• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Relationships among three popular measures of differential risks: relative risk, risk difference, and odds ratio

    2016-12-08 10:39:08ChangyongFENGHongyueWANGBokaiWANGXiangLUHaoSUNandXinTU
    上海精神醫(yī)學(xué) 2016年1期
    關(guān)鍵詞:危險(xiǎn)度中文版測量方法

    Changyong FENG*, Hongyue WANG, Bokai WANG, Xiang LU, Hao SUN, and Xin M. TU

    ·Biostatistics in psychiatry (31)·

    Relationships among three popular measures of differential risks: relative risk, risk difference, and odds ratio

    Changyong FENG1,2,*, Hongyue WANG1, Bokai WANG1, Xiang LU1, Hao SUN1, and Xin M. TU1

    odds ratio; relative risk; risk difference

    1. Introduction

    The relative risk, risk difference, and odds ratio are three major measures used to assess differences in the risk of diseases between different groups. These measures- which play important roles in research and practice in the biomedical, behavioral, and social sciences- have been extensively discussed in statistics,[1,2]epidemiology,[3-7]and biomedical[8]literature. Although straightforward to interpret when used independently,there is considerable confusion and frequent misinterpretation of the measures when they are used together.[9,10]As popular as they are, relationships among the three measures have never been made clear and remain elusive. For example, here is an excerpt from Kraft and colleagues:[11]

    “…genetic profiles based on sets of risk markers can potentially identify rare highrisk and low-risk subgroups with large relative differences in risk (that is, with odds ratios greater than 10). These profiles can also have a high population attributable risk(PAR; also known as population attributable fraction).” (p.264)

    In this excerpt the authors incorrectly assumed that a larger odds ratio would imply a higher PAR, which, in turn, would give rise to a larger relative risk. Their line of thinking is apparently logical, since all three measures have traditionally been viewed as equivalent measures of differential risks such that a larger value in any one measure would naturally imply larger values in the other two measures. This paper discusses the properties of the three measures, systematically assesses relationships between the three pairs of measures (i.e., relative risk and odds ratio, relative risk and risk difference, and risk difference and odds ratio), and presents examples to clarify the misconception in the above statement as well as other pitfalls when interpreting the relationships between the different measures.

    2. Relationship between relative risk and odds ratio

    Let p1and p2denote disease prevalence in two groups of interest. For simplicity, we assume that 0<p1, p2<1, that is, there exist two subgroups with potentially different prevalence rates for the disease of interest. The relative risk (r), risk difference (d), and odds ratio (θ) between the groups are defined as:

    Note that the relative risk is also called the risk ratio in the literature,[6]but for convenience we use the term‘relative risk' hereafter.

    From the definitions above, we immediately see that the three measures have quite different ranges;both the relative risk and odds ratio vary between 0 and∞, while the risk difference is limited to a much smaller interval between -1 and 1. Despite the fact that the relative risk and odds ratio have the same range, they represent totally different measures of differential risks and, therefore, have quite different interpretations. For example, if p1=0.40 and p2=0.25, then the relative risk is r=1.60, but the odds ratio is θ=2.00.

    Given two prevalence rates p1and p2, we can calculate both the relative risk and odds ratio. However,there is generally more than one pair of prevalence rates(p1, p2) that yields any pre-specified relative risk (or odds ratio). For example, (cp1, cp2) yields the same relative risk (r=p1/p2) for any value of c when 0<c<1, such as c=0.2 or c=0.8. Thus, before discussing the potential relationship between the relative risk and odds ratio, we must make sure that there is a unique pair of prevalence rates (p1, p2) that gives rise to the specified relative risk and odds ratio. The following theorem indicates that this is the case.

    Theorem 1.The relative risk r and the odds ratio θ satisfy one of the following conditions:

    Given any specific pair of measures (r,θ)satisfying either of the inequalities in (2), there exists a unique pair of prevalence rates (p1, p2)that gives rise to the r and θ.

    [NOTE: The three theorems presented in this paper are new results. The proofs for these theorems will be published in an upcoming paper; they are available from the authors on request.]

    The shaded areas in Figure 1 show the relationship between the relative risk and odds ratio. The only situation in which a one-to-one correspondence between the two measures occurs is the special case in which r=θ=1. For all other situations, the relationship between the two measures is not unique. For example,if r=1.5, the odds ratio can be any number θ>1.5; and for θ=1.5, the relative risk can be anywhere in theinterval 1<r<1.5. As shown in Figure 1, the odds ratio θ can be arbitrarily large for any r>1 and arbitrarily small for any r<1.

    Figure 1. Relationship between odds ratio and relative risk

    The result of Theorem 1 has significant implications for case-control studies. Case-control designs are widely employed to study the risk of disease, especially rare diseases. The odds ratio is the most popular measure of differential risk in such studies, because, unlike relative risk and risk difference, it can be estimated from both prospective and retrospective studies. Several authors have discussed methods to approximate the relative risk using the odds ratio from case-control studies.[2,4,6,8]

    For small p1and p2, we have:

    Thus, for small prevalence rates, the relative risk will be close to the odds ratio. However, the reverse is usually not true; that is, the relative risk and odds ratio may still be close, even if p1and p2are not small. This relationship is presented in Figure 2, which shows the largest value that p2can take to ensure precision of the above formula for estimating r from θ(ε=|r-θ|)as a function of the odds ratio θ for several levels of the error bound ε (assuming that 0 <p2< p1< 1 ). For relatively large odds ratios (e.g., θ≥ 3 ), p2must remain very small in order to obtain a good approximation of the relative risk using the odds ratio. However, for relatively small θ, p2and p1can take on large values.For example, if θ=2 and p2=0.2, then r=1.154, which is quite close to θ=0.2. Theorem 1 ensures that such approximations of the relative risk using the odds ratio are meaningful, since each approximated relative risk,together with the odds ratio, corresponds to a unique set of prevalence rates.

    Figure 2. The largest value that p2 can take given the odds ratio and pre-specified precision

    3. Relationship between relative risk and risk difference

    Given two prevalence rates p1and p2, we can calculate both the relative risk and risk difference. The relationship between these measures is specified in Theorem 2.

    Theorem 2. The relative risk and risk difference satisfy one of the following conditions:

    Given any specific pair of measures (r,d)satisfying either of the inequalities in (3), there exists a unique pair of prevalence rates (p1, p2)that give rise to the r and d.

    The shaded areas in Figure 3 depict the relationship between the two measures. The only situation in which a one-to-one correspondence between the two measures occurs is the trivial case in which r=0 and θ=1. For all other situations, the relationship between the two measures is not unique. For example, if r=5,the risk difference can range between d=0 and d=0.8 As shown in the Figure 3, for any d>0 the relative risk can be arbitrarily large.

    Unlike the relationship between the relative risk and the odds ratio, it is not possible to estimate the relative risk using the risk difference (or vice versa), so assessing the degree of correspondence of the paired measures is of little practical value.

    4. Relationship between risk difference and odds ratio

    Unlike the relationship between the relative risk and the odds ratio and the relationship between the relative risk and the risk difference, a specific pair of odds ratio and risk difference measures (θ, d) does not give rise to a unique pair of prevalence rates (p1, p2). This assertion follows from the following theorem.

    Figure 3. Relationship between risk difference and relative risk

    Theorem 3.The odds ratio θ and risk difference d satisfy one of the following conditions:

    Any pair of measures (θ, d) satisfying either of the inequalities in (4) corresponds to two different pairs of prevalence rates (1p1,1p2)and (2p1,2p2), except for the special case of θ=[(1+d)/(1-d)]2(when the two pairs coincide).

    The shaded areas in Figure 4 show the relationship between the risk difference and the odds ratio. There is no unique set of prevalence rates corresponding to a given pair of risk difference and odds ratio measures, so the relationship of the risk difference and odds ratio is difficult to interpret and of little practical value.

    Figure 4. Relationship between risk difference and odds ratio

    5. Examples

    In this section we use numerical examples to clarify misconceptions about the relationships among the risk ratio, risk difference, and odds ratio. For simplicity and without the loss of generality, we only consider the case in which 0<p2<p1<1, implying that d>0, r>1 and θ> 1.The discussion in the preceding sections makes it clear that one must be very careful when comparing the three different measures. In some cases, such as the relationship between the risk difference and the odds ratio, it is meaningless to even speak of such a relationship, because the same pair of measures may correspond to quite different sets of prevalence rates.Moreover, even if the measures arise from a unique set of prevalence rates - which occurs when comparing the relative risk to the odds ratio or comparing the relative risk to the risk difference - the relationship between the measures is not monotone (i.e., it varies for different ranges of the measures), so it is not possible to make qualitative comparisons of the magnitude of the measures. Unfortunately, these properties have not been made clear in the literature, leading to frequent misinterpretation of study findings.

    Example 1.A larger relative risk does not imply a larger risk difference.

    Suppose (1p1,1p2)=(0.40, 0.25) and (2p1,2p2)= (0.54,0.36). The risk differences for the two cases are 0.15 and 0.18, respectively, but the corresponding relative risks are 1.6 and 1.5. Thus, when changing from the first to the second pair of prevalence rates the risk difference increased, but the relative risk decreased.

    Example 2.A larger odds ratio does not imply a higher relative risk.

    Many publications, especially publications in epidemiology, assume that larger odds ratios correspond to higher relative risks. For example, the section of the paper by Kraft and colleagues[11]quoted in the introduction indicated that a larger odds ratio implied a higher population attributable risk (PAR) and, thus, a higher relative risk (because PAR=1-1/r) in their study.This is not true. As shown in Table 1, when (p1, p2)=(3/6,1/6), r=3 and θ=5, but when (p1, p2)=(10/12, 5/12),r=2 and θ=7; that is, a higher odds ratio was associated with a lower relative risk (and a lower risk difference).

    Table 1. Non-monotone relationships among odds ratio, relative risk, and risk difference

    Example 3.A larger odds ratio does not imply a larger risk difference.

    Table 1 also shows that when (p1, p2)=(3/6, 1/6), θ=5 and d=1/3. However, when (p1, p2)=(4/10, 1/10), θ=7 and d=3/10. Thus, an increase in the odds ratio does not imply an increase in the risk difference.

    Example 4.In this example, we consider a scenario where the odds ratio (represented by t in the following equations) becomes arbitrarily large while the relative risk approaches 1 (the theoretical minimum value of the relative risk) and the risk difference approaches 0 (the theoretical minimum value of the risk difference).

    For t>0, let

    It is clear that 0<p1(t), p2(t)<1for any t>0. The relative risk, odds ratio, and risk difference are

    Figure 5 shows the plots of r(t)and d(t)versus θ(t). Both r(t) and d(t) first increase then decrease with t, reaching their maximum values when t=2.1496. For t>2.1496,both r(t) and d (t) are decreasing functions of t, with r(t) reaching the asymptote at 1 and d (t) reaching the asymptote of 0. Thus a larger odds ratio does not imply a larger relative risk or a larger risk difference. The plot shows the complexity of the changes in the relative risk and risk difference as the odds ratio increases.

    Figure 5. Relationship of the odds ratio θ(t), relative risk θ(t), and risk difference d(t) described in Example 4

    6. Conclusion

    Although the risk difference, risk ratio, and odds ratio are widely popular in biomedical and psychosocial research, the relationships among the different measures have not been made clear in the literature.Many researchers incorrectly assume that there is a monotone relationship among the different indices such that higher values for one index will correspond to higher values of the other indices. The examples presented in this paper demonstrate that this is not the case; the three measures of differential risks behave very differently and in general can only be interpreted within the unique confines of their definitions.

    This misconception about the equivalence of the measures is particularly problematic when pooling results in a meta-analysis from individual studies on a given topic that have employed different measures of risk. The theorems and examples in this paper demonstrate that there is no logical relationship between any of these measures. With the exception of the odds ratio and relative risk, to consolidate findings from different studies, one must either combine studies using the same measure or recalculate each measure using the original prevalence rates.

    Acknowledgements

    We thank Dr. Michael Phillips (co-editor-in-chief) for his very insightful comments.

    Funding

    The preparation of this paper was supported by a pilot grant (PI: Feng) from the Clinical and Translational Sciences Institute at the University of Rochester Medical Center (UR-CTSI GR500208).

    Conflict of interest statement

    The authors report no conflict of interest.

    Authors' contributions

    CYF and HYW derived the theoretical results; BKW, LX,and HS, constructed the examples and graphs; and TXM drafted the manuscript. All authors read and approved the final manuscript.

    1. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions, 3rded. Hoboken, NJ: Wiley; 2003

    2. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979; 66: 403-411. doi:http://dx.doi.org/10.1093/biomet/66.3.403

    3. Brownson RC, Alavanja MC, Caporaso N, Simoes EJ, Chang JC.Epidemiology and prevention of lung cancer in nonsmokers.Epidemiol Rev. 1998; 20(2): 218-236

    4. Lee J. Odds ratio or relative risk for cross-sectional data?Int J Epidemiol. 1994; 23(1): 201-203. doi: http://dx.doi.org/10.1093/ije/23.1.201

    5. Robbins AS, Chao SY, Fonseca VP. What's the relative risk? A method to directly estimate risk ratios in cohort studies of common outcomes. Ann Epidemiol. 2002; 12(7): 452-454

    6. Rothman KJ. Epidemiology: An Introduction. New York: Oxford University Press; 2002

    7. Woodward M. Epidemiology: Study Design and Data Analysis 2nded. Boca Raton, FL: Chapman & Hall/CRC; 2005

    8. Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998; 280(19): 1690-1691. doi: http://dx.doi.org/10.1016/S1047-2797(01)00278-2

    9. Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013; 13(4): 233-245. doi: http://dx.doi.org/10.1038/nrc3477

    10. Marugame T, Sobue T, Nakayama T, Suzuki T, Kuniyoshi H,Sunagawa K, et al. Filter cigarette smoking and lung cancer risk; a hospital-based case — control study in Japan. Br J Cancer. 2004; 90(3): 646-651

    11. Kraft P, Wacholder S, Cornelis MC, Hu FBb, Hayes RB, Thomas G, et al. Beyond odds ratios-communicating disease risk based on genetic profiles. Nat Rev Genet. 2009; 10(4): 264-269. doi:http://dx.doi.org/10.1038/nrg2516

    Changyong Feng obtained his bachelor's of science degree in Operations Research from the University of Science and Technology of China in 1991 and a PhD in statistics from the University of Rochester in New York in 2002. He is an associate professor in the Department of Biostatistics and Computational Biology at the University of Rochester Medical Center. His research interests include survival analysis,longitudinal data analysis, and statistical methods in clinical trials.

    三種常用危險(xiǎn)度測量方法之間的關(guān)系:相對(duì)危險(xiǎn)度、危險(xiǎn)差和比值比

    Feng CY, Wang HY, Wang BK, Lu X, Sun H, Tu XM

    比值比;相對(duì)危險(xiǎn)度;危險(xiǎn)差

    The relative risk, risk difference, and odds ratio are the three most commonly used measures for comparing the risk of disease between different groups. Although widely popular in biomedical and psychosocial research, the relationship among the three measures has not been clarified in the literature.Many researchers incorrectly assume a monotonic relationship, such that higher (or lower) values in one measure are associated with higher (or lower) values in the other measures. In this paper we discuss three theorems and provide examples demonstrating that this is not the case; there is no logical relationship between any of these measures. Researchers must be very cautious when implying a relationship between the different measures or when combining results of studies that use different measures of risk.

    [Shanghai Arch Psychiatry. 2016; 28(1): 56-60.

    http://dx.doi.org/10.11919/j.issn.1002-0829.216031]

    1Department of Biostatistics & Computational Biology, University of Rochester, Rochester, NY, United States

    2Department of Anesthesiology, University of Rochester, Rochester, NY, United States

    *correspondence:Professor Changyong Feng, Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue,Rochester, NY. 14642, United States. E-mail: changyong_feng@urmc.rochester.edu

    A full-text Chinese translation of this article will be available at http://dx.doi.org/10.11919/j.issn.1002-0829.216031 on May 25, 2016.

    概 述:相 對(duì) 危 險(xiǎn) 度 (relative risk)、 危 險(xiǎn) 差 (risk difference) 和比值比 (odds ratio) 是最常用的三種比較不同群體之間疾病風(fēng)險(xiǎn)的方法。雖然它們在生物醫(yī)學(xué)和社會(huì)心理學(xué)研究中廣泛流行,但是尚無文獻(xiàn)明確這三種方法之間的關(guān)系。許多研究人員誤以為它們之間的關(guān)系是單調(diào)變化的,即某種測量方式中較高(或較低)的值與其它測量方式中的較高(或較低)的值相關(guān)。本文中,我們討論了三個(gè)定理,并提供例子解釋之前大部分研究人員所認(rèn)為這三種方法之間的關(guān)系是不對(duì)的;這些測量方法相互之間并沒有邏輯關(guān)系。研究人員在說明不同種測量方法之間的相關(guān)性時(shí)或結(jié)合使用不同種風(fēng)險(xiǎn)測量方法所得的研究結(jié)果時(shí)必須非常謹(jǐn)慎。

    本文全文中文版從2016年5月25日起在

    http://dx.doi.org/10.11919/j.issn.1002-0829.216031可供免費(fèi)閱覽下載

    猜你喜歡
    危險(xiǎn)度中文版測量方法
    《數(shù)學(xué)年刊A輯》(中文版)征稿簡則
    《數(shù)學(xué)年刊A輯》(中文版)征稿簡則
    《數(shù)學(xué)年刊A輯》(中文版)征稿簡則
    《數(shù)學(xué)年刊A輯》(中文版)征稿簡則
    胃間質(zhì)瘤的MRI診斷及侵襲危險(xiǎn)度分析
    危險(xiǎn)度預(yù)測聯(lián)合肺栓塞排除標(biāo)準(zhǔn)對(duì)剖宮產(chǎn)術(shù)后肺栓塞的診斷價(jià)值
    能譜CT定量參數(shù)與胃腸道間質(zhì)瘤腫瘤危險(xiǎn)度的關(guān)系
    基于迭代稀疏分解的介損角測量方法
    基于應(yīng)變原理隨鉆鉆壓測量方法研究
    一種高效的PCB翹曲度測量方法
    久久久久久久亚洲中文字幕| 少妇丰满av| 久久人妻av系列| 人妻少妇偷人精品九色| a级毛片a级免费在线| 男女下面进入的视频免费午夜| 日本免费一区二区三区高清不卡| 成年版毛片免费区| 国产成人午夜福利电影在线观看| 又爽又黄无遮挡网站| 亚洲av熟女| 国产一区亚洲一区在线观看| 看非洲黑人一级黄片| 日本与韩国留学比较| 18+在线观看网站| 久久精品国产鲁丝片午夜精品| 在线免费观看不下载黄p国产| 亚洲欧美日韩高清专用| 午夜老司机福利剧场| 日本爱情动作片www.在线观看| 在线观看美女被高潮喷水网站| 久久久久久伊人网av| 男人舔女人下体高潮全视频| 91av网一区二区| 蜜桃久久精品国产亚洲av| 听说在线观看完整版免费高清| 亚洲国产精品sss在线观看| 少妇高潮的动态图| 国产精品美女特级片免费视频播放器| 精品一区二区免费观看| 成人永久免费在线观看视频| 国产日韩欧美在线精品| 免费看日本二区| 秋霞在线观看毛片| 亚洲va在线va天堂va国产| 毛片一级片免费看久久久久| 一个人免费在线观看电影| 99九九线精品视频在线观看视频| 噜噜噜噜噜久久久久久91| 长腿黑丝高跟| 久久精品国产清高在天天线| 看免费成人av毛片| 亚洲四区av| 97在线视频观看| 亚洲一区二区三区色噜噜| 国产伦一二天堂av在线观看| 亚洲第一电影网av| 午夜激情福利司机影院| 春色校园在线视频观看| 校园人妻丝袜中文字幕| 精品久久久久久久久av| 日韩制服骚丝袜av| 日日啪夜夜撸| 在线天堂最新版资源| 久久久久国产网址| 麻豆成人av视频| 亚洲三级黄色毛片| 人妻久久中文字幕网| 久久久国产成人免费| 久久久久网色| 在线免费十八禁| 午夜爱爱视频在线播放| 一级黄片播放器| 一级av片app| 69人妻影院| 天天一区二区日本电影三级| 国产又黄又爽又无遮挡在线| 欧美高清性xxxxhd video| 嘟嘟电影网在线观看| 国产高清有码在线观看视频| 超碰av人人做人人爽久久| 18禁在线播放成人免费| 偷拍熟女少妇极品色| 深爱激情五月婷婷| 日本免费a在线| 免费大片18禁| 一区二区三区四区激情视频 | 麻豆乱淫一区二区| 青春草国产在线视频 | 18禁在线无遮挡免费观看视频| 国产av不卡久久| 波多野结衣高清无吗| 看免费成人av毛片| 精品不卡国产一区二区三区| 国产精品野战在线观看| 国产淫片久久久久久久久| АⅤ资源中文在线天堂| 欧美一区二区国产精品久久精品| 国产成年人精品一区二区| 日韩精品有码人妻一区| 91麻豆精品激情在线观看国产| 亚洲av男天堂| 亚洲av.av天堂| 天堂√8在线中文| 九九热线精品视视频播放| 丰满乱子伦码专区| 波多野结衣高清作品| 日韩欧美精品v在线| 不卡一级毛片| 国产精品国产高清国产av| 欧美变态另类bdsm刘玥| 高清在线视频一区二区三区 | www.色视频.com| 哪个播放器可以免费观看大片| 自拍偷自拍亚洲精品老妇| 波多野结衣高清无吗| 91午夜精品亚洲一区二区三区| 人妻夜夜爽99麻豆av| 1000部很黄的大片| 天堂中文最新版在线下载 | 少妇猛男粗大的猛烈进出视频 | 五月伊人婷婷丁香| 国产一区二区三区av在线 | 麻豆精品久久久久久蜜桃| 久久草成人影院| 真实男女啪啪啪动态图| 国产精品一区www在线观看| 成年女人永久免费观看视频| 国产精品一区二区三区四区久久| 日韩精品有码人妻一区| 亚洲美女视频黄频| 日日撸夜夜添| 欧美bdsm另类| 日日撸夜夜添| 久久久精品94久久精品| 搡老妇女老女人老熟妇| 日韩高清综合在线| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 国产一级毛片在线| 国产 一区 欧美 日韩| 少妇的逼水好多| 不卡视频在线观看欧美| 欧美变态另类bdsm刘玥| 精品久久久久久成人av| 日本欧美国产在线视频| 超碰av人人做人人爽久久| 国产一区二区亚洲精品在线观看| 少妇人妻一区二区三区视频| 欧美区成人在线视频| 看免费成人av毛片| 欧美激情国产日韩精品一区| 99精品在免费线老司机午夜| 可以在线观看毛片的网站| 成人永久免费在线观看视频| 在线a可以看的网站| 一进一出抽搐gif免费好疼| 自拍偷自拍亚洲精品老妇| avwww免费| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区三区| 精品久久国产蜜桃| 国产av在哪里看| av.在线天堂| 国产成人精品久久久久久| 亚洲成人av在线免费| 欧美区成人在线视频| 国产精品久久久久久久电影| 亚洲中文字幕日韩| 1000部很黄的大片| 欧美+亚洲+日韩+国产| 此物有八面人人有两片| av在线观看视频网站免费| 日韩中字成人| 国产精品免费一区二区三区在线| 久久久久久伊人网av| 亚洲自偷自拍三级| 亚洲欧洲日产国产| АⅤ资源中文在线天堂| 精品久久久久久久久av| 久久精品综合一区二区三区| 日本爱情动作片www.在线观看| 岛国在线免费视频观看| 久久九九热精品免费| 午夜福利成人在线免费观看| 成年av动漫网址| 国产亚洲精品av在线| 国语自产精品视频在线第100页| 国产高潮美女av| 久久精品国产自在天天线| 九九热线精品视视频播放| 搡老妇女老女人老熟妇| 91久久精品国产一区二区成人| 夜夜爽天天搞| 国产精品嫩草影院av在线观看| 一进一出抽搐动态| 国产精品蜜桃在线观看 | 最近最新中文字幕大全电影3| 99热这里只有是精品50| 亚洲性久久影院| 亚洲中文字幕日韩| 免费观看a级毛片全部| 亚洲18禁久久av| 欧美性感艳星| 国产亚洲av嫩草精品影院| 性欧美人与动物交配| 久久久久久久亚洲中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄色视频三级网站网址| 人妻夜夜爽99麻豆av| 国语自产精品视频在线第100页| 亚洲在久久综合| 成人亚洲欧美一区二区av| 亚洲最大成人中文| 国产精品久久久久久久电影| 婷婷亚洲欧美| 精品少妇黑人巨大在线播放 | 国产精品麻豆人妻色哟哟久久 | 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 一个人免费在线观看电影| 国产人妻一区二区三区在| 别揉我奶头 嗯啊视频| 91精品一卡2卡3卡4卡| 国产一级毛片七仙女欲春2| 国产 一区精品| 成年女人永久免费观看视频| 久久韩国三级中文字幕| 精品人妻熟女av久视频| a级毛色黄片| 日韩一区二区三区影片| 蜜桃亚洲精品一区二区三区| 久久久a久久爽久久v久久| 欧美最黄视频在线播放免费| 特级一级黄色大片| 在线a可以看的网站| 国产精品综合久久久久久久免费| 免费看a级黄色片| www.色视频.com| 日韩强制内射视频| 美女内射精品一级片tv| 成人性生交大片免费视频hd| 亚洲第一电影网av| 中文字幕av在线有码专区| 人妻制服诱惑在线中文字幕| 国产精品久久久久久亚洲av鲁大| 日韩中字成人| 亚洲精品国产成人久久av| 我要搜黄色片| 日本欧美国产在线视频| 久久人人爽人人片av| 啦啦啦观看免费观看视频高清| 国产精品一区二区在线观看99 | 男女做爰动态图高潮gif福利片| a级毛片a级免费在线| 中国美女看黄片| av女优亚洲男人天堂| 亚洲国产精品久久男人天堂| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| 久久久久久大精品| 久久久色成人| 国产亚洲av片在线观看秒播厂 | 国产在线男女| av.在线天堂| 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 国产一级毛片在线| 色5月婷婷丁香| 中文字幕av成人在线电影| 日韩欧美三级三区| 中国国产av一级| 亚洲av一区综合| 夜夜爽天天搞| 久久九九热精品免费| 国产成人aa在线观看| 色尼玛亚洲综合影院| 99热这里只有是精品50| 亚洲国产精品合色在线| 婷婷精品国产亚洲av| 草草在线视频免费看| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 少妇熟女欧美另类| 麻豆一二三区av精品| 12—13女人毛片做爰片一| 97超视频在线观看视频| 一级毛片我不卡| 成年av动漫网址| 九九在线视频观看精品| 亚州av有码| 天天躁日日操中文字幕| 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 韩国av在线不卡| 国产精品不卡视频一区二区| 1000部很黄的大片| 久久人人爽人人爽人人片va| videossex国产| 免费看av在线观看网站| 亚洲欧美日韩高清在线视频| 高清午夜精品一区二区三区 | 国产真实乱freesex| 欧美高清性xxxxhd video| 国产伦在线观看视频一区| 一区二区三区高清视频在线| 国产精品av视频在线免费观看| 乱人视频在线观看| 好男人在线观看高清免费视频| av黄色大香蕉| 欧美不卡视频在线免费观看| 自拍偷自拍亚洲精品老妇| 成年女人永久免费观看视频| 在现免费观看毛片| 天堂影院成人在线观看| 国产成人一区二区在线| 久久欧美精品欧美久久欧美| 国产成人精品婷婷| 美女内射精品一级片tv| 九九爱精品视频在线观看| 久久久久久久久久成人| 自拍偷自拍亚洲精品老妇| 国产成人精品婷婷| 国产真实乱freesex| 国产欧美日韩精品一区二区| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 日韩av不卡免费在线播放| 久久久久久久午夜电影| 成人av在线播放网站| 日韩视频在线欧美| 亚洲电影在线观看av| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 午夜精品国产一区二区电影 | 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 男女做爰动态图高潮gif福利片| 日韩欧美精品免费久久| 国产又黄又爽又无遮挡在线| 日本成人三级电影网站| 久久99蜜桃精品久久| 男女边吃奶边做爰视频| 嫩草影院入口| 久久草成人影院| 麻豆一二三区av精品| 成人亚洲欧美一区二区av| 国产真实伦视频高清在线观看| 中文精品一卡2卡3卡4更新| 久久6这里有精品| 麻豆av噜噜一区二区三区| 亚洲三级黄色毛片| 国产女主播在线喷水免费视频网站 | 国产精品免费一区二区三区在线| 日本欧美国产在线视频| 99热精品在线国产| 大型黄色视频在线免费观看| 成人漫画全彩无遮挡| 青春草国产在线视频 | 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 成年av动漫网址| 国产熟女欧美一区二区| 免费av毛片视频| 97热精品久久久久久| 亚洲天堂国产精品一区在线| 在线天堂最新版资源| 亚洲精品成人久久久久久| av在线播放精品| 国产91av在线免费观看| 国产午夜精品论理片| 国产午夜福利久久久久久| 国产一区亚洲一区在线观看| 亚洲国产色片| 18+在线观看网站| 国产午夜精品久久久久久一区二区三区| 在线观看美女被高潮喷水网站| 91精品国产九色| 99视频精品全部免费 在线| 在线免费观看的www视频| 久久久国产成人免费| 成人欧美大片| 人人妻人人澡欧美一区二区| 日本免费a在线| 亚洲国产精品国产精品| 在线天堂最新版资源| 色综合亚洲欧美另类图片| 禁无遮挡网站| 精品久久久久久久久久免费视频| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 欧洲精品卡2卡3卡4卡5卡区| 成人毛片60女人毛片免费| 我要看日韩黄色一级片| 国产91av在线免费观看| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 人妻久久中文字幕网| 色综合色国产| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 亚洲五月天丁香| 国产高清三级在线| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 国产成人精品一,二区 | 欧美日韩乱码在线| 女的被弄到高潮叫床怎么办| 中文亚洲av片在线观看爽| a级毛片a级免费在线| 九九爱精品视频在线观看| 悠悠久久av| а√天堂www在线а√下载| 高清在线视频一区二区三区 | 欧美最黄视频在线播放免费| 精品人妻视频免费看| 亚洲精品国产av成人精品| 亚洲成av人片在线播放无| 国产高清激情床上av| 国产美女午夜福利| 小说图片视频综合网站| 免费av毛片视频| 一边摸一边抽搐一进一小说| 国内久久婷婷六月综合欲色啪| 免费av不卡在线播放| av免费在线看不卡| 一级毛片我不卡| 黄色欧美视频在线观看| 色哟哟哟哟哟哟| 成人特级av手机在线观看| 最近的中文字幕免费完整| 黄色一级大片看看| 亚洲欧洲国产日韩| 国产麻豆成人av免费视频| www.av在线官网国产| 99热网站在线观看| 国产日本99.免费观看| 99视频精品全部免费 在线| 成人漫画全彩无遮挡| av黄色大香蕉| av在线观看视频网站免费| 最后的刺客免费高清国语| av在线亚洲专区| 国产精品,欧美在线| 99热这里只有是精品在线观看| 亚洲欧美日韩高清专用| 国产亚洲av片在线观看秒播厂 | 久久久久久伊人网av| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 精华霜和精华液先用哪个| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添av毛片| 99热只有精品国产| 男人狂女人下面高潮的视频| 亚洲国产高清在线一区二区三| 激情 狠狠 欧美| 日韩欧美国产在线观看| 久久人人精品亚洲av| 麻豆国产av国片精品| 婷婷精品国产亚洲av| 青春草亚洲视频在线观看| 国产成人a区在线观看| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看 | 国产探花极品一区二区| 久久久久久国产a免费观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 人妻久久中文字幕网| ponron亚洲| 插阴视频在线观看视频| 伦精品一区二区三区| 99在线人妻在线中文字幕| 别揉我奶头 嗯啊视频| 人人妻人人澡欧美一区二区| 性色avwww在线观看| 欧美日本视频| 91麻豆精品激情在线观看国产| 亚洲一区高清亚洲精品| 男的添女的下面高潮视频| 好男人视频免费观看在线| 伦精品一区二区三区| 男女边吃奶边做爰视频| 日本在线视频免费播放| 人人妻人人澡欧美一区二区| 1024手机看黄色片| 在线观看免费视频日本深夜| 国产黄片视频在线免费观看| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 国产在视频线在精品| 看非洲黑人一级黄片| 日本撒尿小便嘘嘘汇集6| 成人毛片a级毛片在线播放| 精品免费久久久久久久清纯| 久久人妻av系列| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 国产美女午夜福利| 白带黄色成豆腐渣| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 国产精品福利在线免费观看| 一边摸一边抽搐一进一小说| 亚洲精华国产精华液的使用体验 | 成人二区视频| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| 中文亚洲av片在线观看爽| 嫩草影院入口| 国内精品一区二区在线观看| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 99久久中文字幕三级久久日本| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 久久人人爽人人片av| 欧美一区二区精品小视频在线| 亚洲精品国产av成人精品| 亚洲经典国产精华液单| 久久6这里有精品| 欧美日韩国产亚洲二区| 久久久久久大精品| 联通29元200g的流量卡| 国产精品人妻久久久影院| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 国产69精品久久久久777片| 又粗又爽又猛毛片免费看| 99久国产av精品国产电影| 九九在线视频观看精品| 欧美xxxx黑人xx丫x性爽| 亚洲成人av在线免费| 国产亚洲精品久久久com| 亚洲国产高清在线一区二区三| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 国产亚洲精品av在线| 亚洲欧洲日产国产| 成人欧美大片| 精品久久久久久久久av| 久久久精品大字幕| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| 少妇丰满av| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩| 国产精品蜜桃在线观看 | 波多野结衣高清作品| 成人美女网站在线观看视频| 日韩欧美三级三区| 国产 一区 欧美 日韩| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 亚洲欧美成人综合另类久久久 | 欧美色欧美亚洲另类二区| 精品人妻偷拍中文字幕| 国产精品久久久久久精品电影小说 | 99久久精品热视频| 免费黄网站久久成人精品| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| av国产免费在线观看| 精品日产1卡2卡| 看非洲黑人一级黄片| 成年av动漫网址| 男女做爰动态图高潮gif福利片| 国产精品永久免费网站| 热99在线观看视频| 级片在线观看| 五月玫瑰六月丁香| 大又大粗又爽又黄少妇毛片口| 少妇的逼好多水| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 亚洲丝袜综合中文字幕| 国产成人精品婷婷| 中文字幕久久专区| 国产一区二区在线av高清观看| 免费一级毛片在线播放高清视频| 成年女人永久免费观看视频| 波多野结衣巨乳人妻| 嫩草影院精品99| 国产成人一区二区在线| av在线天堂中文字幕| 麻豆成人av视频| 嫩草影院新地址| 免费无遮挡裸体视频| 欧美xxxx黑人xx丫x性爽| 成人特级黄色片久久久久久久| 亚洲四区av| 欧美一区二区精品小视频在线| 最近的中文字幕免费完整| 亚洲真实伦在线观看| 国产单亲对白刺激| 久久精品国产自在天天线| 别揉我奶头 嗯啊视频| 免费电影在线观看免费观看|