• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    摻雜和取代對(duì)紅色熒光材料SrA l12O19∶M n4+發(fā)光性能的影響

    2016-12-05 05:42:20辛小東魏恒偉趙文慧劉中仕李文先荊西平
    關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

    辛小東 魏恒偉 趙文慧 劉中仕 李文先*, 焦 桓*, 荊西平*,

    (1內(nèi)蒙古大學(xué)化學(xué)與化工學(xué)院,呼和浩特010021)

    (2陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西師范大學(xué)化學(xué)與化工學(xué)院,西安710062)

    (3稀土材料化學(xué)與應(yīng)用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    (4歐司朗(中國(guó))有限公司,上海200082)

    摻雜和取代對(duì)紅色熒光材料SrA l12O19∶M n4+發(fā)光性能的影響

    辛小東1魏恒偉2趙文慧3劉中仕4李文先*,1焦桓*,2荊西平*,3

    (1內(nèi)蒙古大學(xué)化學(xué)與化工學(xué)院,呼和浩特010021)

    (2陜西省大分子科學(xué)重點(diǎn)實(shí)驗(yàn)室,陜西師范大學(xué)化學(xué)與化工學(xué)院,西安710062)

    (3稀土材料化學(xué)與應(yīng)用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871)

    (4歐司朗(中國(guó))有限公司,上海200082)

    SrAl12O19∶Mn4+是一種用于高顯色性白光發(fā)光二極管的候選紅色熒光材料。本論文研究了Mg2+、Zn2+和Ge4+離子的摻雜效應(yīng)以及Ga3+、Ca2+和Ba2+離子的取代效應(yīng)對(duì)SrAl12O19∶Mn4+熒光材料性能的影響。樣品通過高溫固相反應(yīng)制備,焙燒溫度在1 250~1 500℃之間。利用X射線衍射技術(shù)表征了材料的相純度,用熒光激發(fā)光譜和發(fā)射光譜表征了材料的熒光性能。研究結(jié)果指出,與未進(jìn)行Mg2+或Zn2+摻雜的樣品相比,Mg2+或Zn2+離子對(duì)A l3+格位的摻雜可以使材料的發(fā)光強(qiáng)度提高~60%,其原因被認(rèn)為是摻雜促進(jìn)了激活劑Mn4+離子進(jìn)入晶格,其過程可以表示為:MO+MnO2?MAl′+MnAl·+3OO×(M=Mg,Zn),電子順磁共振譜支持這一結(jié)果。Ge4+離子的摻雜使材料的發(fā)光性能明顯下降。Ga3+離子可以取代Al3+離子形成全范圍的固溶體,其中少量Ga3+離子的摻雜可以使材料的熒光發(fā)射強(qiáng)度提高~13%,而摻雜量進(jìn)一步提高使材料的熒光性能下降。Ca2+和Ba2+對(duì)Sr2+的取代僅形成有限范圍的固溶體。Ca2+的取代使材料的發(fā)光性能提高;而Ba2+的取代使材料的發(fā)光強(qiáng)度下降。

    紅色熒光粉;白光發(fā)光二極管;SrAl12O19;Mn4+摻雜

    0 Introduction

    White light-emitting diodes(W-LEDs)are considered as the next generation solid-state lightings, because they havemany advantages over conventional lighting devices,such as high brightness,high power efficiency,low applied voltage,and long lasting life[1-2]. In 1996,Nakamura and Fasol in Nichia combined a blue LED chip with a yellow phosphor Y3Al5O12∶Ce3+(YAG∶Ce)produced a white lighting[3].After then,the researches on the W-LED phosphors are blooming like mushrooms after rain[4-9].However,the color rendering index(Ra)of theW-LEDs assembled by the blue LED chips with YAG∶Ce yellow phosphor is not high(Ra≤85)for the warm white LED applications because their emission spectra are lack of red components[10]. Therefore,for improving solid state lighting technology,it is imperative to explore novel red phosphors suitable for the LED excitations.

    Many researches on the red phosphors for theWLED applications have been reported[11-14].Eu2+doped sulfide red phosphors(such as CaS∶Eu2+)were firstly considered[15-16].This kind of phosphors show emission maximum at~620 nm under the blue light excitation, which are suitable for the use in W-LEDs. However,due to their unstability,their applications in W-LEDs were limited.Eu3+doped molybdate red phosphors[11-12,17-18](such as CaMoO4∶Eu3+)also attracted a lot of interests.The excitation efficiency of these phosphors was not very high due to the f-f transitions of Eu3+in near UV and blue range.Recently,Mn4+doped fluoride phosphors(such as K2TiF6∶Mn4+[19]) attracted scientists′interests.These phosphors were synthesized in aqueous solutions,thus their thermal stability needed to be improved.Actually,Eu2+doped nitride and oxynitride red phosphors(such as Sr2Si5N8∶Eu2+[20],SrSi2N2O2∶Eu2+[21]and Sr3Si2O4N2∶Eu2+[22])played the important role for improving Ra index ofW-LEDs. These phosphors are normally synthesized at high pressure with O2and H2O free conditions,whichmake the phosphors very expensive.

    It is a strong aspiration to find low cost red phosphors for the W-LED applications.Nowadays, Mn4+doped oxide phosphors come into researchers′sight.The red phosphors 3.5MgO·0.5MgF2·GeO2∶Mn4+[23]and 6MgO·As2O5∶Mn4+[24]were early reported in 1950′s~60′s,which could be excited by the blue light and gave emission maximum at 655 nm.Since Ge is an expensive element and As oxides are toxic,these two phosphors are not satisfied for the W-LED applications.Recently-reported red phosphors of alkaline earth aluminates(such as CaAl12O19∶Mn4+[25-26], SrAl12O19∶Mn4+[27],and Sr4Al14O25∶Mn4+[28])maybeeffective alternatives.Actually,CaAl12O19∶Mn4+and SrAl12O19∶Mn4+were early reported in 1970′s[29].Among these aluminate phosphors,SrAl12O19∶Mn4+has been reported on the use in the W-LED fabrication by coating this phosphor on a commercial blue LED chip+YAG∶Ce yellow phosphor[27],which suggested that SrAl12O19∶Mn4+is a promising red phosphor candidate for fabricating W-LEDs with high Ra index.Actually,this phosphor has better excitation efficiency around 330 nm,thus it ismore suitable to be used as a red component in the tri-colorW-LEDs assembled by UV-LED chips.Itwas reported that the emissions of the UV-LEDs could cover from 410 nm down to 320 nm[30-31].However,it is imperative to further improve the luminescence properties of this phosphor.

    In this study,the doped samples on Al site (SrAl11.99-xMxO19∶0.01Mn4+)and replaced sampleson both Al site[SrAl11.91(1-y)M11.91yO19∶0.01Mn4+,0.08Mg2+]and Sr site(Sr1-zMzAl11.91O19∶0.01Mn4+,0.08Mg2+)were synthesized by conventional solid state reactions,where M represents variousmetal ions.For the doping systems, x varied less than 0.12,whereas for the replacing systems,y and z varied in the whole ranges from 0.00 to 1.00.In the replacing systems,small amount of Mg2+was added for charge compensation.The phase relations of the samples were analyzed by X-ray diffraction(XRD)and the photoluminescence(PL) properties were investigated by PL excitation and emission spectra.

    1 Experimental

    1.1Samp le preparation

    SrCO3,Al2O3and MnCO3were used as starting materials for preparing SrAl11O19∶Mn4+phosphors, meanwhile H3BO3was selected as flux.Mg(OH)2· 4MgCO3·6H2O,ZnO,GeO2,Ga2O3,CaCO3and BaCO3were chosen as the doping or replacing reagents. Among the above chemicals,Mg(OH)2·4MgCO3·6H2O, ZnO,MnCO3and H3BO3are in A.R.(analytical reagent)grade;GeO2and Ga2O3are in 4N(99.99%) grade;all others are in L.P.(luminescent pure)grade. All the chemicals were weighed in the stoichiometric ratio with 4%(w/w)H3BO3as flux and ground in an agate mortar with a pestle.After fully ground,the samples were put into corundum crucibles and then heated in an muffle furnace.For most samples,the heating process was conducted at 1 500℃for 5 h, while for the samples in the Ga replacing system SrAl11.99(1-y)Ga11.99yO19∶0.01Mn4+,0.08Mg2+,when y varied in the range less than 0.60,the heating process was conducted at1 500℃for 5 h,whereas when y varied in the ranges from 0.60 to 1.00,the heating temperature was reduced to 1 250℃(3 h)in order to avoid sample melting.During the heating processes, Mn2+in MnCO3was oxidized to Mn4+.

    1.2Sam p le characterization

    The phase purity of the samples was characterized using an X-ray diffractometer(XRD, Rigaku D/Max2400,Japan)with Cu Kαradiation(λ= 0.154 18 nm,40 kV and 100 mA).The data were collected with the scanning rate 2°·min-1.PL excitation and emission spectra of the phosphor samples were measured on a Hitachi F7000 fluorescence spectrophotometer(Japan)equipped with a 150W Xe lamp as an excitation source and the PL intensitieswere calculated by integrating all emissions in the spectra.Mn2+ions in the samples were checked by an electron paramagnetic resonance spectroscope (EPR,Bruker EMX,Germany)with frequency of 9.442 076 GHz.

    2 Results and discussion

    2.1PL properties of the Al-site doped system s

    Initially,the optimized activator content of Mn4+was investigated.The experimental data indicated that in the SrAl12-wO19∶w Mn4+system,the PL intensity approached maximum at w=0.01(the data are not shown).Fig.1(a)represents a typical XRD pattern in the system(for the sample SrAl11.99O19∶0.01Mn4+).The pattern matches perfectly with that of the related JCPDS data 26-976,indicating that the doped sample prepared in this work is the pure phase of SrAl12O19. The hostmaterial SrAl12O19has the magnetoplumbitetype structure with the hexagonal unit cell(space group P63/mmc):a=0.556 66 nm,c=2.200 18 nm(Fig. 2)[32].This structure is constructed by four closepacked O layers and one close-packed SrO3layer with the sequence(chhhc)2,in which c refers the cubic close packing layer and h refers the hexagonal close packing layer.Most of the Al atoms take octahedroninterstitial positions and tetrahedron-interstitial positions,forming AlO6octahedrons and AlO4tetrahedrons,respectively.Whereas in the SrO3layer, the Al atoms take the trigon-interstitial positions constructed by three O atoms,forming AlO5trigonal bipyramids combined with two O atoms in the two adjacent O layers.The number ratio nAlO6∶nAlO4∶nAlO5=9∶2∶1.In the SrAl12O19host,there are two cations:Sr2+has the radius of 0.113 nm(CN=6)and Al3+has the radius of 0.053 5 nm(CN=6)[33].The radius of the activator Mn4+is 0.053 nm(CN=6)[33],similar to that ofAl3+,thus we believe that in the SrAl11.99O19∶0.01Mn4+phosphors,Mn4+is doped into the Al3+site.Obviously the valences of Mn4+and Al3+are different,thus doping Mn4+into Al3+may cause defects VAl?or Oi″for balancing the charge difference:3MnO2?3MnAl·+ VAl?+6OO×or 2MnO2?2MnAl·+Oi″+3OO×.But at this stage,we could not give details about the defect formations.

    Fig.1 XRD patterns of selected samples in the SrAl12-wO19:w Mn4+system(a),the SrAl11.99-xMxO19∶0.01Mn4+(M=Mg,Zn,Ge) systems(b~d)and related JCPDS data(e)

    Fig.2 Projection of the crystal structure of SrAl12O19

    The PL excitation and emission spectra of SrAl11.99O19∶0.01Mn4+are represented in Fig.3.In SrAl12O19,most of the Al3+ions take the octahedral sites and it is believed that the Mn4+ions are likely located at Al3+sites.As we know that Mn4+has d3configuration,approximately the Tanabe-Sugano diagram of the d3configuration in the octahedral crystal field[34-35]can be consulted for the Mn4+spectrum assignment.Refer to the Tanabe-Sugano diagram as well as Brik′s work for CaAl12O19∶Mn4+[36]and Y2Sn2O7∶Mn4+[37],as well as Wang′s work for SrAl12O19∶Mn4+[27],the assignments for the excitation and emission spectra are given in Fig.3.The strongest excitation band at 330 nm is assigned to the4A2→4T1transition overlapped by the charge transfer transition Mn4+←O2-;the excitation bands at 395 and 465 nm are assigned to the4A2→2T2transition and the4A2→4T2transition,respectively.These three excitation bands wellmatch the emission bands of themost used LEDs, such as GaN(λEM=465 nm),InGaN(λEM=400 nm),and AlGaN/AlInGaN(λEM=330 nm),respectively[27].In the emission spectrum,two strong line emissions appear at 659 nm and 643 nm with some shouldered emissions, which are assigned to the2T1,2E→4A2transitions with the phonon sideband transition.

    Fig.3 Excitation(EX)and emission(EM)spectra of SrAl11.99O19∶0.01Mn4+

    Fig.4 Variations of the PL intensity with the M contents x in the SrAl11.99-xMxO19∶0.01Mn4+(M=Mg,Zn,Ge) systems

    Doping effects of Mg2+,Zn2+and Ge4+on the PL properties of the SrAl11.99-xMxO19∶0.01Mn4+(M=Mg,Zn, Ge;x=0.0~0.12)systems were investigated.XRD data indicated that all the samples in the studied region were phase pure and XRD patterns for some selected samples are shown in Fig.1.The excitation and emission spectra of all the samples are identical to those shown in Fig.3and the variations of the PL intensity with the M contents are represented in Fig.4. For the Mg2+and Zn2+doped systems,the doping increases the PL intensities.The optimized doping contents are x=0.08 for the Mg2+doped system and x= 0.06 for the Zn2+doped system,respectively,and the PL intensities are enhanced about 60%,compared with the sample without the Mg2+or Zn2+doping.The Ge4+doping reduces the PL intensity.For the sample with x=0.05,the PL intensity is reduced about 30%. The Mg2+,Zn2+and Ge4+have radii of 0.072,0.088 and 0.067 nm(CN=6)[33]and they are all slightly larger than that of Al3+,butmuch smaller than that of Sr2+,thus it is deduced that these three cations prefer to take the Al3+positions.It is mentioned above that the Mn4+doping causes charge imbalance in the lattice.Doping Mg2+or Zn2+with Mn4+may play the role of charge compensation:MO+MnO2?MAl′+MnAl·+ 3OO×(M=Mg,Zn).Due to this charge composition effect,Mg2+and Zn2+may help Mn2+change its valence to Mn4+and also help Mn4+enter the lattice,so that the PL intensity increases.EPRmeasurements support the above discussion.Fig.5shows the EPR spectra of SrAl12O19∶Mn4+with and without Mg2+/Zn2+doping.For the Mg2+/Zn2+undoped sample,the typical sestet EPR signal of Mn2+(g=2.241)is clearly observed,whereas for the Mg2+or Zn2+doped sample,such sestet signal disappeared.This discussion for the Mg2+doping were also given by Pan[25]and Murata[38]for CaAl12O19∶Mn4+and Wang[27]for SrAl12O19∶Mn4+,respectively.The Ge4+co-dopingmay cause charge imbalance even more,so that the PL intensity decreases.

    Fig.5 EPR spectra of SrAl11.99-xMxO19∶0.01Mn4+

    2.2PL properties of the Al site replaced system

    PL properties of the Al site replaced system SrAl11.91(1-y)Ga11.91yO19∶0.01Mn4+,0.08Mg2+were explored. SrGa12O19also has hexagonal unit cell with isostructure to SrAl12O19.It has space group P63/mmc with the cell parameters a=0.579 6 nm,c=2.284 nm (JCPDS 26-983).The XRD patterns of all the samples in the system are in accordance with JCPDS 26-976 for SrAl12O19and JCPDS 26-983 for SrGa12O19(Fig.6) and with an increase of the Ga3+content y from 0.00 to 1.00,the XRD peaks shift to lower 2θvalues gradually.Based on these patterns,the unit cell volumes were calculated and the variation of the cell volume with the Ga3+content y is represented in Fig.7. The cell volume increases continuously with an increase of the Ga3+content,since the radius of Ga3+(0.062 nm,CN=6)[33]is larger than that of Al3+,which indicates that the whole range solid solutions are formed in this system.Apparently Ga3+and Al3+have the same valence,thus the replacement of Ga3+for Al3+neither causes new charge imbalance,nor compensates the charge imbalance induced by the Mn4+doping.The PL intensity varies with the Ga3+content y,as shown in Fig.8.The inset of Fig.8shows when small amount of Ga3+is doped(Ga3+content y varies from 0.000 4 to 0.004 0),the PL intensity may increase,e.g.at y=0.000 8,the PL intensity increases about 13%.Whereas when the y value further increases,the PL intensity dramatically decreases.For the Mn4+doped SrGa12O19,no luminescence was observed.

    Fig.6 XRD patterns of selected samp les in the SrA l11.91(1-y)Ga11.91yO19∶0.01Mn4+,0.08Mg2+system and related JCPDS data

    Fig.7 Dependence of the unit cell volume on the Ga3+content y in the SrAl11.91(1-y)Ga11.91yO19∶0.01Mn4+,0.08Mg2+system

    Fig.8 Variation of the PL intensitywith the Ga3+content y in the SrAl11.91(1-y)Ga11.91yO19∶0.01Mn4+, 0.08Mg2+system

    2.3PL propertiesof the Sr site replaced systems

    As we know,CaAl12O19and BaAl12O19also have the iso-structure to SrAl12O19(JCPDS 38-470 for CaAl12O19and JCPDS 26-135 for BaAl12O19). Consequently,the PL properties of the Sr site replaced systems Sr1-zMzAl11.91O19∶0.01Mn4+,0.08Mg2+(M=Ca,Ba)were studied.Selected XRD patterns in the Ca2+and Ba2+replacing systems are represented in Fig.9and Fig.10,respectively.In the Ca2+replacing system,the patterns are in accordance with JCPDS 26-976 for SrAl12O19and JCPDS 38-0470 for CaAl12O19.The XRD peaks slightly shift to higher 2θ values.Based on these patterns,the unit cell volumes were carefully calculated,shown in Fig.11.The data indicate that in the Sr1-zCazAl11.91O19∶0.01Mn4+,0.08Mg2+system,only limited rather than the whole range solid solutions are formed:the solid solutions appear in the ranges 0.00<z<0.80 and 0.90<z<1.00,and the twophase range is narrow in the range 0.80<z<0.90.In the Ba2+replacing system,for the samples with the Ba2+content z near 0.00,the patterns agree with JCPDS 26-976 for SrAl12O19;while for the samples with the Ba2+content z near 1.00,the patterns agree with JCPDS 26-135 for BaAl12O19.For other samples,clearly the patterns are mixtures of those of SrAl12O19and BaAl12O19.The calculations for the unit cell volumes indicate that in the Sr1-zBazAl11.91O19∶0.01Mn4+, 0.08Mg2+system,the two-phase range become wider, 0.10<z<0.80 and the solid solutions appear only in the narrow ranges 0.00<z<0.10 and 0.80<z<1.00(Fig.11). In the solid solution ranges for the Ca2+replacing system,the cell volume decreases with the Ca2+content z,because Ca2+is smaller than Sr2+;while in the solid solution ranges for the Ba2+replacing system, with an increase of the Ba2+content z,the cell volume increases since Ba2+is larger than Sr2+.

    Fig.9 XRD patterns of selected samples in the Sr1-zCazAl11.91O19∶0.01Mn4+,0.08Mg2+system and related JCPDSdata

    Fig.10 XRD patterns of selected samples in the Sr1-zBazA l11.91O19∶0.01Mn4+,0.08Mg2+system and related JCPDS data

    Fig.11 Dependences of the unit cell volumes on the M content z in the Sr1-zMzAl11.91O19∶0.01Mn4+, 0.08Mg2+(M=Ca,Ba)systems

    Fig.12 Variations of the PL intensitieswith the M content z in the Sr1-zMzAl11.91O19∶0.01Mn4+,0.08Mg2+(M=Ca,Ba)systems

    The PL intensity is observed to increase constantly with increasing the Ca2+content z(Fig.12) and the peak wavelength has a slight blue shift:the main peak shifts from 659 nm for the Sr phase to 655 nm for the Ca phase(the inset in Fig.12).Since Mn4+doped BaAl12O19does not presentany luminescence,in the Ba2+replacing system Sr1-zBazAl11.91O19∶0.01Mn4+, 0.08Mg2+,the PL intensity falls steadily(Fig.12)and no peak wavelength shift is observed.

    3 Conclusions

    The luminescence properties were investigated for the doping systems on the Al site(SrAl11.99-xMxO19∶0.01Mn4+,M=Mg,Zn,Ge)and replacing systems on the Al site[SrAl11.91(1-y)M11.91yO19∶0.01Mn4+,0.08Mg2+,M= Ga)]and the Sr site(Sr1-zMzAl11.91O19∶0.01Mn4+,0.08Mg2+, M=Ca,Ba).When Mg2+or Zn2+was doped into the lattice,the PL intensity increased significantly(~60%),compared with the sample without the Mg2+or Zn2+doping,since this doping helped Mn4+enter the lattice:MO+MnO2?MAl′+MnAl·+3OO×(M=Mg,Zn), which was supported by EPR spectra.Ga3+could replace Al3+to form whole range solid solutions. Whereas doping small amount of Ga3+at the Al site could increase the PL intensity(~13%);however further increasing the Ga3+content,the PL intensity decreases dramatically.The solid solutions only appeared in limited ranges for the Ca2+and Ba2+replacing systems.For the Ca2+replacing system,the PL intensity increased with the Ca2+content,but for the Ba2+replacing system,the PL intensity decreased with Ba2+content.In general,the Eu2+activated(oxy) nitride phosphorsand Mn4+activated fluoride phosphors have better luminescence properties than the Mn4+doped aluminate phosphor studied in the work for the W-LED applications.However,the raw materials of this aluminate phosphors are cheap and the synthesis process for them is simple and convenient,thus the optimized SrAl12O19∶Mn4+would be used as a red phosphor for the low-priceW-LED products.

    Acknow ledgments:We are thankful for financial supports from Osram(China)Ltd.,National Natural Science Foundations of China(Grant No.20861005 and 21371015)and Natural Science Foundations of Inner Mongolia Science Foundation (Grant No.2010 MS 0204).Thanks are also given to Ms.GUO Yu-Feng and Ms.WANG Ming-Xiao of Tsinghua University forEPRmeasurements.

    References:

    [1]Nakamura S,Mukai T,Senoh M.Appl.Phys.Lett.,2009,64: 1687-1689

    [2]Jang H S,Won Y H,Jeon D Y.Appl.Phys.B,2009,95:715-720

    [3]Nakamura S,Fasol G.The Blue Laser Diode:GaN Based Light Emitters and Lasers.Berlin:Springer,1997:216

    [4]Liu J,Lian H,Shi C,et al.Chem.Lett.,2005,34:1340-1341

    [5]Gao G J,Reibstein S,Wondraczek L,et al.J.Mater.Chem., 2011,21:3156-3161

    [6]Guo H,Zhang H,Li F,et al.Opt.Express,2010,18:27257 -27262

    [7]Schubert E F,Kim JK.Science,2005,308:1274-1278

    [8]Smet P F,Parmentier A B,and Poelman D.J.Electrochem. Soc.,2011,158:R37-R54

    [9]WangW N,Ogi T,Okuyama K,etal.J.Mater.Chem.,2011, 21:5183-5189

    [10]Chiang C C,TsaiM S,Hon M H.J.Alloys Compd.,2007, 431:298-302

    [11]Neeraj S,Kijima N,Cheetham A K.Chem.Phys.Lett.,2004, 387:2-6

    [12]Wang JG,Jing X P,Lin JH,et al.J.Electrochem.Soc., 2005,152:G186-G188

    [13]Pang M L,Lin J,Yu M.J.Solid State Chem.,2004,177: 2237-2241

    [14]Macalik L,Maczka M,Majchrowski A,et al.J.Alloys Compd.,2004,380:248-254

    [15]Lehmann W,Ryan F M.J.Electrochem.Soc.,1971,118: 477-482

    [16]Soules T F,Beers W W,Duggal A R,et al.US Patent, 6252254 B1,2001-06-26

    [17]Wang Z L,Liang H B,Su Q,et al.Electrochem.Solid-State Lett.,2005,8:H33-H35

    [18]Wang JG,Jing X P,Lin JH,etal.J.Lumin.,2006,121:57-61

    [19]Zhu H,Liu R S,Chen X Y,et al.Nature Comm.,2014,5: 4312(1-10)

    [20]Xie R J,Hirosaki N,Mitomo M,et al.Chem.Mater.,2006, 18:5578-5583

    [21]Han BY,Sohn K S.Electrochem.Solid-State Lett.,2010,13: J62-J64

    [22]Wang X M,Wang C H,Jing X P,et al.Inorg.Chem.,2012, 51:3540-3547

    [23]Kemeny G,Haake CH.J.Chem.Phys.,1960,33:783-788

    [24]Klasens H A.Philips Res.Rep.,1954,9:377-390

    [25]Pan Y X,Liu G K.J.Lumin.,2011,131:465-468

    [26]ShuW,Jiang L L,Ding JW,etal.Mater.Sci.Eng.,B,2012, 177:274-277

    [27]Wang L,Xu Y D,Wang Y H,et al.Phys.Status Solidi A, 2013,210:1433-1437

    [28]Xu Y D,Wang D,Qi S,et al.J.Alloys Compd.,2013,550: 226-230

    [29]Bergstein A,White W B.J.Electrochem.Soc.,1971,118: 1166-1171

    [30]Steigerwald DA,Bhat JC,RudazSL,etal.IEEE J.Quantum. Electron.,2002,8:310-320

    [31]Adivarahan V,Chitnis A,Shur M S,et al.App l.Phys.Lett., 2001,79:4240-4242

    [32]Kimura K,OhgakiM,Marumo F,et al.J.Solid State Chem., 1990,87:186-194

    [33]Shannon R D.Acta Crystallogr.A,1976,A32:751-767

    [34]Tanabe Y,Sugano S.J.Phys.Soc.Jpn.,1956,11:864-877

    [35]Tamatani M.Phosphor Handbook.Shionoya S,Yen W M Ed.,Boca Raton(USA):CRC Press,1998:153-176

    [35]Brik M G,Pan Y X,Liu G K.J.Alloys Compd.,2011;509: 1452-1456

    [37]Brik M G,Srivastava A M,Avram N M.Opt.Mater.,2011, 33:1671-1676

    [38]Murata T,Tanoue T,Hase T,et al.J.Lumin.,2005,114: 207-212

    Doping and Replacing Effects on the Lum inescent Properties of SrAl12O19∶M n4+Red Phosphor

    XIN Xiao-Dong1WEIHeng-Wei2ZHAOWen-Hui3LIU Zhong-Shi4LIWen-Xian*,1JIAO Huan*,2JING Xi-Ping*,3
    (1College of Chemistry and Chemical Engineering,Inner Mongolia University,Hohhot 010021,China)
    (2Key Laboratory of Macromolecular Science of Shaanxi Province,College of Chemistry and Chem ical Engineering, Shaanxi Normal University,Xi′an 710062,China)
    (3State Key Laboratory of Rare Earth Materials and Applications,College of Chemistry and Molecular Engineering, Peking University,Beijing 100871,China)
    (4Osram(China)Ltd.,Shanghai200082,China)

    SrAl12O19∶Mn4+is a potential candidate of red phosphor for high color rendering white LEDs.In this work,doping effects of Mg2+,Zn2+or Ge4+and replacing effects of Ga3+,Ca2+or Ba2+on the SrAl12O19∶Mn4+red phosphor were investigated.The sampleswere prepared by conventional solid state reactions at 1 250~1 500℃. The phase purities of the samples were investigated by X-ray diffraction and their luminescence properties were characterized by photoluminescence(PL)excitation and emission spectra.The results indicated that compared with the sample without the Mg2+or Zn2+doping,the Mg2+or Zn2+doping enhanced the PL intensity significantly (~60%),since this doping helped Mn4+enter the lattice:MO+MnO2?MAl′+MnAl·+3OO×(M=Mg,Zn),which wassupported by electron paramagnetic resonance spectra.The Ge4+doping lead to a decrease of PL intensity clearly. Ga3+could replace Al3+to form whole range solid solutions.When small amount of Ga3+was doped,the PL intensity increased(~13%),however when further increasing the Ga3+content,the PL intensity decreased dramatically.The solid solutions only appeared in limited ranges for the Sr2+replaced systems by Ca2+and Ba2+. For the Ca2+replacing system,the PL intensity increased with an increase of Ca2+content,but for the Ba2+replacing system,the PL intensity decreased with Ba2+content.

    red phosphor;white-LEDs;SrAl12O19;Mn4+doping

    TB34

    A

    1001-4861(2016)07-1199-08

    10.11862/CJIC.2016.169

    2015-09-30。收修改稿日期:2016-06-07。

    國(guó)家自然科學(xué)基金(No.21371015)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:E-mail:nmglwx@163.com,jiaohuan@snnu.edu.cn,xpjing@pku.edu.cn;會(huì)員登記號(hào):S06N3161M1407。

    猜你喜歡
    實(shí)驗(yàn)室化學(xué)
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    人成视频在线观看免费观看| 日韩 亚洲 欧美在线| 国产97色在线日韩免费| 最近最新中文字幕大全免费视频 | 午夜91福利影院| 午夜久久久在线观看| 国产极品天堂在线| 新久久久久国产一级毛片| 国产精品一区二区精品视频观看| 中文字幕最新亚洲高清| 亚洲欧美精品自产自拍| 一区福利在线观看| 亚洲欧美中文字幕日韩二区| 国产人伦9x9x在线观看| 老司机影院毛片| 国产一区有黄有色的免费视频| 国产日韩欧美视频二区| 啦啦啦啦在线视频资源| 日日撸夜夜添| 国产精品一区二区在线观看99| 丁香六月天网| 最近的中文字幕免费完整| 一区二区三区四区激情视频| 久久久久视频综合| 国产精品偷伦视频观看了| 夫妻性生交免费视频一级片| 激情视频va一区二区三区| av女优亚洲男人天堂| 国产男人的电影天堂91| 欧美精品人与动牲交sv欧美| 宅男免费午夜| 亚洲在久久综合| 九九爱精品视频在线观看| 大片免费播放器 马上看| 9色porny在线观看| 国产日韩欧美视频二区| 国产无遮挡羞羞视频在线观看| av在线播放精品| 一本色道久久久久久精品综合| 精品一区二区免费观看| 亚洲美女黄色视频免费看| 黄频高清免费视频| 亚洲在久久综合| 午夜福利,免费看| 久久av网站| 高清视频免费观看一区二区| 秋霞伦理黄片| 亚洲熟女精品中文字幕| 天天添夜夜摸| 久久精品aⅴ一区二区三区四区| av在线老鸭窝| 国产爽快片一区二区三区| 国产片特级美女逼逼视频| 国产99久久九九免费精品| 亚洲精品久久午夜乱码| 精品一区二区三区av网在线观看 | 天堂俺去俺来也www色官网| 精品卡一卡二卡四卡免费| 精品一区在线观看国产| 亚洲综合色网址| 一本色道久久久久久精品综合| 满18在线观看网站| 亚洲成av片中文字幕在线观看| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区国产| 啦啦啦中文免费视频观看日本| 亚洲一级一片aⅴ在线观看| 亚洲精品视频女| 90打野战视频偷拍视频| 亚洲精品久久成人aⅴ小说| 久久久久久久大尺度免费视频| 超碰成人久久| 天美传媒精品一区二区| av又黄又爽大尺度在线免费看| 国产精品偷伦视频观看了| 人成视频在线观看免费观看| av有码第一页| 亚洲视频免费观看视频| 欧美黄色片欧美黄色片| 午夜免费男女啪啪视频观看| 蜜桃在线观看..| 免费黄频网站在线观看国产| 蜜桃国产av成人99| av不卡在线播放| 观看美女的网站| 777米奇影视久久| 一区二区av电影网| 午夜av观看不卡| 纵有疾风起免费观看全集完整版| 欧美最新免费一区二区三区| 亚洲精品美女久久久久99蜜臀 | 免费黄色在线免费观看| 人人妻人人添人人爽欧美一区卜| 国产成人欧美在线观看 | 欧美人与性动交α欧美软件| av网站在线播放免费| 最新的欧美精品一区二区| 大陆偷拍与自拍| 亚洲第一青青草原| 一级毛片电影观看| 国产福利在线免费观看视频| 岛国毛片在线播放| 18禁国产床啪视频网站| 搡老岳熟女国产| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产av蜜桃| 精品少妇一区二区三区视频日本电影 | 交换朋友夫妻互换小说| 1024视频免费在线观看| 亚洲天堂av无毛| xxx大片免费视频| 亚洲色图综合在线观看| a级毛片黄视频| 侵犯人妻中文字幕一二三四区| 极品少妇高潮喷水抽搐| h视频一区二区三区| 91精品三级在线观看| 亚洲久久久国产精品| 亚洲精品久久成人aⅴ小说| av在线老鸭窝| 考比视频在线观看| 丝袜喷水一区| 久久久久久久国产电影| 日本91视频免费播放| 亚洲,欧美,日韩| 亚洲av日韩在线播放| 午夜老司机福利片| 中文字幕最新亚洲高清| 国产片特级美女逼逼视频| 高清在线视频一区二区三区| 捣出白浆h1v1| 亚洲av国产av综合av卡| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 亚洲精品日本国产第一区| 自线自在国产av| 亚洲精华国产精华液的使用体验| 乱人伦中国视频| 飞空精品影院首页| 一区二区三区激情视频| 最近的中文字幕免费完整| 老司机影院成人| 午夜福利影视在线免费观看| 中文字幕高清在线视频| 最近中文字幕高清免费大全6| 丰满迷人的少妇在线观看| 亚洲国产中文字幕在线视频| 亚洲精品乱久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 日韩大片免费观看网站| 操出白浆在线播放| 日本av免费视频播放| 成人手机av| 亚洲av成人精品一二三区| 国产男人的电影天堂91| www.熟女人妻精品国产| 国产精品亚洲av一区麻豆 | 亚洲成人手机| 国精品久久久久久国模美| 精品少妇久久久久久888优播| 国产一区二区 视频在线| 国产成人av激情在线播放| 卡戴珊不雅视频在线播放| 国产精品久久久久成人av| 国语对白做爰xxxⅹ性视频网站| 在线免费观看不下载黄p国产| 久久久久精品性色| 午夜福利影视在线免费观看| 午夜日韩欧美国产| 在线观看免费高清a一片| 国产免费视频播放在线视频| 九色亚洲精品在线播放| 亚洲欧美精品综合一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 久久久亚洲精品成人影院| 深夜精品福利| 亚洲七黄色美女视频| 亚洲欧美成人综合另类久久久| 亚洲av福利一区| 日日撸夜夜添| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区久久| 国产老妇伦熟女老妇高清| 丁香六月天网| 亚洲国产精品999| 亚洲五月色婷婷综合| 日日摸夜夜添夜夜爱| 成年人免费黄色播放视频| 亚洲精品国产色婷婷电影| 精品卡一卡二卡四卡免费| 久久久国产一区二区| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 午夜福利视频精品| 精品久久蜜臀av无| 1024香蕉在线观看| 女人久久www免费人成看片| 日本av免费视频播放| 国产精品女同一区二区软件| 亚洲精品第二区| 一区福利在线观看| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 国产精品免费大片| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播 | 日韩一区二区视频免费看| 男女免费视频国产| 亚洲精品乱久久久久久| 婷婷色综合www| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 亚洲美女视频黄频| 一区二区三区四区激情视频| 日本欧美国产在线视频| 欧美亚洲日本最大视频资源| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 看十八女毛片水多多多| 亚洲激情五月婷婷啪啪| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 婷婷色av中文字幕| 亚洲第一av免费看| 夫妻性生交免费视频一级片| 国产一区二区三区综合在线观看| 国产成人精品无人区| 在线天堂最新版资源| 大码成人一级视频| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 免费看不卡的av| 国产熟女欧美一区二区| 少妇人妻久久综合中文| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 人体艺术视频欧美日本| av免费观看日本| 在线观看国产h片| 国产乱来视频区| 中文字幕亚洲精品专区| 亚洲av成人不卡在线观看播放网 | 人妻 亚洲 视频| 丝袜人妻中文字幕| 看免费av毛片| 日日啪夜夜爽| 精品免费久久久久久久清纯 | 亚洲色图 男人天堂 中文字幕| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| 国产男女内射视频| 青春草国产在线视频| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 久久久久网色| 熟女av电影| 国产熟女午夜一区二区三区| 午夜免费观看性视频| 成年美女黄网站色视频大全免费| 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 涩涩av久久男人的天堂| 999久久久国产精品视频| 亚洲四区av| 丝瓜视频免费看黄片| 色94色欧美一区二区| 成年人免费黄色播放视频| 成人国产麻豆网| av卡一久久| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 亚洲,欧美,日韩| 一级毛片黄色毛片免费观看视频| 成年女人毛片免费观看观看9 | 国产精品久久久久成人av| 国产精品亚洲av一区麻豆 | 99国产综合亚洲精品| 亚洲熟女精品中文字幕| www.熟女人妻精品国产| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 免费高清在线观看日韩| 欧美人与性动交α欧美精品济南到| 中文精品一卡2卡3卡4更新| 在线免费观看不下载黄p国产| 人人妻,人人澡人人爽秒播 | 国产精品二区激情视频| 不卡视频在线观看欧美| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 国产精品熟女久久久久浪| 国产成人午夜福利电影在线观看| 精品少妇黑人巨大在线播放| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 在线观看www视频免费| 日韩电影二区| 欧美黑人欧美精品刺激| 最新的欧美精品一区二区| 丰满乱子伦码专区| 女性被躁到高潮视频| 麻豆乱淫一区二区| 啦啦啦 在线观看视频| 国产97色在线日韩免费| 成人国产麻豆网| 高清不卡的av网站| 亚洲少妇的诱惑av| 亚洲精华国产精华液的使用体验| 99精品久久久久人妻精品| 久久精品国产综合久久久| 日本欧美视频一区| 亚洲激情五月婷婷啪啪| 黄色怎么调成土黄色| 一边摸一边抽搐一进一出视频| 午夜免费男女啪啪视频观看| 欧美精品一区二区大全| 看非洲黑人一级黄片| 一本大道久久a久久精品| 国产精品99久久99久久久不卡 | 黑人猛操日本美女一级片| 国产亚洲最大av| 嫩草影视91久久| 欧美日本中文国产一区发布| 亚洲国产看品久久| 国产精品无大码| 黑人欧美特级aaaaaa片| 亚洲美女搞黄在线观看| 亚洲一码二码三码区别大吗| 操美女的视频在线观看| 国产精品久久久久久精品电影小说| 国产成人系列免费观看| 日韩av在线免费看完整版不卡| 久久精品亚洲av国产电影网| 精品少妇内射三级| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 一级,二级,三级黄色视频| svipshipincom国产片| 下体分泌物呈黄色| 丝袜喷水一区| 美女高潮到喷水免费观看| 免费久久久久久久精品成人欧美视频| 欧美乱码精品一区二区三区| 国产午夜精品一二区理论片| 成人国产麻豆网| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 免费看av在线观看网站| 欧美激情 高清一区二区三区| 国产成人91sexporn| 丰满乱子伦码专区| 无限看片的www在线观看| 男人添女人高潮全过程视频| 亚洲久久久国产精品| 久久久久视频综合| 在线观看www视频免费| 久久天堂一区二区三区四区| 亚洲一区二区三区欧美精品| 国产激情久久老熟女| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 狠狠婷婷综合久久久久久88av| 亚洲中文av在线| 久久这里只有精品19| 丰满少妇做爰视频| 久久精品熟女亚洲av麻豆精品| av福利片在线| 国产成人欧美在线观看 | 香蕉丝袜av| 亚洲av电影在线观看一区二区三区| 久久久久人妻精品一区果冻| 久久久久久久国产电影| 丝袜美腿诱惑在线| 免费观看性生交大片5| 亚洲欧美一区二区三区国产| 另类亚洲欧美激情| 国产极品天堂在线| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 国产精品国产av在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 国产精品香港三级国产av潘金莲 | 成年动漫av网址| 国产极品粉嫩免费观看在线| 秋霞在线观看毛片| 精品视频人人做人人爽| 人人妻人人澡人人看| 9色porny在线观看| 免费少妇av软件| 日本一区二区免费在线视频| 狂野欧美激情性bbbbbb| 色播在线永久视频| 欧美黑人欧美精品刺激| 国产极品粉嫩免费观看在线| 少妇 在线观看| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 欧美日韩精品网址| 午夜福利一区二区在线看| 国产成人欧美在线观看 | 高清av免费在线| 亚洲国产精品国产精品| 欧美老熟妇乱子伦牲交| 国产成人欧美在线观看 | 51午夜福利影视在线观看| 久久久精品94久久精品| 91成人精品电影| 国产伦人伦偷精品视频| 黄色视频不卡| 久久综合国产亚洲精品| 免费观看性生交大片5| 欧美黑人精品巨大| 午夜老司机福利片| 亚洲熟女毛片儿| a级片在线免费高清观看视频| 大片电影免费在线观看免费| 日韩一区二区三区影片| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 赤兔流量卡办理| 色综合欧美亚洲国产小说| 曰老女人黄片| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 观看av在线不卡| 青春草国产在线视频| 亚洲欧美一区二区三区黑人| 国产男女内射视频| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 9191精品国产免费久久| 另类亚洲欧美激情| 熟女少妇亚洲综合色aaa.| 男女国产视频网站| 午夜福利乱码中文字幕| 国产 一区精品| 国产乱来视频区| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 制服人妻中文乱码| 午夜免费观看性视频| 一区二区av电影网| av国产久精品久网站免费入址| 成年动漫av网址| 日韩人妻精品一区2区三区| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 国产精品一区二区精品视频观看| 韩国精品一区二区三区| 视频在线观看一区二区三区| 在线 av 中文字幕| 亚洲自偷自拍图片 自拍| av线在线观看网站| av.在线天堂| 丰满少妇做爰视频| av卡一久久| 欧美人与善性xxx| av网站在线播放免费| 亚洲欧美激情在线| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| kizo精华| 精品一区在线观看国产| 欧美av亚洲av综合av国产av | 黑人巨大精品欧美一区二区蜜桃| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 狠狠精品人妻久久久久久综合| 国产精品 国内视频| svipshipincom国产片| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 亚洲五月色婷婷综合| 人成视频在线观看免费观看| 赤兔流量卡办理| 汤姆久久久久久久影院中文字幕| 国产精品一区二区精品视频观看| 国产伦理片在线播放av一区| svipshipincom国产片| 人妻 亚洲 视频| 久久久精品国产亚洲av高清涩受| 99热全是精品| 这个男人来自地球电影免费观看 | 成年人免费黄色播放视频| 久久久久久久久免费视频了| 久久亚洲国产成人精品v| 久久99精品国语久久久| 亚洲精品国产一区二区精华液| 好男人视频免费观看在线| 欧美激情高清一区二区三区 | 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 男女国产视频网站| 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲精品日韩在线中文字幕| 中文字幕最新亚洲高清| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 伦理电影免费视频| 18禁动态无遮挡网站| 一区在线观看完整版| 久久久久久人妻| 久久这里只有精品19| 久久精品国产a三级三级三级| 日韩伦理黄色片| 18禁观看日本| 亚洲国产av影院在线观看| 中文字幕av电影在线播放| 久久精品人人爽人人爽视色| av在线播放精品| 亚洲av日韩精品久久久久久密 | 天天添夜夜摸| 9191精品国产免费久久| 久久久欧美国产精品| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| 一区二区三区精品91| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 国产伦人伦偷精品视频| 亚洲精品视频女| 建设人人有责人人尽责人人享有的| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的| 91aial.com中文字幕在线观看| 人人澡人人妻人| 欧美激情极品国产一区二区三区| 丁香六月欧美| 在线天堂中文资源库| 日韩成人av中文字幕在线观看| 乱人伦中国视频| 波多野结衣一区麻豆| 水蜜桃什么品种好| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| www日本在线高清视频| 波野结衣二区三区在线| 成人漫画全彩无遮挡| 国产精品一区二区精品视频观看| 你懂的网址亚洲精品在线观看| 校园人妻丝袜中文字幕| 老汉色∧v一级毛片| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 女人被躁到高潮嗷嗷叫费观| 丝袜人妻中文字幕| av电影中文网址| 精品少妇一区二区三区视频日本电影 | 水蜜桃什么品种好| 欧美日本中文国产一区发布| 亚洲欧洲日产国产| 亚洲精品国产av蜜桃| 另类亚洲欧美激情| 国产精品免费大片| 久久久国产欧美日韩av| 美女扒开内裤让男人捅视频| 日韩一区二区三区影片| 日韩不卡一区二区三区视频在线| 男女午夜视频在线观看| 一区二区三区精品91| 亚洲国产欧美日韩在线播放| 亚洲美女视频黄频| 免费黄网站久久成人精品| 日韩大片免费观看网站| 国产 精品1| 亚洲天堂av无毛| 久久久国产欧美日韩av| 丰满乱子伦码专区| 国产在线视频一区二区| av电影中文网址| 国产精品 国内视频| 韩国高清视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 免费人妻精品一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 精品午夜福利在线看| 亚洲少妇的诱惑av| √禁漫天堂资源中文www| 蜜桃在线观看..| 美女福利国产在线| 91精品三级在线观看| 咕卡用的链子| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 在线天堂最新版资源| 免费黄色在线免费观看| 看非洲黑人一级黄片| 日本猛色少妇xxxxx猛交久久| 欧美人与善性xxx| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 亚洲 欧美一区二区三区|