• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單分散g-C3N4量子點(diǎn)修飾一維棒狀BiPO4微晶的合成及其對(duì)光催化活性增強(qiáng)機(jī)理

    2016-12-05 05:42:30王丹軍申會(huì)東岳林林
    關(guān)鍵詞:延安大學(xué)棒狀微晶

    王丹軍 申會(huì)東 郭 莉,2 岳林林 付 峰

    (1延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安716000) (2陜西師范大學(xué)材料科學(xué)與工程技術(shù)學(xué)院,西安716000)

    單分散g-C3N4量子點(diǎn)修飾一維棒狀BiPO4微晶的合成及其對(duì)光催化活性增強(qiáng)機(jī)理

    王丹軍*,1申會(huì)東1郭莉1,2岳林林1付峰*,1

    (1延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點(diǎn)實(shí)驗(yàn)室,延安716000) (2陜西師范大學(xué)材料科學(xué)與工程技術(shù)學(xué)院,西安716000)

    利用水熱法合成了一維棒狀BiPO4微晶,在此基礎(chǔ)上采用浸漬-焙燒法進(jìn)行g(shù)-C3N4量子點(diǎn)表面修飾獲得新穎的g-C3N4/ BiPO4異質(zhì)結(jié)。借助X射線衍射(XRD)、場(chǎng)發(fā)射掃描電鏡(FE-SEM)、透射電鏡(HRTEM)、能譜(EDS)、紫外-可見漫反射(UV-Vis-DRS)等測(cè)試手段對(duì)所得樣品的相組成、形貌和譜學(xué)特征進(jìn)行了表征。選擇羅丹明B(RhB)和苯酚作為模型污染物研究了所得在可見光下的催化活性。結(jié)果表明,樣品16%(w/w)g-C3N4/BiPO4對(duì)RhB降解的速率常數(shù)分別是純g-C3N4和BiPO4的4.6倍和15倍。g-C3N4量子點(diǎn)與BiPO4之間形成異質(zhì)結(jié),抑制了光生電子-空穴對(duì)的復(fù)合,從而提高了催化劑的活性。自由基捕獲實(shí)驗(yàn)進(jìn)一步表明,超氧負(fù)離子自由基(·O2-)是催化降解RhB和苯酚的主要活性物種。

    一維棒狀BiPO4微晶;g-C3N4量子點(diǎn);表面修飾;活性增強(qiáng)機(jī)理

    0 Introduction

    During the past few decades,semiconductorbased photocatalysis has been widely investigated for its potential application in environmental remediation and solar energy transformation.Up to date,the most strategy to construct efficient visible-responsive photocatalyst is to extend the light absorption range,and prolong the life of photogenerated charge carriers by element doping and surfacemodification[1-3].Unfortunately,element doping is difficult to be controlled,and low thermal stability,which limits its application[4-5]. Therefore,the surface modification has become an important strategy is to develop more efficient photocatalyst with visible light responsiveness and low recombination rate of photogenerated electron and holes[6-8].

    As one of an important Bi-based photocatalyst materials,BiPO4has receivedmuch attention owing to itpotential applications as a oxy-acid saltphotocatalyst with wide band-gap and high separation efficiency of e-/h+pairs[9].Moreover,PO43-helps the e-/h+separation, which plays an important role in its excellent photocatlaytic activity.However,the potential application of BiPO4is limited by inherent constraints such as inefficient use of the visible portion and low lifetime of photogenerated carriers.So,the photocatalytic efficiency of BiPO4needs further enhancement prior to practical applications[10-13].Graphitic carbon nitride(g-C3N4)is a novelmetal free organic photocatalystwith a narrow band gap of 2.7 eV[14],which make it can utilize visible light directly.In addition, g-C3N4is extremely stable owing to its tristriazine-ring structure and high degree of condensation[15].So,ithas been widely used as a narrow band gap semiconductor to construct hetero-photocatalyst by coupling over wider band gap semiconductor photocatalyst.Recently, Zhu′s groups have prepared the core/hell structured g-C3N4/BiPO4photocatalyst via ultrasonic dispersion method[16].Although core/hell structured g-C3N4/BiPO4exhibits high photocatalytic activities,the preparation process is high energy consumption.So,it′s vital to explore the facile and practicable method for fabrication g-C3N4/BiPO4photocatalyst.Very recently,Lietal. reported a spherical g-C3N4/BiPO4composite via a associated sonochemical and heat-treating process and the experimental results revealed that g-C3N4/BiPO4exhibited high photocatalytic activity for methyl orange[17].The above work inspired us to construct g-C3N4/BiPO4composite photocatalyst and investigate it activity enhancementmechanism.

    Very recently,we have successfully fabricated AgBr/BiPO4heterojunction by loading AgBr QDs on the surface of BiPO4microcrystals[18].In thiswork, one-dimensional(1D)rod-like BiPO4was designed and fabricated by thehydrothermalmethod according to ourprevious report[18-19].Then,g-C3N4QDswasdecorated on the surface of rod-like BiPO4to construct the novel heterojunctions via the followed impregnation-calcinations process.Furthermore,the mechanism of enhanced catalytic activity for g-C3N4/BiPO4heterojunctionswas also discussed.

    1 Experimental section

    1.1Sample preparation

    The g-C3N4/BiPO4were obtained by a simple impregnation-calcinations processmethod.In a typical procedure,a certain amountofmelamine was dissolved in methanol.Then,1.0 g as-prepared BiPO4was dispersed in the above solution and vigorously stirred for 60 min to obtain a uniform suspension and then dried to get dry powder.Finally,the powder was heated to 550℃with speed of 2℃·min-1in muffle furnace,then kept for 4 h,and the resulted powders were ground for further use.According to above method,the contents of g-C3N4in g-C3N4/BiPO4heterojunction range from 2.0%to 20.0%(w/w,the same below)were prepared.

    1.2Characterizations

    X-ray diffraction(XRD)patterns were measured with a Shimadzu XRD-7000 X-ray diffractometer using Cu Kαradiation.Scanning electron microscopy(SEM) images and energy dispersive X-ray spectroscopy(EDS) maps were obtained with a Hitachi a JEOL JSM-6610LV field emission scanning electron microscope. Transmission electron microscopy(TEM)observations were performed on a JEOL JEM-2100 electron microscope with an accelerating voltage of 200 kV. Diffuse reflectance spectra(UV-Vis-DRS)of the samples were recorded on a Shimadzu UV-2550 UVVisible spectrometer using BaSO4as the reference.

    1.3Photocatalytic activity test

    The photocatalytic activities of samples were evaluated by degradation rhodamine B(RhB)and phenol under visible light irradiation of a 400 W metal halide lamp with a cutoff filter to cut off the lightbelow 420 nm.The experiment detailwas similar to our previous report[18].Chemical oxygen demand (COD)was determined at a COD rapid monitor(5B-3B,LanHua Co.,LTD,China).To investigate the active species generated in the photocatalytic system, different scavengers,including tertiary butanol(TBA, 10 mmol·L-1),benzoquinone(BQ),ethylenediamine tetraacetic acid disodium salt(EDTA-2Na,10mmol· L-1)[20-22],were introduced into the photocatalysis solution to examine·OH,O2-·and h+,respectively. Theexperimentalprocedureswere conducted as follows: 200 mg of photocatalyst and 200 mL fresh aqueous solution of RhB was continuously magnetically stirred in dark for 1.0 h to establish an adsorption/desorption equilibrium of solution.Then,scavenger was added into the solution to obtained a concentration of 10 mmol·L-1.At given irradiation time intervals,then,5 mL of the suspension were sampled,centrifuged to remove the catalyst particles,and measured the concentration of RhB.

    2 Result and discussion

    2.1XRD,SEM and EDS of g-C3N4/BiPO4

    Fig.1exhibited the XRD patterns of as-prepared samples.It is clearly seen that the diffraction peaks of samples could be assigned to orthorhombic g-C3N4(JCPDS No.08-0209)and monoclinic BiPO4(JCPDS No.89-0287)[13,16].Because some characteristic perks of g-C3N4were near those of BiPO4,the intensity changes in the BiPO4peaks were not obvious.In comparison, the intensitiesof the peaks at29.08 was clearly raised in the g-C3N4/BiPO4composites with an increasing amount of g-C3N4.Meanwhile,no impurities were detected,indicating the high purity of the obtained samples.

    <1),且各件產(chǎn)品是否為不合格品相互獨(dú)立.

    Fig.1 XRD patterns of g-C3N4/BiPO4samples

    Fig.2 SEM and TEM images of samples

    The morphology of the as-synthesized pure-BiPO4,g-C3N4,and g-C3N4/BiPO4composites were observed by SEM.As shown in Fig.2a~b,BiPO4exhibited an 1D rod-like shape with smooth surface. In order to form g-C3N4/BiPO4heterojunctions,g-C3N4QDs were loaded onto the surface of the rod-like BiPO4microcrystals(Fig.2b).The morphology of g-C3N4/BiPO4was not changed obviously because the g-C3N4contentwas very low,but g-C3N4/BiPO4microrod become wider than pure BiPO4.Further information g-C3N4/BiPO4heterojunctions was obtained for TEM images(Fig.2c~d).The locationsofg-C3N4nanoparticles on the surface of rod-like BiPO4are indicated byarrows in the TEM images(Fig.2c).It reveals that high dispersed spherical heteroparticles with size of about 20 nm loaded the surface of rod-like BiPO4. Fig.2d show the lattice fringeof0.336nm,corresponding to the(002)plane of g-C3N4,is clearly observed in the g-C3N4/BiPO4composite and that the interfaces between g-C3N4and BiPO4are smooth,which further verifies the formation of a g-C3N4/BiPO4heterojunction.In addition,it is observation from Fig.2e that pure g-C3N4displays plate-like shape morphology. SEM and TEM information clearly exhibited that g-C3N4QDs were highly dispersed on the surface of BiPO4and form the novel heterojunction structure. Fig.2f indicated that the content of g-C3N4in g-C3N4/ BiPO4in the sampleswere also close to the theoretical calculated value of g-C3N4/BiPO4(inset picture in Fig. 2f).

    2.2UV-Vis-DRS analysis

    UV-Vis DRS spectra of the as-obtained samples are shown in Fig.3.According to Fig.3a,the absorption edge of pure-BiPO4and g-C3N4are occurred at about 320 nm and 465 nm,respectively.Moreover,the g-C3N4/BiPO4composites presented similar absorption characteristics to pure BiPO4due to the low contentg-C3N4of in g-C3N4/BiPO4heterojunction.The efficient visible light absorption abilities ensured that g-C3N4/ BiPO4generated sufficient electron-hole pairs under visible light irradiation.In addition,the band gap energies(Eg)of g-C3N4and BiPO4were calculated according to the formula:(αhγ)2=A(hν-Eg),whereα, h,ν,A and Egstand for the absorption coefficient, Planck′s constant,the light frequency,a constant and band gap energy,respectively[17,19].Therefore,the corresponding Egvalues of g-C3N4,BiPO4and 16.0%g-C3N4/BiPO4were determined from a plot of(αhν)2versus energy(hν)(Fig.3b)and estimated to be 2.6, 3.85 and 3.82 eV,respectively.

    2.3Photocatalytic activity

    Fig.3 UV-Vis-DRS spectra of the as-obtained samples(a)and the band gap energies(Eg)of BiPO4,g-C3N4and 16.0%g-C3N4/BiPO4heterojunction(b)

    The photocatalytic activities of the samples were evaluated by the degradation of RhB and phenol under visible light irradiation.The photocatalytic reactions follow pseudo-first-order kinetics law according to the Langmuir-Hinshelwood model for low concentration pollutant.The kinetics equation can be expressed as follows[23]:ln(C0/Ct)=kt+ln(C0/C1),where k is the pseudo-first-order rate constant,C0is the original concentration of RhB or phenol(10 mg·L-1),C1is the concentration after adsorption,and Ctrepresents the concentration at reaction time t.It can be seen from Fig.4a that the photocatalytic activity is enhanced gradually with the content of g-C3N4increasing from 4%to16%.However,further increasing the contentof g-C3N4in the heterojunctions leads to a decrease in the degradation rate.This resultmay be attributed to the agglomera-tion of g-C3N4QDs in the surface of BiPO4,which can weaken the heterojunction structure and decrease the catalytic activity[24-25].Therefore,a suitable ratio and well dispersion of g-C3N4QDs in the composites are necessary.From Fig.4a,it also can be seen that pure-BiPO4can decompose 12.5%ofRhBafter 10 min illumination.Significantly,g-C3N4/BiPO4composites exhibited improved photocatalytic activities compared to pure BiPO4and pure g-C3N4.In particular, 16.0%g-C3N4/BiPO4showed the best photocatalytic activity than those of the others,corresponding to 97.85%of RhBwith 10min illumination.Fig.4b show the k value obtained from the fitted straight-line plots of ln(Ct/C0)versus time(t),which follow the order: pure-BiPO4<4.0%g-C3N4/BiPO4<8.0%g-C3N4/BiPO4<10.0%g-C3N4/BiPO4<20.0%g-C3N4/BiPO4<16.0%g-C3N4/BiPO4.The results shows that 16%g-C3N4/BiPO4photocatalysts possesses themaximal k value of 0.348 min-1,which is 15 and 4.6 times higher than that of pure BiPO4and g-C3N4,respectively.Moreover,phenol was chosen as another model environmental organic pollutant to further evaluate photocatalytic activity of g-C3N4QDs decorated rod-like BiPO4also investigated (Fig.5a~b).Similar to the RhB results,the g-C3N4QDs decoration on the surface results in an increase of phenol degradation.16%g-C3N4/BiPO4heterostructure also shows the best activity,with constants k=0.178 min-1.Fig.6shows that the COD removal ratio of 16% g-C3N4/BiPO4reaches a value of 87.8%after 60 min of irradiation,while that of pure-BiPO4and g-C3N4is 37.9%and 45.5%,respectively.The COD value reduction of 16%g-C3N4/BiPO4is slower than that of degradation of phenol.It is well-known that mineralization of organic compounds through two steps:ring cleavage and subsequently the oxidation of fragments. In our experiment,the COD removal rate of 16.0%g-C3N4/BiPO4exhibits different behavior before and after 20 min of irradiation.These results confirm that phenol is first ring cleaved and then converted to CO2and H2O.The loss of COD via mineralization can be lowered more than the removed amount of organic pollutants because these parent molecules are decomposed to smaller organic intermediates,and further degradation of these intermediates to CO2andH2Omay occur slowly[19-20].

    Fig.4 Photocatalytic activities of the prepared g-C3N4/BiPO4heterostructure for the RhB(a)and Corresponding k values of the different photocatalysts(b)under visible-light irradiation

    Fig.5 Photocatalytic activities of the g-C3N4/BiPO4composite photocatalysts for the phenol(a)and the corresponding k values of the different photocatalysts(b)under visible-light irradiation

    Table1 SBETvalue and photocatalytic activities of g-C3N4/BiPO4heterojunctions

    Fig.6 COD changes during the course of phenol photodegradation in the presence of pure-BiPO4,g-C3N4and 16%g-C3N4/BiPO4heterojunctions

    To demonstrate the potential applicability of g-C3N4/BiPO4photocatalyst,the stability of the 16%g-C3N4/BiPO4photocatalyst was investigated(Fig.7). After five cycles for photo-degradation of RhB,the catalyst did not exhibit obvious loss of activity,as shown in Fig.7a,confirming thatg-C3N4QDs decorated 1D rod-like BiPO4have high stability and are easy to be recycled.Fig.7b shows phases composition 16.0%g -C3N4/BiPO4did not after five cycles.Therefore,g-C3N4/BiPO4heterojunctions can be used as stable visible-light-responsive photocatalyst.

    2.4Possible photocatalyticm echanism of g-C3N4/ BiPO4heterojunctions

    Fig.7 Repeated experiments of photocatalytic degradation of RhB on 16.0%g-C3N4/BiPO4photocatalystunder visible light irradiation(a)and XRD patterns of 16.0%g-C3N4/BiPO4photocatalyst before and after used for five cycles(b)

    To further investigate the reactive species in the degradation of RhB,TBA,BQ,and EDTA-2Na were introduced as the scavenger of·OH,O2-·and h+, respectively.Fig.8shows the effects of different scavengers on the photocatalytic degradation of RhBover 16%g-C3N4/BiPO4.It can be seen that photocatalytic degradation of RhB was obviously suppressed by BQ and TBA,indicating that O2-·and·OH are the main reactive species.As shown in Fig.8,there is also a slight change for RhB photocatalytic degradation when h+scavenger EDTA-2Na was added.This indicates that h+is also one of the reactive species involved in the RhB photocatalytic oxidation process.

    Fig.8 Photocatalytic degradation of RhB over 16%g-C3N4/BiPO4with the addition of scavengers

    It is known that the generation of O2-·could be via two different processes.On the one hand,RhB can be excited by visible light to form the excited state (RhB*).RhB*then injects electrons into the CB of g-C3N4/BiPO4to form eCB-,which is scavenged by the O2on the surface of the catalyst to form O2-·.So,it is reasonable that RhB may display a weak photosensitization effect on g-C3N4/BiPO4under visible light. On the other hand,when g-C3N4/BiPO4was irradiated under visible light,only g-C3N4could be activated. The electrons and hole were photogenerated in CB and VB of g-C3N4,then move to the empty bottom of the CB of BiPO4.Finally,the electron in the CB of BiPO4could reactwith O2to form O2-·(Fig.9).At the same time,·OH may produced via followed reaction. Based on our experimental results and the discussions above,themechanism of photocatalytic degradation of RhB on the g-C3N4/BiPO4heterojunctions may be proposed,as described in the Eq.(1)~(12):

    Fig.9 Potential of valence and conduction band for g-C3N4and BiPO4to illustrate the photocatalytic enhancementmechanism of g-C3N4/BiPO4heterojunction

    3 Conclusions

    1D rod-like BiPO4micro crystals was synthesized via a hydrothermal.Then,g-C3N4QDs with the size of about20 nm were deposited on the surface of rod-like BiPO4by employing a followed impregnation-calcinations method to construct the novel g-C3N4/BiPO4heterojunctions.The g-C3N4QDs decorated BiPO4exhibits enhanced photocatalytic activity in decomposition of RhB and phenol,which is much higher than thatof pure-BiPO4and g-C3N4,and the content of g-C3N4impacts the catalytic activity of g-C3N4/BiPO4heterojunction.The enhanced activity of as-fabricated g-C3N4/BiPO4heterojunctions is attributed to the efficient separation of electron-hole pairs in g-C3N4/ BiPO4due to the formation of heterojunction between the surface of two semiconductors.Both O2-·and·OH are main reactive species which responsible for thedecomposition of RhB and phenol.Furthermore,g-C3N4/BiPO4has high stability,suggesting that QDs decoration could be a promising strategy for designing new efficient photocatalyst.

    References:

    [1]Tong H,Ouyang SX,Bi Y P,et al.Adv.Mater.,2012,24(1): 229-251

    [2]Kubacka A,Fernández-García M,Colón G.Chem.Rev., 2012,112(3):1555-1614

    [3]Chen X B,Shen S,Guo L,et al.Chem.Rev.,2010,110(11): 6503-6570

    [4]Liu J,Yang Q,Yang W T,et al.J.Mater.Chem.A,2013,1 (26):7760-7766

    [5]Wang W H,Himeda Y,Muckerman JT,et al.Chem.Rev., 2015,115(23):12936-12973

    [6]Paola A D,García-López E,MarcìG,et al.J.Hazard.Mater., 2012,211-212:3-29

    [7]Kudo A,Miseki Y.Chem.Soc.Rev.,2009,38(1):253-278

    [8]Cheng H.F,Huang B B,Wang P,et al.Chem.Commun., 2011,47(25):7054-7056

    [9]Wang Y J,Guan X F,Li L P,et al.CrystEngComm,2012,14 (23):7907-7914

    [10]Wang D J,Zhang J,Guo L.J.Inorg.Mater.,2015,30(7):683 -693

    [11]Lin X P,Xing J C,Wang W D,et al.J.Phys.Chem.C, 2007,111(49):18288-18293

    [12]Geng J,Hou W H,LüY N,et al.Inorg.Chem.,2005,44 (23):8503-8509

    [13]Xu H,Xu Y G,H.Li M,et al.Dalton Trans.,2012,41(12): 3387-3394

    [14]Wang X C,Meada K,Thomas A,et al.Nat.Mater.,2009,8 (1):76-80

    [15]Wang Y,X.Wang C,Antonietti M.Angew.Chem.Int.Ed., 2012,51(1):68-89

    [16]Pan C S,Xu J,Wang Y J,et al.Adv.Funct.Mater.,2012, 22(7):1518-1524

    [17]Li Z S,Li B L,Peng S H,et al.RSC Adv.,2014,4(66): 35144-35148

    [18]Wang D J,Guo L,Zhen Y Z,et al.J.Mater.Chem.A, 2014,2(10):11716-11727

    [19]WANG Dan-Jun(王丹軍),YUE Lin-Lin(岳林林),ZHANG Jie(張潔),et al.J.Synth.Cryst.(人工晶體學(xué)報(bào)),2014,43 (1):2977-2984

    [20]Zhang L S,Wong K H,Chen Z G,et al.App l.Catal.A: Gen.,2009,363(1/2):221-229

    [21]Wang Y J,Lin J,Zong R L,et al.J.Mol.Catal.A:Chem., 2011,349(1/2):13-19

    [22]Lin H L,Cao J,Luo B D,et al.Chin.Sci.Bull.,2012,57 (22):2901-2907

    [23]Li FT,Zhao Y,Hao Y J,etal.J.Hazard.Mater.,2012,239 -240:118-127

    Synthesis of Monodispersed g-C3N4Quantum Dots(QDs)Decorated on the Surface of 1D Rod-like BiPO4w ith Enhanced Photocatalytic Activities

    WANG Dan-Jun*,1SHEN Hui-Dong1GUO Li1,2YUE Lin-Lin1FU Feng*,1
    (1College of Chemistry&Chemical Engineering,Yan′an University,Shaanxi Key Laboratory of Chemical Reaction Engineering,Yan′an,Shaanxi716000,China)
    (2School of Materials Science and Engineering,ShaanxiNormal University,Xi′an 710119,China)

    1D rod-like BiPO4have been successfully synthesized via a hydrothermal process,and g-C3N4quantum dots(QDs)was decorated on the surface of BiPO4to form a novel g-C3N4/BiPO4heterojunction via a followed impregnation-calcinationsmethod.XRD,FE-SEM,HR-TEM,EDSand UV-Vis-DRS techniques were employed to characterize the phase composition,morphology and spectrum properties of as-synthesized samples.The photocatalytic activities of samples were evaluated by degradation of RhB and phenol under visible light irradiation.The results also shows that 16%(w/w)g-C3N4/BiPO4photocatalysts possesses the maximal k value of 0.348 min-1,which is 15 and 4.6 times higher than that of pure BiPO4and g-C3N4,respectively.The catalytic efficiency enhancement of g-C3N4/BiPO4heterojunctions relative to pure-BiPO4can be attributed to the formation of heterojunctions between g-C3N4QDs and BiPO4,which suppresses the recombination of photogenerated electron-holes.The radical scavengers test further confirmed that·O2-was the main reactive species during thephotocatalytic process.Therefore,thiswork provides a facile process for the design of novel and efficient BiPO4-based photocatalystwithmulti-components.

    rod-like BiPO4microcrystal;g-C3N4quantum dots(QDs);decoration;photocatlaytic activity enhancementmechanism

    All reagents were analytical purity and without further purification.Rod-like BiPO4microcrystalwas prepared according to our previous report[18-19]. In a typical process,5 mmol Bi(NO3)3·5H2O was dissolved in 5 mL HNO3(4.0 mol·L-1),then NH4H2PO4solution were slowly added to above Bi(NO3)3solution drop-wise under vigorously stirring.Afterward,the suspension was transported into 50 mL Teflon-lined autoclave and heated at 190℃for 24 h.After hydrothermal reaction,the autoclave was naturally cooled to room temperature.Then,the resultedprecipitates were collected,washed with deionized water and absolute ethanol for several times,and dried in a vacuum oven at80℃for 4 h.

    O647.32

    A

    1001-4861(2016)07-1246-09

    10.11862/CJIC.2016.170

    2016-01-02。收修改稿日期:2016-05-23。

    國(guó)家自然科學(xué)基金(No.21373159)、陜西省科技項(xiàng)目(No.2013K11-08,2013SZS20-P01,2015YG174)、陜西省教育廳科研基金項(xiàng)目(No.15JS119)、延安大學(xué)基金(No.2013YDZ-07,YDBK2013-11)和延安大學(xué)研究生科研創(chuàng)新項(xiàng)目(No.YCX201602)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:wangdj761118@163.com,F(xiàn)engFu@126.com

    猜你喜歡
    延安大學(xué)棒狀微晶
    雪花不只有六邊形片狀的
    大自然探索(2023年5期)2023-06-19 08:08:53
    延安大學(xué)王必成教授書寫
    《延安大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    鋰鋁硅微晶玻璃不混溶及其析晶探討
    Research on the Application of English Reading Strategies for Junior High School Students
    無(wú) 題
    文苑(2016年17期)2016-11-26 12:40:05
    Li2O加入量對(duì)Li2O-Al2O3-SiO2微晶玻璃結(jié)合劑性能的影響
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    巰基-端烯/炔點(diǎn)擊反應(yīng)合成棒狀液晶化合物
    微晶玻璃的制備、分類及應(yīng)用評(píng)述
    河南科技(2014年16期)2014-02-27 14:13:13
    欧美国产精品一级二级三级 | 国产欧美日韩一区二区三区在线 | 国产在线一区二区三区精| 中文字幕亚洲精品专区| 两个人免费观看高清视频 | 菩萨蛮人人尽说江南好唐韦庄| 久久午夜综合久久蜜桃| 久久6这里有精品| 人妻人人澡人人爽人人| 一级av片app| 大又大粗又爽又黄少妇毛片口| 欧美人与善性xxx| 人体艺术视频欧美日本| 亚洲天堂av无毛| 一级毛片 在线播放| 国产精品三级大全| 亚洲国产av新网站| av卡一久久| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频 | 乱码一卡2卡4卡精品| 久久婷婷青草| 波野结衣二区三区在线| 日本午夜av视频| xxx大片免费视频| 人人妻人人添人人爽欧美一区卜| 免费在线观看成人毛片| 中文字幕久久专区| 日韩视频在线欧美| 亚洲成色77777| 日本午夜av视频| 人人妻人人添人人爽欧美一区卜| 99热这里只有精品一区| 黄色日韩在线| 99久久中文字幕三级久久日本| 91久久精品国产一区二区成人| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 热re99久久国产66热| 91精品国产九色| 久久av网站| 午夜日本视频在线| 久久久久人妻精品一区果冻| 91精品国产九色| 亚洲在久久综合| 久久99精品国语久久久| 嫩草影院新地址| 国产日韩欧美视频二区| 亚洲在久久综合| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 在线观看www视频免费| h视频一区二区三区| 成人亚洲精品一区在线观看| 少妇人妻一区二区三区视频| av卡一久久| 成年av动漫网址| 人妻一区二区av| 久久人妻熟女aⅴ| 99热网站在线观看| 亚洲国产最新在线播放| 伊人久久国产一区二区| 伊人久久精品亚洲午夜| 大话2 男鬼变身卡| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 午夜视频国产福利| 丝瓜视频免费看黄片| 女的被弄到高潮叫床怎么办| 精品99又大又爽又粗少妇毛片| 日韩亚洲欧美综合| 国产亚洲一区二区精品| 免费看av在线观看网站| 国产精品蜜桃在线观看| 免费黄网站久久成人精品| 精品亚洲乱码少妇综合久久| 97在线人人人人妻| 日韩电影二区| 亚洲,欧美,日韩| 欧美激情极品国产一区二区三区 | 国产精品女同一区二区软件| 欧美精品人与动牲交sv欧美| 久久久亚洲精品成人影院| 伦理电影大哥的女人| 免费看光身美女| 一区二区三区精品91| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区 | 日本-黄色视频高清免费观看| 不卡视频在线观看欧美| 日韩熟女老妇一区二区性免费视频| 99热这里只有是精品50| 亚洲国产欧美日韩在线播放 | 人人妻人人爽人人添夜夜欢视频 | √禁漫天堂资源中文www| 在线观看美女被高潮喷水网站| 狂野欧美激情性xxxx在线观看| 国产日韩一区二区三区精品不卡 | 免费观看av网站的网址| 黄色一级大片看看| 日韩视频在线欧美| 久久狼人影院| 国产成人精品福利久久| 国产黄频视频在线观看| 久久精品久久久久久噜噜老黄| 日韩中字成人| 女人精品久久久久毛片| av福利片在线| 欧美精品人与动牲交sv欧美| 国产av码专区亚洲av| 久久久国产精品麻豆| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 日本黄色片子视频| 伦理电影大哥的女人| 国产欧美日韩综合在线一区二区 | 美女中出高潮动态图| 国产成人精品久久久久久| 色婷婷av一区二区三区视频| 人妻少妇偷人精品九色| 国产精品久久久久久久久免| 韩国av在线不卡| 在现免费观看毛片| 高清欧美精品videossex| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 亚洲国产色片| av在线app专区| 久久精品熟女亚洲av麻豆精品| 99热这里只有是精品50| 一区在线观看完整版| 久久国产精品大桥未久av | 丰满迷人的少妇在线观看| 国产精品久久久久久久久免| 精品国产一区二区三区久久久樱花| 又大又黄又爽视频免费| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 亚洲av不卡在线观看| 尾随美女入室| 亚洲欧美精品自产自拍| 午夜福利在线观看免费完整高清在| 啦啦啦啦在线视频资源| 妹子高潮喷水视频| 国产午夜精品一二区理论片| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 97在线人人人人妻| 国产精品成人在线| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 久久99蜜桃精品久久| 9色porny在线观看| 国产精品久久久久久精品古装| 国产精品一区二区在线观看99| 99久久精品热视频| 国产精品一区www在线观看| 精品久久久噜噜| 在线看a的网站| 高清av免费在线| 国产精品一区www在线观看| 内射极品少妇av片p| 欧美日韩精品成人综合77777| 啦啦啦视频在线资源免费观看| 91成人精品电影| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 国产精品伦人一区二区| 黑丝袜美女国产一区| 一级毛片 在线播放| 久久精品夜色国产| 亚洲欧美日韩东京热| 永久免费av网站大全| 伊人亚洲综合成人网| 日本午夜av视频| 亚洲美女视频黄频| 精品久久久久久久久av| 成人二区视频| 五月开心婷婷网| 国产欧美日韩综合在线一区二区 | 久久久久久久国产电影| 全区人妻精品视频| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频| av免费观看日本| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| av免费观看日本| 欧美 亚洲 国产 日韩一| 99久久精品一区二区三区| 日日啪夜夜撸| 99久久综合免费| 老女人水多毛片| 亚洲精品色激情综合| 亚洲综合精品二区| 免费少妇av软件| 亚洲美女黄色视频免费看| av卡一久久| 伊人久久国产一区二区| 我的老师免费观看完整版| 午夜久久久在线观看| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| av又黄又爽大尺度在线免费看| 国产淫片久久久久久久久| 国产伦理片在线播放av一区| 精品一区二区免费观看| 简卡轻食公司| 人人妻人人澡人人爽人人夜夜| 在线观看三级黄色| 另类精品久久| 九九在线视频观看精品| 精品久久久久久久久av| 亚洲人成网站在线播| 一级毛片黄色毛片免费观看视频| 精品一区在线观看国产| 又黄又爽又刺激的免费视频.| 久久久久久久久久久久大奶| 国产亚洲最大av| 亚洲av不卡在线观看| 免费看光身美女| 日韩av免费高清视频| 另类精品久久| 男女边摸边吃奶| 高清不卡的av网站| 秋霞伦理黄片| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 这个男人来自地球电影免费观看 | 久久 成人 亚洲| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| 久久6这里有精品| 成人午夜精彩视频在线观看| 精品国产一区二区久久| 最近的中文字幕免费完整| 久久久国产精品麻豆| 2018国产大陆天天弄谢| 九九爱精品视频在线观看| 男女啪啪激烈高潮av片| 精品久久久精品久久久| 日韩精品免费视频一区二区三区 | 久久毛片免费看一区二区三区| 日韩中字成人| 久久久久国产精品人妻一区二区| 最近中文字幕2019免费版| 日韩av免费高清视频| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 人人妻人人澡人人看| 乱系列少妇在线播放| 国产一区二区三区综合在线观看 | 99久久精品国产国产毛片| 97在线视频观看| 纵有疾风起免费观看全集完整版| 久久99一区二区三区| 最黄视频免费看| 亚洲欧洲精品一区二区精品久久久 | 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 在线观看av片永久免费下载| 在线观看三级黄色| 亚洲va在线va天堂va国产| 另类精品久久| 97在线人人人人妻| 熟女电影av网| 国产熟女午夜一区二区三区 | 一级a做视频免费观看| 青春草亚洲视频在线观看| 午夜福利视频精品| 51国产日韩欧美| 国产亚洲av片在线观看秒播厂| 一个人看视频在线观看www免费| 最新的欧美精品一区二区| 亚洲国产精品专区欧美| 美女内射精品一级片tv| 麻豆精品久久久久久蜜桃| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 欧美精品一区二区免费开放| 亚洲内射少妇av| 亚洲精品国产av成人精品| 国产91av在线免费观看| 成年女人在线观看亚洲视频| 日本黄大片高清| 国产一区亚洲一区在线观看| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 五月玫瑰六月丁香| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜爽| av福利片在线观看| av免费观看日本| 国产亚洲午夜精品一区二区久久| 我要看黄色一级片免费的| 老女人水多毛片| 日本黄大片高清| 午夜免费鲁丝| 免费看日本二区| 亚洲国产精品999| 欧美精品人与动牲交sv欧美| 色吧在线观看| 中文乱码字字幕精品一区二区三区| 91成人精品电影| 欧美日韩综合久久久久久| 人人妻人人澡人人看| 久久6这里有精品| 国产精品久久久久久精品古装| 在线免费观看不下载黄p国产| 黄色视频在线播放观看不卡| 丝瓜视频免费看黄片| 人妻一区二区av| 欧美精品人与动牲交sv欧美| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| 成年av动漫网址| 精品酒店卫生间| 欧美亚洲 丝袜 人妻 在线| 亚洲av电影在线观看一区二区三区| 精品一区二区三区视频在线| 丁香六月天网| .国产精品久久| 又大又黄又爽视频免费| 18禁在线播放成人免费| 夜夜骑夜夜射夜夜干| 亚洲精品乱码久久久v下载方式| 国产一区二区三区综合在线观看 | 日日摸夜夜添夜夜爱| 国产精品国产三级国产专区5o| 久久婷婷青草| 久久热精品热| 日韩中文字幕视频在线看片| 国产精品一区www在线观看| 男女无遮挡免费网站观看| 纵有疾风起免费观看全集完整版| av又黄又爽大尺度在线免费看| 国产精品嫩草影院av在线观看| 亚洲丝袜综合中文字幕| 久久99蜜桃精品久久| 天美传媒精品一区二区| 国产中年淑女户外野战色| 国产色婷婷99| 大话2 男鬼变身卡| 日韩伦理黄色片| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 亚洲成人av在线免费| 国产一区二区在线观看av| 有码 亚洲区| 国产精品一区www在线观看| 麻豆成人av视频| 精华霜和精华液先用哪个| 91精品伊人久久大香线蕉| 日日啪夜夜爽| 肉色欧美久久久久久久蜜桃| 大码成人一级视频| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| .国产精品久久| 日韩三级伦理在线观看| 夜夜骑夜夜射夜夜干| 色视频www国产| 国产一区二区三区综合在线观看 | 在线观看三级黄色| 99热全是精品| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 成人无遮挡网站| 亚洲不卡免费看| 人妻一区二区av| 最新中文字幕久久久久| 狂野欧美激情性xxxx在线观看| 中文乱码字字幕精品一区二区三区| 国产在线一区二区三区精| 男女免费视频国产| 亚洲精品国产色婷婷电影| 少妇 在线观看| 80岁老熟妇乱子伦牲交| av在线观看视频网站免费| 欧美性感艳星| 嘟嘟电影网在线观看| 日本黄色日本黄色录像| 中文欧美无线码| 国产黄片视频在线免费观看| 中文乱码字字幕精品一区二区三区| 99久久人妻综合| 亚洲成人av在线免费| 草草在线视频免费看| 夜夜骑夜夜射夜夜干| 成年女人在线观看亚洲视频| 99精国产麻豆久久婷婷| 精品久久国产蜜桃| a级毛色黄片| 99re6热这里在线精品视频| 少妇丰满av| 免费观看无遮挡的男女| 美女视频免费永久观看网站| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 麻豆成人午夜福利视频| 国产午夜精品一二区理论片| 成人毛片60女人毛片免费| 久久久久视频综合| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 老司机影院成人| 久热这里只有精品99| 精品国产乱码久久久久久小说| 亚洲高清免费不卡视频| 日韩精品免费视频一区二区三区 | 老司机影院毛片| 亚洲av男天堂| 精品久久久精品久久久| 成年女人在线观看亚洲视频| 自拍偷自拍亚洲精品老妇| 日日爽夜夜爽网站| 91成人精品电影| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 岛国毛片在线播放| 九九久久精品国产亚洲av麻豆| 老司机影院成人| 另类亚洲欧美激情| 日本vs欧美在线观看视频 | 欧美激情极品国产一区二区三区 | 在现免费观看毛片| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 国产av国产精品国产| 欧美精品高潮呻吟av久久| 亚洲精品亚洲一区二区| 亚洲成人手机| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 9色porny在线观看| tube8黄色片| 欧美精品人与动牲交sv欧美| 一级毛片久久久久久久久女| 乱人伦中国视频| 精品人妻偷拍中文字幕| 热re99久久国产66热| 青春草视频在线免费观看| 日日啪夜夜撸| 精品卡一卡二卡四卡免费| 亚洲丝袜综合中文字幕| 美女大奶头黄色视频| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 亚洲美女搞黄在线观看| 精品一品国产午夜福利视频| 国产真实伦视频高清在线观看| 午夜免费鲁丝| 亚洲av成人精品一区久久| 国产在线免费精品| 九色成人免费人妻av| 亚洲av不卡在线观看| 一区二区三区精品91| 日韩免费高清中文字幕av| 国产成人一区二区在线| 日日撸夜夜添| 国产欧美日韩一区二区三区在线 | 妹子高潮喷水视频| 在线看a的网站| 中文字幕av电影在线播放| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 精品熟女少妇av免费看| 人人澡人人妻人| 亚洲第一av免费看| 少妇人妻一区二区三区视频| 最近手机中文字幕大全| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 乱人伦中国视频| 国产一区二区三区av在线| 99久国产av精品国产电影| 在线观看免费视频网站a站| 色吧在线观看| 国产精品伦人一区二区| 亚洲第一区二区三区不卡| 久久午夜福利片| 黄色配什么色好看| 国产精品女同一区二区软件| 国产午夜精品一二区理论片| 国产精品三级大全| 精品久久久噜噜| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 精品久久久久久久久av| 亚洲图色成人| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 久久久久久久久久人人人人人人| 18禁在线播放成人免费| 国产精品伦人一区二区| 亚洲国产精品999| 国国产精品蜜臀av免费| 亚洲av在线观看美女高潮| av在线观看视频网站免费| 丰满少妇做爰视频| 亚洲欧美日韩东京热| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 久久99蜜桃精品久久| 99热全是精品| 久久人妻熟女aⅴ| 91久久精品国产一区二区成人| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 亚洲不卡免费看| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 亚洲av.av天堂| 在线观看www视频免费| 高清黄色对白视频在线免费看 | 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 午夜91福利影院| 久久久久久久久久久免费av| 色视频在线一区二区三区| 免费人成在线观看视频色| 国产午夜精品久久久久久一区二区三区| 狂野欧美白嫩少妇大欣赏| 插逼视频在线观看| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 综合色丁香网| 国产又色又爽无遮挡免| 国产成人精品婷婷| 高清毛片免费看| 边亲边吃奶的免费视频| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | 久久精品久久久久久久性| 亚洲精品,欧美精品| 人妻少妇偷人精品九色| av.在线天堂| 好男人视频免费观看在线| 成年人免费黄色播放视频 | 男女边吃奶边做爰视频| av黄色大香蕉| 视频区图区小说| 麻豆乱淫一区二区| 国产精品成人在线| 在线免费观看不下载黄p国产| 国产女主播在线喷水免费视频网站| 国产免费一区二区三区四区乱码| av福利片在线观看| 亚洲欧美清纯卡通| 永久免费av网站大全| 少妇 在线观看| 黄片无遮挡物在线观看| 美女视频免费永久观看网站| 五月伊人婷婷丁香| 国产乱来视频区| 国产精品偷伦视频观看了| 如何舔出高潮| 精品一区二区免费观看| 精品亚洲成a人片在线观看| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| .国产精品久久| 热99国产精品久久久久久7| 天天躁夜夜躁狠狠久久av| 国产69精品久久久久777片| 美女主播在线视频| av在线app专区| 亚洲内射少妇av| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 色94色欧美一区二区| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 一区二区av电影网| 欧美 日韩 精品 国产| 国产极品天堂在线| 韩国av在线不卡| 国产黄色免费在线视频| 久久精品国产亚洲网站| 成人黄色视频免费在线看| 91精品国产九色| 日本与韩国留学比较| 热re99久久精品国产66热6| 久久久亚洲精品成人影院| 亚洲精品第二区| 日本色播在线视频| 一级av片app| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 国产精品偷伦视频观看了| 色视频www国产| 欧美日韩在线观看h| 高清毛片免费看| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 97超视频在线观看视频|