學院,江蘇 南通 226007;3.南京師范大學環(huán)境學院,江蘇 南京 210023)
?
農(nóng)業(yè)源氨排放影響因素研究進展
王文林1,劉 波2①,韓睿明3,王 燁2,劉 筱2,徐 喬2,李文靜1,唐曉燕1
(1.環(huán)境保護部南京環(huán)境科學研究所,江蘇 南京 210042;2.南通大學地理科學學院,江蘇 南通 226007;3.南京師范大學環(huán)境學院,江蘇 南京 210023)
氨(NH3)作為大氣中堿性氣體,在霧霾形成中起著關(guān)鍵性作用,從源頭上控制NH3排放,對降低大氣二次無機鹽及PM2.5濃度水平,控制霧霾污染,大幅提升空氣環(huán)境質(zhì)量尤為重要。農(nóng)業(yè)源NH3排放是大氣中人為源NH3的主體,其主要來源于農(nóng)田施肥和畜禽養(yǎng)殖。因此,總結(jié)農(nóng)業(yè)源NH3排放國內(nèi)外研究進展,分析NH3排放影響因素,對于了解其NH3排放過程與特征,進而針對性提出控制措施具有重要意義。為此,就農(nóng)田施肥和畜禽養(yǎng)殖NH3排放影響因素的國內(nèi)外研究現(xiàn)狀進行了系統(tǒng)總結(jié),結(jié)果發(fā)現(xiàn),肥料類型、土壤理化性質(zhì)、田間氣象要素和施肥方式是影響農(nóng)田施肥NH3排放的主要因素;畜禽飼料性質(zhì)、禽舍環(huán)境和清糞模式是影響畜禽養(yǎng)殖NH3排放的主要因素。目前,農(nóng)田施肥NH3排放研究主要是從農(nóng)田氮地球化學循環(huán)過程和糧食增產(chǎn)需求角度開展,而畜禽養(yǎng)殖NH3排放研究主要從職業(yè)衛(wèi)生健康角度開展,上述研究缺乏以NH3排放環(huán)境暴露風險為目的的考量。因此,開展以環(huán)境空氣為排放界面的農(nóng)業(yè)源NH3排污系數(shù)研究,制定農(nóng)業(yè)源NH3排放清單,并基于環(huán)境暴露風險,明確農(nóng)業(yè)源NH3排放優(yōu)先控制區(qū)域,最終可為環(huán)境管理部門制定農(nóng)業(yè)源NH3排放分區(qū)控制技術(shù)體系、策略與路線圖以及標準與政策法規(guī)提供理論依據(jù)。
農(nóng)業(yè)源;氨排放;農(nóng)田施肥;畜禽養(yǎng)殖;影響因素
近些年來,我國霧霾天氣頻發(fā),引起社會各界的廣泛關(guān)注。有研究[1-3]發(fā)現(xiàn),在細顆粒物(PM2.5)形成過程中,氣態(tài)氨(NH3)扮演著重要角色,對霧霾的形成起著關(guān)鍵性作用。一方面,NH3作為大氣中唯一的堿性氣體,是大氣PM2.5形成的重要前體物,NH3能與二氧化硫(SO2)和氮氧化物(NOx)等反應生成硫酸銨和硝酸銨等細粒子是PM2.5關(guān)鍵性成分[4-6]。另一方面,在NH3參與下細粒子的生成速度明顯加快[7-8],當NH3充足時,NH3的氣相或者非均相反應會提高氣態(tài)前體物的轉(zhuǎn)化率和二次無機鹽的生成率,引起銨根(NH4+)和硫酸根(SO42-)等細粒子組分大幅度增加[9]。歐美發(fā)達國家PM2.5控制實踐表明,在SO2和NOx基本得到控制的情況下,通過對NH3排放進行同步削減,可以大幅度降低大氣環(huán)境中PM2.5濃度,實現(xiàn)環(huán)境空氣質(zhì)量的大幅提升[4]??梢?從源頭上控制NH3的排放,進而減少NH3與酸性氣體(SO2、NOx等)反應,最終減少NH4+濃度,對降低大氣二次無機鹽及PM2.5濃度水平、控制霧霾污染和提升環(huán)境空氣質(zhì)量顯得尤為重要。
人為源是大氣中NH3的主要來源,人為源主要包括農(nóng)業(yè)源NH3排放、生物質(zhì)燃燒排放以及其他源排放。農(nóng)業(yè)源NH3排放是大氣中人為源NH3的主體,占全球人為源排放總量的90%[10]。農(nóng)業(yè)源NH3排放主要來源于農(nóng)田施肥和畜禽養(yǎng)殖,其中,農(nóng)田施肥NH3排放約占農(nóng)業(yè)源NH3排放總量的40%,畜禽養(yǎng)殖約占50%[10-11]。因此,總結(jié)農(nóng)業(yè)源NH3排放特別是農(nóng)田施肥和畜禽養(yǎng)殖NH3排放國內(nèi)外研究進展,分析NH3排放影響因素,對于了解NH3排放過程與特征,進而針對性提出控制措施具有重要意義?;诖?筆者就主要農(nóng)業(yè)源NH3排放影響因素的國內(nèi)外研究現(xiàn)狀進行系統(tǒng)總結(jié),并提出今后的研究展望。
1.1 農(nóng)田環(huán)境因素
1.1.1 土壤理化性質(zhì)
土壤理化性質(zhì)對農(nóng)田的NH3揮發(fā)具有重要影響,主要表現(xiàn)在2個方面。一方面,土壤理化性質(zhì)通過調(diào)控吸附-解吸作用影響表層土壤NH3揮發(fā)底物液相中NH4+濃度,進而影響表層土壤的NH3揮發(fā)過程。研究[12]發(fā)現(xiàn),質(zhì)地黏重的土壤中NH3揮發(fā)小于質(zhì)地粗松的土壤,表明土壤黏粒對NH4+具有較強的吸附作用,可以有效降低土壤液相中NH4+濃度,從而減少表層土壤NH3揮發(fā)[13]。土壤陽離子交換量對土壤NH3揮發(fā)有一定的抑制作用,不同陽離子對NH4+吸附-解吸作用的影響存在差異,當有作物吸收時,Ca2+和Na+的存在有利于土壤中礦物吸附的銨氮釋放,從而促進表層土壤NH3揮發(fā),而K+則會阻止釋放,減少NH3揮發(fā)[14]。
另一方面,土壤理化性質(zhì)通過直接或間接調(diào)控土壤液相中NH4+與NH3轉(zhuǎn)化反應體系,進而影響土壤NH3揮發(fā)過程[15]。其中,土壤pH值是調(diào)控此反應體系的主導因子,是影響農(nóng)田NH3揮發(fā)的一個重要因素。隨pH值升高,液相中NH4+比例升高,NH3揮發(fā)的潛力隨之增大,進而增加NH3的排放率[16]171-173。研究發(fā)現(xiàn),尿素的NH3揮發(fā)量會隨著土壤pH值的升高而增加,與酸性水稻土相比,在含有較多游離碳酸鈣的石灰性土壤中尿素的NH3揮發(fā)量更大[17]。在pH值為5.4的菜地土壤,NH3揮發(fā)損失率小于0.4%,而在pH值為7.7的菜地土壤,高氮施肥條件下NH3揮發(fā)損失率達17.1%[18]。土壤有機質(zhì)對上述NH3揮發(fā)的2個作用過程都存在一定影響。有機質(zhì)對NH4+吸附能力較強,降低NH4+濃度,從而減少NH3揮發(fā)[12];但也有研究指出,有機質(zhì)能阻礙NH4+進入黏土礦物的固定位置,減少NH4+晶穴固定,增加游離態(tài)NH4+,進而增加NH3的揮發(fā)[19-20];同時,有機質(zhì)含量高的土壤在礦化過程中,具有釋放過多NH4+的潛力,也會增加NH3排放。另外,在土壤腐殖質(zhì)形成過程中會產(chǎn)生有機酸,降低土壤pH值,進而減小NH3揮發(fā)潛力[21]。土壤含水量則會影響肥料在土壤中的轉(zhuǎn)化過程,如碳銨的溶解和尿素的水解等過程,進而影響NH3揮發(fā)。過高或過低的含水量都會減少NH3揮發(fā)。過高的含水量會降低土壤液相中NH4+濃度,土-氣界面濃度梯度減小,NH4+擴散作用減弱,NH3揮發(fā)量降低;過低的含水量則削弱碳銨溶解和尿素的水解,進而制約NH3揮發(fā)[22]。此外,土壤水分的散失過程也會影響NH3揮發(fā)。研究發(fā)現(xiàn)土壤水分保持穩(wěn)定,無水分散失時,NH3揮發(fā)量僅占施氮量的1%[22]。
1.1.2 氣象因素
影響農(nóng)田NH3揮發(fā)的氣象因素主要有風速、溫度、降水和日照。在田間,NH3揮發(fā)一般隨風速增大而增多[16]174。研究發(fā)現(xiàn),在農(nóng)田NH4+與NH3總濃度以及pH值和溫度等各方面的差異不大的情況下,風速差異導致農(nóng)田NH3揮發(fā)量存在顯著差異[23]。但是,田間NH3揮發(fā)與風速之間的關(guān)系不一定呈線性關(guān)系[16]174。通過風洞實驗發(fā)現(xiàn),當NH3揮發(fā)隨風速增大到一定數(shù)值后,就不再隨風速增大而增加[24]。此外,風速受到大氣和水體的穩(wěn)定狀態(tài)、地面粗糙度的影響,進而會影響NH3揮發(fā)速率。例如,良好的植被覆蓋可以減緩土壤表層的風速,同時也可能部分地增加對NH3的吸收。
溫度是影響農(nóng)田NH3揮發(fā)的一個重要氣象因素。研究發(fā)現(xiàn),pH值大致不變情況下,在5~35 ℃范圍內(nèi),溫度每上升10 ℃,NH4+溶解率增加約1倍[25],液相中NH3揮發(fā)速率也隨溫度增大[26]。此外,隨著溫度的升高,施用尿素的農(nóng)田土壤中脲酶活性增強,加快了尿素的水解,其同時分解的養(yǎng)分在被作物吸收之前就以NH3形式損失[27]。溫度對不同類型氮肥的NH3排放影響還存在差異,碳銨受環(huán)境溫度變化的影響最大,溫度每升高1 ℃,NH3排放增加0.44%;尿素次之,為0.35%,其他含氮化肥受溫度變化的影響較小[28]。較高的溫度會加速肥料中NH4+溶于土壤水的過程,同時會降低NH3在液相中的溶解度,進而增加NH3揮發(fā)[29]。
降雨主要是通過雨水下滲將肥料帶入深層土壤,增加NH4+被土壤顆粒吸附或植株吸收的機會和上升到土壤表層的阻力,從而間接減少NH3揮發(fā)損失[30-31]。灌溉和降水起到相同作用,會加速肥料下滲并稀釋肥料[32]。施肥后,光照通過提高土壤溫度可增加NH3揮發(fā)量[32-33]。溫度、濕度、日照和風速還會影響施用糞肥的蒸發(fā)過程,蒸發(fā)一方面會促進NH3揮發(fā),另一方面,過度的蒸發(fā)會使糞肥干燥而形成一層自然蓋膜,會抑制糞肥的NH3揮發(fā)過程[34]。
1.2 肥料類型
1.2.1 傳統(tǒng)氮肥
廣泛使用的氮肥包括尿素、碳銨、硝銨和硫胺等,我國以尿素和碳銨施用最為廣泛,分別占氮肥總量的69%和26%。氮肥利用率較低是各國化肥施用中面臨的主要問題,氮肥利用率大約為30%~35%,損失率平均達45%[35]。各種氮肥由于自身的理化性質(zhì)不同,在施用后其NH3排放強度亦存在差異[36]。碳銨是所有氮肥中最易揮發(fā)的,超過30%的氮以NH3揮發(fā)方式損失,是NH3的一個重要排放源[37]。尿素由于需經(jīng)過2~3 d脲酶水解作用才能轉(zhuǎn)化為碳酸銨,相對于碳銨氨的揮發(fā)損失要小,但要高于其他類型氮肥的NH3揮發(fā)率。由于尿素每年的施用量巨大,農(nóng)田施用尿素造成的NH3排放是農(nóng)田施肥NH3排放的主要來源[26]。尿素和碳銨施肥NH3排放占農(nóng)田施肥NH3排放總量的64.3%和26.5%[26]。硫銨和硝銨NH3揮發(fā)性更低,往往只有<10%的氮以NH3形式揮發(fā)[38-39]。
1.2.2 緩控釋肥料
緩控釋肥的作用旨在提高化肥利用率,減少因施肥而造成的污染[40-41]。緩控釋氮肥按照其溶解性釋放特征通常分為包膜緩控釋氮肥和非包膜緩控釋氮肥2種類型[42]。相比于普通尿素,以物理障礙為控制因素的包膜緩控釋氮肥NH3排放削減顯著,可減少30%以上NH3排放[15]。包膜緩控釋氮肥施入土壤后,包膜材料可阻隔膜內(nèi)尿素與土壤脲酶的直接接觸并阻礙膜內(nèi)尿素溶出過程所必需的水分運移[43-44],可以顯著減少田間的銨氮濃度,尤其是稻田水層中銨氮濃度[45-46],導致參與NH3揮發(fā)的底物顯著減少,這是降低土壤NH3揮發(fā)的最重要因素。另外,包膜緩控釋氮肥對脲酶活性的影響時間相對較長,土壤脲酶活性明顯低于普通尿素,減少了尿素的水解,可運移銨氮的量隨之減少,進而減少田間NH3揮發(fā)量[47]。以化學、生物為主要緩控釋機理的非包膜緩控釋氮肥中含有一小部分無機氮(銨態(tài)氮),施入土壤后,這部分無機氮首先釋放出來,同時也會存在NH3揮發(fā)[48-49],而其余的氮素為多形態(tài)的有機氮,需要在土壤微生物的作用下經(jīng)過一定時間才能被礦化,增加了植物氮肥吸收效率[50],從而減少NH3排放,但與包膜緩控釋氮肥相比,其NH3減排作用還有一定差距[15,50]。雖然緩控釋肥對NH3排放有一定的削減作用,但是由于其成本過高且包膜材料殘留土壤而污染環(huán)境,緩控釋肥目前并未大規(guī)模應用。
1.2.3 農(nóng)作物有機肥
農(nóng)作物有機肥是我國傳統(tǒng)農(nóng)業(yè)中極為重要的肥料來源,其中,在我國秸稈還田的施行最為廣泛。秸稈還田一般與化肥配合施用,與單施化肥相比,秸稈與氮肥混合施用于稻田(水田)NH3揮發(fā)增加18.2%~20.6%[51],在水田中,由于秸稈和作物阻礙了肥料下滲,導致NH3揮發(fā)增加[52]。秸稈與氮肥混合施用于玉米田(旱田)NH3揮發(fā)卻減少0.37%~1.17%[53],一方面,秸稈配施化肥增加了石灰性土壤的尿素水解速率,縮短了尿素的NH3揮發(fā)時間,導致旱田NH3排放減少[54],另一方面,秸稈減少了肥料與大氣接觸面積,降低了地表風速,從而抑制NH3揮發(fā)[55]。
1.3 田間施肥
1.3.1 施肥量
NH3揮發(fā)與施氮量顯著相關(guān),減少施氮量22%~44%可降低NH3揮發(fā)損失20.2%~35.3%[48]。我國是世界第1大氮肥消費國,氮肥用量占全球氮肥用量的30%[56]。美國和歐盟農(nóng)業(yè)氮肥施用強度分別為69和124 kg·hm-2,我國農(nóng)業(yè)施氮量平均為150~250 kg·hm-2,遠高于國際公認的安全施用上限[57],其中,以中東部和東南部地區(qū)施肥強度最大,平均高達350 kg·hm-2[58]。
1.3.2 施肥方式
耕作與施肥模式影響作物對氮素的吸收,從而對NH3揮發(fā)過程影響顯著。施肥方式主要分為表層撒施和覆土深施2 類。人工表面撒施肥料不僅會造成嚴重的NH3揮發(fā)損失,而且在施氮量上難以控制且很難均勻撒施。如將尿素撒施在地表,常溫下需經(jīng)4~5 d 轉(zhuǎn)化過程才能被作物吸收,大部分氮素在被植物吸收之前已通過NH3揮發(fā)損失,利用率只有30%左右,而將銨態(tài)氮通過深施置于還原態(tài)土壤中能顯著降低NH3的揮發(fā)損失[56]。我國《化肥使用環(huán)境安全技術(shù)導則》也指出氮肥覆土深施時,可通過土壤膠粒對銨離子的吸附作用,減少NH3的揮發(fā)損失[59]。英國國家NH3減排措施評價體系模型顯示,氮肥表面撒施導致NH3排放最大[60]。我國冬小麥表施方式下的尿素NH3揮發(fā)損失率最高達46.08%,而深施和表施結(jié)合灌溉處理方式下的NH3揮發(fā)損失率則分別為6.24%和3.75%,表明氮肥深施是減少農(nóng)田NH3揮發(fā)量、提高淹水稻田氮肥利用率的有效途徑[61]。
此外,其他因素,如作物類型、作物生長階段[62-63]對NH3揮發(fā)過程也存在影響。研究發(fā)現(xiàn),水稻、玉米施肥后的NH3揮發(fā)損失率分別為 30%~39%和11%~48%[64]。
2.1 飼料
飼料中50%~70%的氮以糞氮和尿氮方式排出體外,其中,所含尿素可水解為碳銨,并以NH3形式揮發(fā)至大氣中[65]。畜禽糞便中的含氮物質(zhì)主要是飼料中蛋白質(zhì)在動物消化道中通過各種酶的作用分解的氨基酸??梢?飼料蛋白質(zhì)供給量對NH3的排放影響顯著。研究發(fā)現(xiàn),養(yǎng)豬日糧中粗蛋白水平每降低1%,氮排泄量平均可減少8%,NH3排放量可降低10%[66];在豬的不同生長階段,分別降低日食中粗蛋白質(zhì)含量和增加基礎氨基酸含量,可以減少NH3排放15%~20%[67]。
飼糧中粗纖維比例對糞便中NH3排放也存在影響。研究發(fā)現(xiàn),在飼料中添加適量的粗纖維可以有效地減少糞污中NH3排放[68-69]。在日糧中粗纖維比例由12.1%增加到18.5%,豬場NH3排放可減少40%[70]。但是,若飼料中添加過高的粗纖維則導致豬排泄物增多,并增強糞污的黏性,則會增加NH3排放[71]。飼料中谷物類型也可影響NH3排放[72]。育肥豬飼料中添加部分小麥,可以減少約40%NH3排放[73]。
此外,在飼料中添加酸性添加劑、沸石、益生菌、酶制劑、酸制劑和絲蘭提取物等,也可降低畜禽NH3排放。在飼料中添加一定的硫酸鈣、苯甲酸和脂肪酸可以有效降低動物尿pH值,分別可減少NH3排放5%、20%和25%[74]。在飼料中加入1%~2%的低比例天然沸石,最多可減少33%NH3排放[75]。在豬飼料中添加0.05%~0.2%的含有枯草桿菌和芽孢桿菌的益生菌添加劑可使NH3排放減少50%[76]。
2.2 禽舍環(huán)境
畜禽圈舍是畜禽NH3排放的重要節(jié)點,圈舍NH3排放量約占畜禽全周期排放總量的30%~55%[77]。畜禽圈舍結(jié)構(gòu)影響圈舍內(nèi)的溫度、濕度等環(huán)境因子,進而影響圈舍的NH3排放。NH3排放量與周圍的溫度呈正相關(guān)。溫度可以直接影響NH3排放,較高溫度能提高脲酶活性,促進糞便中含氮物質(zhì)分解釋放NH3。此外,溫度也間接影響牲畜排泄行為進而影響NH3排放[78]。研究發(fā)現(xiàn),在恒定的通風條件下封閉豬舍內(nèi)的溫度從10 ℃上升到20 ℃,NH3排放量增加2倍[79];當溫度從17 ℃上升到28 ℃時,每天每頭豬NH3排放量從12.8 g增加到14.6 g[80]。由于NH3水溶解度很高,故濕度與NH3排放量呈反比,但與溫度和通風相比,濕度對NH3排放影響并不顯著[78]。
增加通風頻率可提高禽舍的NH3排放量,降低禽舍內(nèi)NH3濃度[81-82]。在封閉式育肥豬舍中,當通風頻率提高到3倍,由于溫度下降,NH3排放量只增加25%,舍內(nèi)NH3濃度降低3倍[80]。而在非封閉式育肥豬舍,通風頻率提高5倍,由于溫度幾乎沒有下降,NH3排放也相應增加5倍[83]。禽舍進風口和出風口的位置對排放影響不大[84]。對于大規(guī)模的封閉式管理的養(yǎng)殖場,如豬場、雞場等,對廢氣進行收集,若采用酸式洗滌器或生物滴濾器對其進行處理可減少5%~30% NH3排放[85]。
2.3 糞便清理模式
存積在禽舍內(nèi)的糞、尿是舍內(nèi)NH3釋放的最主要來源,及時清理可顯著降低舍內(nèi)NH3濃度。根據(jù)圈舍地板模式,清糞方式一般設計為干清糞、機械清糞和水沖清糞等。研究發(fā)現(xiàn),水沖清糞模式下沖洗頻率、時間以及水壓影響NH3排放量[86]。漏縫地板結(jié)合水沖清糞的斜坡禽舍,每天多次沖水,可以減少30%的NH3排放量[87]。在實心地面禽舍不斷地用水沖洗糞溝,可以減少70%的NH3排放量[88]。在育肥豬舍內(nèi),漏縫地板結(jié)合水沖清糞的斜坡禽舍若采用“V”型排污溝設計可減少50%的NH3排放量,若使其坡度從1%增加到3%,NH3釋放量可減少17%[67]。機械刮板清糞方式對豬場NH3排放量并沒有顯著影響[89]。刮板清除糞尿時地板表面殘留部分糞尿,反而增加了釋放NH3的地板面積[86]。在深坑育肥豬舍,與整個育肥階段糞污清理1次相比,若每2周清糞污1次可有效減少20%的NH3排放量,每周清理可減少35%的NH3排放量,每2~3 d清糞污1次可減少46%的NH3排放量。但是,沖洗后的污水若不及時處理,溶解于水中的NH3還會進行二次釋放[82]。
2.4 畜禽糞便還田
畜禽糞便還田方式分直接利用與加工利用2種,直接利用是畜禽糞尿經(jīng)發(fā)酵處理后直接施用,加工利用則是將糞便經(jīng)脫水除菌后加工為商品有機肥施用,目前在我國直接施用占絕大部分。畜禽糞便還田NH3排放主要受畜禽糞便理化性質(zhì)的影響,若含水率低、總氮尤其是銨態(tài)氮含量高的糞便還田,NH3排放量高。研究發(fā)現(xiàn),相較于肉雞糞和牛糞,蛋雞糞干重高,對應有機質(zhì)和總氮尤其是銨態(tài)氮含量也高,若將其施用于農(nóng)田,NH3排放顯著高于前者[90]。較干的糞便在土壤中的下滲率低,特別是在低滲透率的土壤上施用干重高糞肥,NH3排放量占氮流失的比例最大[91]。稀釋糞肥則可加快糞肥向土壤下滲進而減少參與NH3排放的銨態(tài)氮含量[92],研究表明,與施用未稀釋的糞肥相比,施用稀釋一定比例的糞肥可以有效減少25%~50%的NH3排放量[93]。但是,過量施用稀釋糞肥既會導致土壤含水率飽和,又會降低糞肥在土壤中的下滲速率,這可能抵消稀釋糞肥減少的NH3排放[94]。畜禽糞便的pH值對NH3排放影響顯著。在10~30 ℃ 之間,當糞肥pH值為7時,只有不到1%的銨態(tài)氮以NH3形式釋放到空氣中,當pH值為10時,超過50%的銨態(tài)氮經(jīng)NH3揮發(fā)散失[95]。酸化糞肥是減少NH3排放的一個有效措施。研究發(fā)現(xiàn),將施用的牛糞pH值從7降至5~6.5之間,可以降低NH3排放30%~98%[96],將豬糞pH值降低到6.5和5.5,分別可減少NH3排放49.4% 和92.3%[97]。
此外,畜禽糞便還田的施用方式也會影響NH3排放,目前主要的還田方式包括帶狀施肥、表面播撒、牽引式軟管和地下注射等,后2種方式只適用于液態(tài)糞肥[98]。我國糞肥主要還田方式還是表面播撒[99]。由于糞肥在施用后24 h內(nèi)會出現(xiàn)明顯的NH3排放過程,其中,50%的NH3在施用后6 h即排放出來[100]。因而,表面播撒或牽引軟管施肥后,及時覆土或翻耕可以有效減少NH3揮發(fā)。相比于其他施肥方式,地下注射方式可以減少70%~80%的NH3揮發(fā)量,但運行成本較高[101]。
總的來看,目前針對農(nóng)田NH3排放研究主要是基于2個需求開展的。(1)農(nóng)田氮地球化學循環(huán)過程一直是全球變化研究的熱點領(lǐng)域。農(nóng)田NH3揮發(fā)過程作為大氣氮的一個主要來源及農(nóng)田氮循環(huán)的一個重要環(huán)節(jié),已成為科學界關(guān)注的一個重要領(lǐng)域。研究者通過野外觀測或室內(nèi)模擬,在定量分析農(nóng)田NH3揮發(fā)量的基礎上,探討農(nóng)田施肥NH3揮發(fā)過程及影響因素,揭示自然過程和人類活動對NH3揮發(fā)影響的驅(qū)動機制,評估NH3揮發(fā)在天氣和氣候、生物地球化學循環(huán)方面的作用。(2)基于糧食增產(chǎn)需要,研究者通過開發(fā)各類施肥技術(shù)以減少農(nóng)田NH3揮發(fā)來提高氮肥使用效率。而針對畜禽養(yǎng)殖NH3排放研究主要從職業(yè)衛(wèi)生健康角度[91,101-102]開展,大多是基于源防控原理,從飼料、禽舍環(huán)境和糞便清理模式等方面開展禽舍內(nèi)部NH3濃度控制研究。上述研究缺乏以NH3排放環(huán)境暴露風險為目的的考量,農(nóng)田施肥及畜禽養(yǎng)殖生產(chǎn)各個過程均會導致NH3排放,但其排放通量尚不明確,其排放引起的區(qū)域環(huán)境質(zhì)量下降風險及環(huán)境影響機制尚不清楚,導致無法明確農(nóng)業(yè)NH3排放優(yōu)先控制區(qū)域,給環(huán)境管理部門針對性制定分區(qū)域的農(nóng)業(yè)源NH3排放控制策略、標準與政策法規(guī)帶來很大困難。因此急需廣泛、全面、深入地開展相關(guān)基礎調(diào)查和研究工作。
2015年,我國修訂《大氣污染防治法》,基于環(huán)境空氣質(zhì)量,第七十四條從最高立法層面,已明確提出控制農(nóng)業(yè)NH3排放。為此,基于農(nóng)業(yè)源氮物質(zhì)流,以NH3排放全過程控制為原則,就農(nóng)業(yè)源NH3排放的各個節(jié)點,開展以環(huán)境空氣為排放界面的農(nóng)業(yè)源NH3排污系數(shù)研究,著重辨析NH3排放關(guān)鍵影響因素,從源頭、過程和末端揭示農(nóng)業(yè)源NH3排放特征與規(guī)律,調(diào)查畜禽養(yǎng)殖NH3排放現(xiàn)狀,從有機肥、化肥、緩控釋肥配施、精準施肥和覆土深施等方面構(gòu)建農(nóng)田NH3排放最佳防控技術(shù)體系,從飼喂、畜禽圈舍、糞污存儲和糞肥土地利用等方面構(gòu)建畜禽養(yǎng)殖NH3排放最佳防控技術(shù),并對上述技術(shù)進行生態(tài)效益和社會效益評價,實現(xiàn)能與現(xiàn)有環(huán)境友好型農(nóng)業(yè)生產(chǎn)方式有機結(jié)合的全過程綜合防控技術(shù)體系。通過制定農(nóng)業(yè)源NH3排放清單,開展生態(tài)環(huán)境風險評估研究,基于環(huán)境暴露風險,結(jié)合區(qū)域環(huán)境質(zhì)量現(xiàn)狀,明確農(nóng)業(yè)NH3排放優(yōu)先控制區(qū)域,最終為環(huán)境管理部門制定農(nóng)業(yè)源NH3排放分區(qū)控制技術(shù)體系、策略與路線圖以及標準與政策法規(guī)提供理論依據(jù)。
[1] FENG L,LIAO W J.Legislation,Plans,and Policies for Prevention and Control of Air Pollution in China:Achievements,Challenges,and Improvements[J].Journal of Cleaner Production,2016,112:1549-1558.
[2] HO K F,HO S S H,HUANG R J,etal.Chemical Composition and Bioreactivity of PM2.5During 2013 Haze Events in China[J].Atmospheric Environment,2016,126:162-170.
[3] YANG F,TAN J,ZHAO Q,etal.Characteristics of PM2.5Speciation in Representative Megacities and Across China[J].Atmospheric Chemistry and Physics,2011,11(11):5207-5219.
[4] DEDOUSSI I C,BARRETT S R H.Air Pollution and Early Deaths in the United States.Part II:Attribution of PM2.5Exposure to Emissions Species,Time,Location and Sector[J].Atmospheric Environment,2014,99:610-617.
[5] WEI L F,DUAN J C,TAN J H,etal.Gas-to-Particle Conversion of Atmospheric Ammonia and Sampling Artifacts of Ammonium in Spring of Beijing[J].Science China:Earth Sciences,2015,58(3):345-355.
[6] 韋蓮芳,譚吉華,馬永亮,等.北京春季大氣中氨的氣粒相轉(zhuǎn)化及顆粒態(tài)銨采樣偏差研究[J].中國科學:地球科學,2015,45(2):216-226.
[7] CUI H Y,CHEN W H,DAI W,etal.Source Apportionment of PM2.5in Guangzhou Combining Observation Data Analysis and Chemical Transport Model Simulation[J].Atmospheric Environment,2015,116:262-271.
[8] WANG J D,WANG S X,VOORHEES A S,etal.Assessment of Short-Term PM2.5-Related Mortality Due to Different Emission Sources in the Yangtze River Delta,China[J].Atmospheric Environment,2015,123:440-448.
[10]GALLOWAY J N,DENTENER F J,CAPONE D G,etal.Nitrogen Cycles:Past,Present,and Future[J].Biogeochemistry,2004,70(2):153-226.
[11]GAO Z L,MA W Q,ZHU G D,etal.Estimating Farm-Gate Ammonia Emissions From Major Animal Production Systems in China[J].Atmospheric Environment,2013,79:20-28.
[12]FAN X H,LI Y C,ALVA A K.Effects of Temperature and Soil Type on Ammonia Volatilization From Slow-Release Nitrogen Fertilizers[J].Communications in Soil Science and Plant Analysis,2011,42(10):1111-1122.
[13]DUAN Z H,XIAO H L.Effects of Soil Properties on Ammonia Volatilization[J].Soil Science and Plant Nutrition,2000,46(4):845-852.
[14]張慶利,張民,楊越超,等.碳酸氫銨和尿素在山東省主要土壤類型上的氨揮發(fā)特性研究[J].土壤通報,2002,33(1):32-34.
[15]SHAN L N,HE Y F,CHEN J,etal.Ammonia Volatilization From a Chinese Cabbage Field Under Different Nitrogen Treatments in the Taihu Lake Basin,China[J].Journal of Environmental Sciences,2015,38:14-23.
[16]朱兆良,文啟孝.中國土壤氮素[M].南京:江蘇科學技術(shù)出版社,1992.
[17]朱兆良,SIMPSON J R,張紹林,等.石灰性稻田土壤上化肥氮損失的研究[J].土壤學報,1989,26(4):337-343.
[18]賀發(fā)云,尹斌,金雪霞,等.南京兩種菜地土壤氨揮發(fā)的研究[J].土壤學報,2005,42(2):253-259.
[19]STEVENSON F J,DHARIWAL A P S.Distribution of Fixed Ammonium in Soils[J].Soil Science Society of America Journal,1959,23(2):121-125.
[20]ZHANG Y Z,HUANG S H,WAN D J,etal.Fixed Ammonium Content and Maximum Capacity of Ammonium Fixation in Major Types of Tillage Soils in Hunan Province,China[J].Agricultural Sciences in China,2007,6(4):466-474.
[21]AL-KANANI T,MACKENZIE A F,BLENKHORN H.Volatilization of Ammonia From Urea-Ammonium Nitrate Solutions as Influenced by Organic and Inorganic Additives[J].Fertilizer Research,1990,23(2):113-119.
[22]高鵬程,張一平.氨揮發(fā)與土壤水分散失關(guān)系的研究[J].西北農(nóng)林科技大學學報(自然科學版),2001,29(6):22-26.
[23]SHARPE R R,HARPER L A.Soil,Plant and Atmospheric Conditions as They Relate to Ammonia Volatilization[C]∥AHMAD N.Nitrogen Economy in Tropical Soils:Proceedings of the International Symposium on Nitrogen Economy in Tropical Soils,Held in Trinidad,W.I.,January 9-14,1994.Dordrecht,Netherlands:Springer,1996:149-158.
[24]BOUWMEESTER R J B,VLEK P L G.Rate Control of Ammonia Volatilization From Rice Paddies[J].Atmospheric Environment,1981,15(2):131-140.
[25]宋勇生,范曉暉.稻田氨揮發(fā)研究進展[J].生態(tài)環(huán)境,2003,12(2):240-244.
[26]ZHANG Y S,LUAN S J,CHEN L L,etal.Estimating the Volatilization of Ammonia From Synthetic Nitrogenous Fertilizers Used in China[J].Journal of Environmental Management,2011,92(3):480-493.
[27]環(huán)境保護部.化肥使用環(huán)境安全技術(shù)導則[R].北京:中國環(huán)境科學出版社,2015.
[28]石學勇,張彥旭.硫酸脲氨化法生產(chǎn)尿基復合肥工藝技術(shù)及應用[J].化肥工業(yè),2011,38(4):13-15,31.
[29]SOMMER S G,OLESEN J E,CHRISTENSEN B T.Effects of Temperature,Wind Speed and Air Humidity on Ammonia Volatilization From Surface Applied Cattle Slurry[J].The Journal of Agricultural Science,1991,117(1):91-100.
[30]楊杉,吳勝軍,王雨,等.三峽庫區(qū)農(nóng)田氨揮發(fā)及其消減措施研究進展[J].土壤,2014,46(5):773-779.
[31]NICHOLSON F A,BHOGAL A,CHADWICK D,etal.An Enhanced Software Tool to Support Better Use of Manure Nutrients:MANNER-NPK[J].Soil Use and Management,2013,29(4):473-484.
[32]SOMMER S G,HUTCHINGS N J.Ammonia Emission From Field Applied Manure and Its Reduction[J].European Journal of Agronomy,2001,15(1):1-15.
[33]SOMMER S G,MISSELBROOK T H.A Review of Ammonia Emission Measured Using Wind Tunnels Compared With Micrometeorological Techniques[J].Soil Use and Management,2016,32(Suppl.1):101-108.
[34]BRUNKE R,ALVO P,SCHUEPP P,etal.Effect of Meteorological Parameters on Ammonia Loss From Manure in the Field[J].Journal of Environmental Quality,1988,17(3):431-436.
[35]李慶逵,朱兆良,于天仁.中國農(nóng)業(yè)持續(xù)發(fā)展中的肥料問題:我國化肥面臨的突出問題及建議[C].南昌:江西科學技術(shù)出版社,1997:3-5.
[36]SOMMER S G,SCHJOERRING J K,DENMEAD O T.Ammonia Emission From Mineral Fertilizers and Fertilized Crops[M]∥Advances in Agronomy.Salt Lake City,USA:Academic Press,2004:557-622.
[37]ZHU Z L,CAI G X,SIMPSON J R,etal.Processes of Nitrogen Loss From Fertilizers Applied to Flooded Rice Fields on a Calcareous Soil in North-Central China[J].Fertilizer Research,1988,18(2):101-115.
[38]LI D J.Emissions of NO and NH3From a Typical Vegetable-Land Soil After the Application of Chemical N Fertilizers in the Pearl River Delta[J].PlosOne,2013,8(3):e59360.doi:10.1371/journal.pone.0059360.
[39]VAN DER HOEK K W.Estimating Ammonia Emission Factors in Europe:Summary of the Work of the UNECE Ammonia Expert Panel[J].Atmospheric Environment,1998,32(3):315-316.
[40]SHI Y L,WU Z J,CHEN L J,etal.Development and Application of Slow Release Fertilizer[J].Agricultural Sciences in China,2009,8(6):i.
[41]趙秉強,張福鎖,廖宗文,等.我國新型肥料發(fā)展戰(zhàn)略研究[J].植物營養(yǎng)與肥料學報,2004,10(5):536-545.
[42]SHAVIV A,MIKKELSEN R L.Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation:A Review[J].Fertilizer Research,1993,35(1/2):1-12.
[43]DOU H,ALVA A K.Nitrogen Uptake and Growth of Two Citrus Rootstock Seedlings in a Sandy Soil Receiving Different Controlled-Release Fertilizer Sources[J].Biology and Fertility of Soils,1998,26(3):169-172.
[44]ROCHETTE P,ANGERS D A,CHANTIGNY M H,etal.Ammonia Volatilization Following Surface Application of Urea to Tilled and No-Till Soils:A Laboratory Comparison[J].Soil and Tillage Research,2009,103(2):310-315.
[45]CHAUHAN H S,MISHRA B.Ammonia Volatilization From a Flooded Rice Field Fertilized With Amended Urea Materials[J].Fertilizer Research,1989,19(1):57-63.
[46]TIMILSENA Y P,ADHIKARI R,CASEY P,etal.Enhanced Efficiency Fertilisers:A Review of Formulation and Nutrient Release Patterns[J].Journal of the Science of Food and Agriculture,2015,95(6):1131-1142.
[47]CHU H Y,HOSEN Y,YAGI K,etal.Soil Microbial Biomass and Activities in a Japanese Andisol as Affected by Controlled Release and Application Depth of Urea[J].Biology and Fertility of Soils,2005,42(2):89-96.
[48]孫克君,毛小云,盧其明,等.幾種控釋氮肥減少氨揮發(fā)的效果及影響因素研究[J].應用生態(tài)學報,2004,15(12):2347-2350.
[49]王崇力,韓桂琪,徐衛(wèi)紅,等.專用緩釋肥的土壤氨揮發(fā)特性及其對辣椒氮磷鉀吸收利用的影響[J].中國生態(tài)農(nóng)業(yè)學報,2014,22 (2):143-150.
[50]LI Q,YANG A,WANG Z,etal.Effect of a New Urease Inhibitor on Ammonia Volatilization and Nitrogen Utilization in Wheat in North and Northwest China[J].Field Crops Research,2015,175:96-105.
[51]WANG J,WAND D J,ZHANG G,etal.Effect of Wheat Straw Application on Ammonia Volatilization From Urea Applied to a Paddy Field[J].Nutrient Cycling in Agroecosystems,2012,94(1):73-84.
[52]DE RUIJTER F J,HUIJSMANS J F M,RUTGERS B.Ammonia Volatilization From Crop Residues and Frozen Green Manure Crops[J].Atmospheric Environment,2010,44(28):3362-3368.
[53]李宗新,王慶成,劉開昌,等.不同施肥模式下夏玉米田間土壤氨揮發(fā)規(guī)律[J].生態(tài)學報,2009,29(1):307-314.
[54]周懷平,關(guān)春林,李紅梅,等.旱地玉米秸稈還田秋施肥與土壤氨揮發(fā)[C]∥第九屆中國青年土壤科學工作者學術(shù)討論會暨第四屆中國青年植物營養(yǎng)與肥料科學工作者學術(shù)討論會.成都:《西南農(nóng)業(yè)學報》編輯部,2004.
[55]ROCHETTE P,CHANTIGNY M H,ANGERS D A,etal.Ammonia Volatilization and Soil Nitrogen Dynamics Following Fall Application of Pig Slurry on Canola Crop Residues[J].Canadian Journal of Soil Science,2001,81(4):515-523.
[56]欒江,仇煥廣,井月,等.我國化肥施用量持續(xù)增長的原因分解及趨勢預測[J].自然資源學報,2013,28(11):1869-1878.
[57]巨曉棠,谷保靜.我國農(nóng)田氮肥施用現(xiàn)狀、問題及趨勢[J].植物營養(yǎng)與肥料學報,2014,20(4):783-795.
[58]張福鎖,陳新平,陳清.中國主要作物施肥指南[M].北京:中國農(nóng)業(yè)大學出版社,2009:27-48.
[59]國家環(huán)境保護總局,南京環(huán)境科學研究所.化肥使用環(huán)境安全技術(shù)導則(征求意見稿) 編制說明[R].[出版地不詳]:[出版者不詳],2008.
[60]盛婧,孫國峰,鄭建初.典型糞污處理模式下規(guī)模養(yǎng)豬場農(nóng)牧結(jié)合規(guī)模配置研究Ⅰ:固液分離-液體厭氧發(fā)酵模式[J].中國生態(tài)農(nóng)業(yè)學報,2015,23(2):199-206.
[61]曹兵,李新慧,張琳,等.冬小麥不同基肥施用方式對土壤氨揮發(fā)的影響[J].華北農(nóng)學報,2001,16(2):83-86.
[62]LIN Z C,DAI Q G,YE S C,etal.Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization During Rice Growing Season[J].Rice Science,2012,19(2):125-134.
[63]XU J Z,LIAO L X,TAN J Y,etal.Ammonia Volatilization in Gemmiparous and Early Seedling Stages From Direct Seeding Rice Fields With Different Nitrogen Management Strategies:A Pots Experiment[J].Soil and Tillage Research,2013,126:169-176.
[64]CAI G X,CHEN D L,DING H,etal.Nitrogen Losses From Fertilizers Applied to Maize,Wheat and Rice in the North China Plain[J].Nutrient Cycling in Agroecosystems,2002,63(2):187-195.
[65]周元軍.畜禽糞便對環(huán)境的污染及治理對策[J].醫(yī)學動物防制,2003,19(6):350-354.
[66]王建彬,田林春,王倩倩,等.談利用營養(yǎng)調(diào)控減少豬糞尿中氮、磷對環(huán)境的污染[J].豬業(yè)科學,2009,26(2):62-64.
[67]PHILIPPE F X,CABARAUX J F,NICKS B.Ammonia Emissions From Pig Houses:Influencing Factors and Mitigation Techniques[J].Agriculture,Ecosystems & Environment,2011,141(3/4):245-260.
[68]LOW A G.4-Role of Dietary Fibre in Pig Diets[M]∥Recent Advances in Animal Nutrition.Oxford,UK:Butterworth-Heinemann,1985:87-112.
[69]WEBB J,BROOMFIELD M,JONES S,etal.Ammonia and Odour Emissions From UK Pig Farms and Nitrogen Leaching From Outdoor Pig Production:A Review[J].Science of the Total Environment,2014,470/471:865-875.
[70]O′SHEA C J,LYNCH B,LYNCH M B,etal.Ammonia Emissions and Dry Matter of Separated Pig Manure Fractions as Affected by Crude Protein Concentration and Sugar Beet Pulp Inclusion of Finishing Pig Diets[J].Agriculture,Ecosystems & Environment,2009,131(3/4):154-160.
[71]PHILIPPE F X,REMIENCE V,DOURMAD J Y,etal.Food Fibers in Gestating Sows:Effects on Nutrition,Behaviour,Performances and Waste in the Environment[J].INRA Productions Animales,2008,21(3):277-290.
[72]LEEK A B G,CALLAN J J,REILLY P,etal.Apparent Component Digestibility and Manure Ammonia Emission in Finishing Pigs Fed Diets Based on Barley,Maize or Wheat Prepared Without or With Exogenous Non-Starch Polysaccharide Enzymes[J].Animal Feed Science and Technology,2007,135(1/2):86-99.
[73]GARRY B P,FOGARTY M,CURRAN T P,etal.The Effect of Cereal Type and Enzyme Addition on Pig Performance,Intestinal Microflora,and Ammonia and Odour Emissions[J].Animal,2007,1(5):751-757.
[74]VELTHOF G L,NELEMANS J A,OENEMA O,etal.Gaseous Nitrogen and Carbon Losses From Pig Manure Derived From Different Diets[J].Journal of Environmental Quality,2005,34(2):698-706.
[75]TIWARI J,BARRINGTON S,ZHAO X.Effect on Manure Characteristics of Supplementing Grower Hog Ration With Clinoptilolite[J].Microporous and Mesoporous Materials,2009,118(1/2/3):93-99.
[76]WANG Y,CHO J H,CHEN Y J,etal.The Effect of Probiotic BioPlus 2B?on Growth Performance,Dry Matter and Nitrogen Digestibility and Slurry Noxious Gas Emission in Growing Pigs[J].Livestock Science,2009,120(1/2):35-42.
[77]BEUSEN A H W,BOUWMAN A F,HEUBERGER P S C,etal.Bottom-Up Uncertainty Estimates of Global Ammonia Emissions From Global Agricultural Production Systems[J].Atmospheric Environment,2008,42(24):6067-6077.
[78]CORTUS E L,LEMAY S P,BARBER E M,etal.A Dynamic Model of Ammonia Emission From Urine Puddles[J].Biosystems Engineering,2008,99(3):390-402.
[79]朱科峰,曹靜,梁萬杰,等.物聯(lián)網(wǎng)豬舍氨氣濃度與環(huán)境數(shù)據(jù)的關(guān)系研究[J].江蘇農(nóng)業(yè)科學,2015(12):462-464.
[80]GRANIER R,GUINGAND N,MASSABIE P.Influence of Hygrometry,Temperature and Air Flow Rate on the Evolution of Ammonia Levels[J].Journée de la Recherche Porcine,1996,28(12):209-216.
[81]BLANES-VIDAL V,HANSEN M N,PEDERSEN S,etal.Emissions of Ammonia,Methane and Nitrous Oxide From Pig Houses and Slurry:Effects of Rooting Material,Animal Activity and Ventilation Flow[J].Agriculture,Ecosystems & Environment,2008,124(3/4):237-244.
[82]YE Z,ZHANG G,SEO I H,etal.Airflow Characteristics at the Surface of Manure in a Storage Pit Affected by Ventilation Rate,Floor Slat Opening,and Headspace Height[J].Biosystems Engineering,2009,104(1):97-105.
[83]JEPPSSON K H.Diurnal Variation in Ammonia,Carbon Dioxide and Water Vapour Emission From an Uninsulated,Deep Litter Building for Growing/Finishing Pigs[J].Biosystems Engineering,2002,81(2):213-223.
[84]AARNINK A J A,WAGEMANS M J M.Ammonia Volatilization and Dust Concentration as Affected by Ventilation Systems in Houses for Fattening Pigs[J].Transactions of the American Society of Agricultural Engineers,1997,40(4):1161-1170.
[85]YASUDA T,KURODA K,FUKUMOTO Y,etal.Evaluation of Full-Scale Biofilter With Rockwool Mixture Treating Ammonia Gas From Livestock Manure Composting[J].Bioresource Technology,2009,100(4):1568-1572.
[86]PHILIPPE F X,CABARAUX J F,NICKS B.Ammonia Emissions From Pig Houses:Influencing Factors and Mitigation Techniques[J].Agriculture,Ecosystems and Environment,2011,141(3/4):245-260.
[87]AARNINK A J A,VAN DEN BERG A J,KEEN A,etal.Effect of Slatted Floor Area on Ammonia Emission and on the Excretory and Lying Behaviour of Growing Pigs[J].Journal of Agricultural Engineering Research,1996,64(4):299-310.
[88]HARTUNG J,PHILLIPS V R.Control of Gaseous Emissions From Livestock Buildings and Manure Stores[J].Journal of Agricultural Engineering Research,1994,57(3):173-189.
[89]KIM K Y,KO H J,KIM H T,etal.Quantification of Ammonia and Hydrogen Sulfide Emitted From Pig Buildings in Korea[J].Journal of Environmental Management,2008,88(2):195-202.
[90]PARAMASIVAM S,JAYARAMAN K,WILSON T C,etal.Ammonia Volatilization Loss From Surface Applied Livestock Manure[J].Journal of Environmental Science and Health Part B,2009,44(3):317-324.
[91]HUIJSMANS J F M,HOL J M G,HENDRIKS M M W B.Effect of Application Technique,Manure Characteristics,Weather and Field Conditions on Ammonia Volatilization From Manure Applied to Grassland[J].NJAS:Wageningen Journal of Life Sciences,2001,49(4):323-342.
[92]VANDER ZAAG A,AMON B,BITTMAN S,etal.Ammonia Abatement With Manure Storage and Processing Techniques[M]∥REIS S,HOWARD C,SUTTON A M.Costs of Ammonia Abatement and the Climate Co-Benefits.Dordrecht,Netherlands:Springer,2015:75-112.
[93]STEVENS R J,LAUGHLIN R J,FROST J P.Effects of Separation,Dilution,Washing and Acidification on Ammonia Volatilization From Surface-Applied Cattle Slurry[J].The Journal of Agricultural Science,1992,119(3):383-389.
[94]WEBB J,MENZI H,PAIN B F,etal.Managing Ammonia Emissions From Livestock Production in Europe[J].Environmental Pollution,2005,135(3):399-406.
[95]FANGUEIRO D,HJORTH M,GIOELLI F.Acidification of Animal Slurry:A Review[J].Journal of Environmental Management,2015,149:46-56.
[96]PAIN B F,MISSELBROOK T H,REES Y J.Effects of Nitrification Inhibitor and Acid Addition to Cattle Slurry on Nitrogen Losses and Herbage Yields[J].Grass and Forage Science,1994,49(2):209-215.
[97]PARK S H,LEE B R,KIM T H.Effects of Cattle Manure and Swine Slurry Acidification on Ammonia Emission as Estimated by an Acid Trap System[J].Journal of the Korean Society of Grassland and Forage Science,2015,35(3):212-216.
[98]SMITH K A,JACKSON D R,MISSELBROOK T H,etal.PA—Precision Agriculture:Reduction of Ammonia Emission by Slurry Application Techniques[J].Journal of Agricultural Engineering Research,2000,77(3):277-287.
[99]GUTSER R,EBERTSEDER T,WEBER A,etal.Short-Term and Residual Availability of Nitrogen After Long-Term Application of Organic Fertilizers on Arable Land[J].Journal of Plant Nutrition and Soil Science,2005,168(4):439-446.
[100]VAN DER STELT B,TEMMINGHOFF E J M,VAN VLIET P C J,etal.Volatilization of Ammonia From Manure as Affected by Manure Additives,Temperature and Mixing[J].Bioresource Technology,2007,98(18):3449-3455.
[101]WEBB J,PAIN B,BITTMAN S,etal.The Impacts of Manure Application Methods on Emissions of Ammonia,Nitrous Oxide and on Crop Response:A Review[J].Agriculture,Ecosystems & Environment,2010,137(1/2):39-46.
[102]KRISTENSEN H H,WATHES C M.Ammonia and Poultry Welfare:A Review[J].World′s Poultry Science Journal,2000,56(3):235-245.
(責任編輯: 李祥敏)
Review of Researches on Factors Affecting Emission of Ammonia From Agriculture.
WANG Wen-lin1, LIU Bo2, HAN Rui-ming3, WANG Ye2, LIU Xiao2, XU Qiao2, LI Wen-jing1, TANG Xiao-yan1
(1.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;2.School of Geography Science, Nantong University, Nantong 226007, China;2.School of Environment, Nanjing Normal University, Nanjing 210023, China)
Ammonia (NH3) as an alkaline gas in the atmosphere plays a key role in the formation of haze. Control of NH3emission at source is hence particularly important to reduction of the concentrations of secondary inorganic salts and PM2.5in the atmosphere, control of haze pollution, and improvement of air environment quality. Agriculture is a major source of anthropogenic NH3emitted into the atmosphere, and farmland fertilization and livestock and poultry breeding are the two major sources in agriculture. Therefore, the review summarized the researches at home and abroad on NH3emissions from agriculture and analyzed factors affecting NH3emissions, which is of fundamental significance to the understanding of the process and characteristics of NH3emission and designing corresponding control measures. It has been found that fertilizer type, soil physic-chemical properties, field meteorological elements and fertilization practice are the main factors affecting NH3emission from farmland fertilization. Nature of feed, barn environment and dung disposal mode are the main factors affecting NH3emission from livestock and poultry breeding. However, currently the researches on NH3emission from farmland fertilization proceed from the aspects of geochemical recycling of N in farmlands and N demand for higher grain yield, while the researches on NH3emission from livestock and poultry breeding do from the aspects of occupation alhygiene and health, both lacking the concerns about the target of controlling the risk of environmental exposure of NH3emission. Hence, it is proposed to unfold studies on emission coefficient of NH3from agricultural sources with the ambient air as emission interface, determination of priority control zones of NH3emissions from agricultural sources, and in the end provision of theoretical basis for formulation of a technical system, strategies, route maps and standards for sub-zonal control of agricultural NH3emission, and formation of relevant policies and regulations for environmental management authorities.
agriculture source; ammonia emission; farmland fertilization; livestock and poultry breeding; influencing factor
2016-06-29
環(huán)保公益性行業(yè)科研專項(201509038);江蘇省自然科學基金(SBK201321353);國家重大科學研究計劃(973)(2014CB953800);中央級公益性科研院所基本科研業(yè)務專項;大學生創(chuàng)新訓練計劃(201610304038Z,201610304069)
X501
A
1673-4831(2016)06-0870-09
10.11934/j.issn.1673-4831.2016.06.002
王文林(1981—),男,江蘇南京人,副研究員,博士,主要研究方向為流域面源污染控制。E-mail: wangwenlin-jjl@126.com
① 通信作者E-mail: lb@ntu.edu.cn