• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Macular thickness as a predictor of loss of visual sensitivity in ethambutol-induced optic neuropathy

    2016-12-02 03:28:14ChunxiaPengAidiZhangBingChenBingjianYangQiuhongWangMoYangShihuiWei

    Chun-xia Peng, Ai-di Zhang, Bing Chen, Bing-jian Yang, Qiu-hong Wang, Mo Yang, Shi-hui Wei

    Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China

    RESEARCH ARTICLE

    Macular thickness as a predictor of loss of visual sensitivity in ethambutol-induced optic neuropathy

    Chun-xia Peng, Ai-di Zhang, Bing Chen, Bing-jian Yang, Qiu-hong Wang, Mo Yang, Shi-hui Wei*

    Department of Ophthalmology, Chinese PLA General Hospital, Beijing, China

    Graphical Abstract

    orcid: 0000-0001-8238-8923 (Shi-hui Wei)

    Ethambutol is a common cause of drug-related optic neuropathy. Prediction of the onset of ethambutol-induced optic neuropathy and consequent drug withdrawal may be an effective method to stop visual loss. Previous studies have shown that structural injury to the optic nerve occurred earlier than the damage to visual function. Therefore, we decided to detect structural biomarkers marking visual field loss in early stage ethambutol-induced optic neuropathy. The thickness of peripapillary retinal nerve fiber layer, macular thickness and visual sensitivity loss would be observed in 11 ethambutol-induced optic neuropathy patients (22 eyes) using optical coherence tomography. Twenty-four healthy age- and sex-matched participants (48 eyes) were used as controls. Results demonstrated that the temporal peripapillary retinal nerve fiber layer thickness and average macular thickness were thinner in patients with ethambutol-induced optic neuropathy compared with healthy controls. The average macular thickness was strongly positively correlated with central visual sensitivity loss (r2=0.878, P=0.000). These findings suggest that optical coherence tomography can be used to efficiently screen patients. Macular thickness loss could be a potential factor for predicting the onset of ethambutol-induced optic neuropathy.

    nerve regeneration; ethambutol-induced optic neuropathy; optical coherence tomography; peripapillary retinal nerve fiber layer; ethambutol; macular thickness; visual sensitivity; neural regeneration

    Introduction

    Worldwide, 9.2 million new cases of tuberculosis occur every year and 55% of them take ethambutol to prevent the occurrence of drug-resistance (Wang et al., 2012, 2013; Geyer et al., 2014). As a consequence, the ethambutol-induced optic neuropathy (EON) becomes the most common drug-related optic neuropathy and accounts for 100,000 new cases each year. As a metal chelator, ethambutol has an antibacterial effect on suppressing arabinosyl transferase, which plays an important role in synthesizing the cell walls. Ethambutol triggers the apoptosis cascade in cells by decreasing the levels of oxidative phosphorylation and reactive oxygen species in mitochondria, leading to the leakage of cytochrome C, which is a key activator of apoptosis (Kozak et al., 1998; Pradhan et al., 2010; Cutan et al., 2013; Wang et al., 2013). The unmyelinated and narrow caliber fibers in the papillomacular bundle, which have the task of conducting central vision, are more vulnerable to ethambutol injury. Thus, EON is characterized by onset of bilateral central vision loss, dyschromatopsia and central scotomas (Wang et al., 2013). Other mitochondrial optic neuropathies exhibit similar symptoms (Pan et al., 2012; Fonkem et al., 2013). A few casesof EON presented bitemporal hemianopia involving the optic chiasmal region (Kho et al., 2011; Boulanger-Scemama et al., 2013; Geyer et al., 2014). At present, there are no effective treatments for EON (Lee et al., 2008; Chatziralli et al., 2010), but if the clinicians can detect the associated visual loss and discontinue ethambutol administration in the early stage of EON, the irreversible profound visual loss can be avoided (Kakkada et al., 2005).

    Glaucoma studies found that the optic nerve impairment or loss preceded visual loss. Previous studies found that the visual function decayed when the thickness of the peripapillary retinal nerve fiber layer (pRNFL) decreased below 75 μm in patients with glaucoma (Kanamori et al., 2003; Costello et al., 2006). If optic nerve impairment or loss precedes the central visual loss, we could screen for optic nerve loss in EON patients treated with ethambutol. Recently, the advancement of a non-invasive imaging technique, spectral domain optical coherence tomography (SD-OCT) with 1.0-2.0 μm resolution in cross-section, is widely used in ophthalmology to measure the thickness of the retinal nerve fiber layer (RNFL) and the retinal ganglion cell layer (Wojtkowski et al., 2004; Garcia-Martin et al., 2014). A previous study demonstrated that pRNFL thickness in EON patients was thinner compared with healthy controls, with the greatest loss in the temporal pRNFL (Chai et al., 2007). However, due to the interferences of optic disc dysplasia, high myopia and blood vessels in pRNFL, the difference in pRNFL thickness between individuals is great. The individual difference of macular thickness without these interferences is small. The macula is mainly composed of retinal ganglion cell bodies which account for 40% thickness of macula (Papchenko et al., 2012), therefore macular thickness can give some representation of optic nerve injury.

    We formed a hypothesis that by detecting pRNFL and macular thicknesses with SD-OCT and evaluating their correlations to visual field sensitivity in patients with EON, a sensitive predictor of EON could be established. This could inform ophthalmologists when to discontinue ethambutol treatment to avoid the subsequent visual loss.

    Subjects and Methods

    Subjects

    A total of 11 EON patients (22 eyes) were consecutively enrolled in this study. Twenty-four healthy subjects (48 eyes) from staff at the Chinese People Liberation Army General Hospital were recruited as healthy controls (Table 1).

    Inclusion criteria: the patients with optic neuropathy from Department of Ophthalmology, Chinese PLA General Hospital were recruited in the present study according to the diagnostic criteria for EON (Lim, 2006; Papchenko et al., 2012). (1) Visual loss symptoms after taking ethambutol; (2) more than one primary and two secondary criteria as follows: the primary criteria: abnormal perception of colors (color anomalopia) without other causes, bilateral central visual loss or cecocentral scotomas; the secondary criteria: papillary pale and visual loss except for central or cecocentral scotomas.

    Exclusion criteria: refractive error greater than ±6.00 diopters sphere, an astigmatism of ±2.00 diopters, intraocular pressure greater than 21 mmHg (1 mmHg=0.133 kPa) complicated with other ocular diseases, intraocular surgery history, other diseases affecting the visual field and the optic nerve or visual pathway.

    The study was approved by the Ethics Committee of the Chinese PLA General Hospital and was conducted following the Declaration of Helsinki in its currently applicable version. Patients provided written informed consent.

    SD-OCT

    All patients underwent OCT examinations in 3-5 days after a confirmed diagnosis of EON. OCT examinations were performed with SD-OCT (Cirrus HD OCT, Carl Zeiss Meditec Inc., Dublin, CA, USA) and without pupil dilatation. pRNFL was detected by a 3.4-mm circular scan around the optic disc. The following parameters were measured: average pRNFL thickness value (360° measure), four quadrants of pRNFL thickness (superior, nasal, inferior and temporal quadrants), and 12-hour pRNFL thickness (Figure 1A-C). The pRNFL thickness was divided in the six sectors according to glaucoma studies: (temporal (310°-40°), superotemporal (41°-80°), superonasal (81°-120°), nasal (121°-230°), inferonasal (231°-270°), and inferotemporal (271°-310°), and calculated according to the parameters acquired from 3.4-mm circular scanning (Figure 2).

    Macular thickness and volume were examined using the device’s standard Macular Cube model (512 × 128), and the macular measurements were included: (1) cube average macular thickness (CAMT) within the diameter of a 6-mm circle in the macula; (2) cube macular volume, macular volume within the diameter of a 6-mm circle; (3) nine sectors of macular thickness according to 1-, 3-, 6-mm Early Treatment Diabetic Retinopathy Study (ETDRS) map, among them the central subfield macular thickness, was the average macular fovea thickness within the diameter of a 1-mm circle (Figure 1D). The observation indexes include average pRNFL thickness (μm), macular volume, and nine sectors of macular thickness. The 3.4-mm circular scan model and standard Macular Cube model (512 × 128) with automatic analysis provide the parameters directly.

    Visual function testing

    All patients with EON underwent ophthalmological examinations, including best-corrected visual acuity assessment and visual field sensitivity evaluated by a Humphrey Field Analyzer II (Carl Zeiss Meditec, Inc. Dublin, CA, USA) using Goldmann size III stimulus within 3-5 days after a confirmed diagnosis of EON.

    The best-corrected visual acuity was assessed by a Snellen Eye Chart (decimal acuity) and converted into logMAR notations (decimal acuity). Finger counting, hand motion, and light perception were converted into logMAR equivalents of 1.85, 2.3, 2.7 and 3.0 (Schulze-Bonsel et al., 2006). For visual sensitivity loss, the severity of visual field sensitivity defects was evaluated according to total deviation measured in decibels. The correlation of the average visual field sensitivity of 12 central points (an area roughly equivalent to themacular area Figure 2A) to macular thickness was evaluated (Monteiro et al., 2012). Visual sensitivity loss in the six areas, corresponding to the inferonasal, inferotemporal, temporal, superotemporal, superonasal, and nasal pRNFL thickness according to a previously published map used in glaucoma studies, was evaluated by previously described methods (Garway-Heath et al., 2000) (Figure 2B). The average visual field sensitivity of 12 central points was calculated.

    Table 1 Demographic and clinical overview of subjects in this study

    Statistical analysis

    All statistical analyses were performed using SPSS 17.0 software (SPSS, Chicago, IL, USA). Cohort differences were analyzed by the Kruskal-Wallis test for age and the Fisher exact test of Chi-square tests for sex. To analyze the differences in OCT measurements between the EON and healthy control groups, two-sample t-test was performed. For the correlations between pRNFL thickness, macular measurements and visual field sensitivity, linear regression models (Pearson test) were used. P < 0.05 was considered statistically significant.

    Results

    Quantitative analysis of subjects

    A total of 11 patients (22 eyes) with EON were enrolled in this study. Among them, three eyes were excluded: the OCT parameters of two eyes were detected by a time-domain OCT device, and the refractive error of one eye was more than ±6.00 diopters sphere. Therefore, there were 19 affected eyes in our study. As two eyes in an EON patient were excluded due to papillary edema, pRNFL thickness in 17 EON-affected eyes was analyzed. Seven of the eyes did not have records of visual field sensitivity due to poor vision. Only 10 eyes underwent evaluation for the correlations of pRNFL thickness loss and visual sensitivity loss. Three subjects and their six affected eyes did not have macular OCT parameters resulting in macular measurements of 13 eyes being includedin the analysis. Additionally, 3 eyes did not have visual field sensitivity records; the macular OCT parameters of these 10 eyes were used to investigate correlation with corresponding visual field sensitivity (Figure 3). A total of 24 healthy participants (48 eyes) were recruited as controls in our study. There were no differences in age (Kruskal-Wallis test, P = 0.910) and gender (Fisher exact test, EON-pRNFL versus healthy controls: P = 0.422; EON-macular versus healthy controls: P = 0.565) between the EON-pRNFL, EON-macular and healthy controls cohorts (Table 1).

    Table 2 pRNFL (μm) measurements in EON patients and healthy controls

    SD-OCT

    The temporal quadrant of pRNFL thickness in EON-affected eyes was lower compared with that in healthy controls, and the difference was statistically significant (P = 0.002). In the three remaining quadrants, there were no statistical differences in pRNFL thickness between the EON patient and healthy control cohorts (Table 1; Figures 4, 5). The PT3 sector of pRNFL, which composes the papillomacular bundle, showed the most thinning (PT3: P = 0.000; Table 2).

    Figure 1 The maps of optical coherence tomography measurements for pRNFL and macular thickness.

    Taking overall macular measurements, cube macular volume and CAMT (P = 0.043) in the EON-affected eyes decreased compared with that in healthy controls, but for cube macular volume the difference was not statistically significant (P = 0.075). For the nine sectors of macular thickness according to ETDRS, the four sectors of the inner circle (C1-S, C1-N, C1-I and C1-T) and nasal sector of the outer circle (C2-N) decreased compared with healthy controls (Table 3). All these results indicated that the inner circle and outer nasal sectors containing primarily papillomacular bundle axons are thinner in the EON-affected eyes compared with healthy controls. Papillomacular bundle axons are susceptible to EON impairment.

    Visual function test and OCT measurements

    There were no correlations between visual acuity and macular measurements in the EON-affected eyes. There were no correlations between pRNFL thickness and the corresponding visual sensitivity loss detected globally within the six regions. In the impaired sectors of the macula, 12 central points of visual sensitivity loss were correlated to CAMT and C2-N (Figure 6). All these results indicated that the thinning of CAMT and C2-N thickness could predict the onset of EON.

    Discussion

    Figure 2 The maps for macular thickness and pRNFL sectors thickness with corresponding VFS areas.

    Figure 4 pRNFL thickness alterations in EON patients and healthy controls.

    Figure 5 Macular thickness alternations in nine sectors divided according to ETDRS between EON patients and healthy controls.

    In the present study, the average and temporal quadrant of pRNFL thickness in patients with EON decreased. In particular, the temporal 3 clock sector (PT3) of pRNFL thickness, composed by the papillomacular bundle fibers, decreased sharply. These results were consistent with previous OCT studies concerning EON (Zoumalan et al., 2005; Chai et al., 2007; Menon et al., 2009). The thinning location of pRNFL coincided with that of papillomacular bundle fibers, which could prove that the papillomacular bundle is preferentially involved at a structural injury level in EON eyes. However, other studies have indicated that there was no axonal loss of pRNFL in EON eyes. Kim et al. (2008) showed that the average and fourquadrants of pRNFL thickness in 20 EON-affected eyes were not thinner than those in age-matched eyes of healthy controls. These different outcomes may result from the smaller size of samples in these studies. However, these might implythat pRNFL is not the ideal model to represent axonal loss in optic neuropathy for it is easily disturbed by optic dysplasia, edema and refraction abnormality.

    Figure 3 Demographic map of patients with EON.

    Figure 6 Correlation between VFS loss and macular thickness in patients with ethambutol-induced optic neuropathy.

    Table 3 Macular measurements in EON patients and healthy controls

    Macular thickness had already reduced in the early stage of EON. In the present study, overall average macular thickness and macular volume decreased in EON-affected eyes compared with healthy controls. Macular thickness began to decrease in the four sectors of the inner circle and in outer nasal sectors. These results could be explained by the following reasons: maculae are disturbed by individual differences; furthermore, up to 40% of macular volume consists of the ganglion cell layer (Papchenko et al., 2012). Therefore, the macular thickness can be a more sensitive measure of the impairment of optic nerve in EON eyes. Currently, there are no reports regarding morphological alterations of macular thickness and macular volume in EON-affected eyes by SDOCT. However, the idea that the macula was more sensitive to EON impairment has been proved in EON animal models. Histopathology of the retina in monkeys with EON revealed single cell necrosis, decreased retinal ganglion cells in the parafovea and increased microglia cells in the RNFL (Zoumalan et al., 2005). Additionally, retinal ganglion cells are most dense in the macula and form a stratified multi-cellular layer within the six central degrees of the visual field. Because of the lack of large retinal vessel interferences in the macula area and smaller individual variances, compared with pRNFL thickness, macular thickness should be a sensitive marker to predict functional injury (Kinoshita et al., 2012), which is confirmed in our study.

    Previous studies have demonstrated that visual threshold and retinal ganglion cell thickness in the macula appear to be more correlated with visual sensitivity loss in the macula than in the pRNFL in patients with glaucoma, optic neuritis and anterior ischemic optic neuropathy (Kardon, 2011; Schneider et al., 2013). In the present study, because EON primarily affects central fixation, we focused on evaluating the correlations between macular thickness loss and central visual sensitivity loss in EON eyes and found that the CAMT and C2-N thickness losses were correlated to the loss of central visual sensitivity. Measurement of these thicknesses by OCT, an established ophthalmological technique, would be a useful clinical tool in predicting the onset of EON. The timely discontinuing use of ethambutol can prevent further visual loss.

    The present study evaluated the macular thickness injury and their correlations to visual sensitivity loss, and revealed that CAMT and C2-N thickness were optimal structural markers to predict the onset of EON. This is the first report of these findings and should prove a very useful method to detect early EON and avoid subsequent visual function loss in patients. However, due to the small number of EON. subjects and individual differences of optic nerve and macular thickness detected by OCT, this conclusion needs to be confirmed using a larger sample and a longitudinal study would add to our understanding of controlling EON.

    Acknowledgments: We are very grateful to Shuo Zhao, Huanfen Zhou and Shao-ying Tan for their helps in contributing to this work.

    Author contributions: SHW obtained funding and supervision. CXP designed this study. CXP, BC, ADZ, BJY and QHW performed experiments. MY analyzed data. CXP wrote the paper. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    Boulanger-Scemama E, Touitou V, Le Hoang P (2013) Bitemporal hemianopia as presenting sign of severe ethambutol toxicity. J Fr Ophtalmol 36:e163-167.

    Chai SJ, Foroozan R (2007) Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol-induced optic neuropathy. Br J Ophthalmol 91: 895-897.

    Chatziralli IP, Papazisis L, Keryttopoulos P, Papadopoulou D, Sergentanis TN (2010) Disentangling renal function in the context of irreversible ethambutol optic neuropathy. Int Ophthalmol 30:743-744.

    Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, Freedman MS, Zackon DH, Kardon RH (2006) Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 59:963-969.

    Fonkem E, Skordilis MA, Binkley EM, Raymer DS, Epstein A, Arnold WD, Kissel JT, Lawson VH (2013) Ethambutol toxicity exacerbating the phenotype of CMT2A2. Muscle Nerve 48:140-144.

    Fraunfelder FW, Sadun AA, Wood T (2006) Update on ethambutol optic neuropathy. Expert Opin Drug Saf 5:615-618.

    Garcia-Martin E, Polo V, Larrosa JM, Marques ML, Herrero R, Martin J, Ara JR, Fernandez J, Pablo LE (2014) Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology 121:573-579.

    Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107:1809-1815.

    Geyer HL, Herskovitz S, Slamovits TL, Schaumburg HH (2014) Optochiasmatic and peripheral neuropathy due to ethambutol overtreatment. J Neuroophthalmol 34:257-258.

    Kanamori A, Escano MF, Eno A, Nakamura M, Maeda H, Seya R, Ishibashi K, Negi A (2003) Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 217:273-278.

    Kardon R (2011) The Role of the Macula OCT Scan in Neuro-ophthalmology. J Neuroophthalmol 31: 353.

    Kho RC, Al-Obailan M, Arnold AC (2011) Bitemporal visual field defects in ethambutol-induced optic neuropathy. J Neuroophthalmol 31:121-126.

    Kim U, Hwang JM (2008) Early stage ethambutol optic neuropathy: retinal nerve fiber layer and optical coherence tomography. Eur J Ophthalmol 19:466-469.

    Kinoshita J, Iwata N, Maejima T, Kimotsuki T, Yasuda M (2012) Retinal function and morphology in monkeys with ethambutol-induced optic neuropathy. Invest Ophthalmol Vis Sci 53:7052-7062.

    Kokkada SB, Barthakur R, Natarajan M, Palaian S, Chhetri AK, Mishra P (2005) Ocular side effects of antitubercular drugs-a focus on prevention, early detection and management. Kathmandu Univ Med J (KUMJ) 3:438-441.

    Kozak SF, Inderlied CB, Hsu HY, Heller KB, Sadun AA (1998) The role of copper on ethambutol’s antimicrobial action and implications for ethambutol-induced optic neuropathy. Diagn Microbiol Infect Dis 30:83-87.

    Lee EJ, Kim SJ, Choung HK, Kim JH, Yu YS (2008) Incidence and clinical features of ethambutol-induced optic neuropathy in Korea. J Neuroophthalmol 28:269-277.

    Lim SA (2006) Ethambutol associated optic neuropathy. Ann Acad Med Singapore 35:274-278.

    Menon V, Jain D, Saxena R, Sood R (2009) Prospective evaluation of visual function for early detection of ethambutol toxicity. Br J Ophthalmol 93:1251-1254.

    Monteiro ML, Fernandes DB, Apostolos-Pereira SL, Callegaro D (2012) Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3959-3966.

    Pan BX, Ross-Cisneros FN, Carelli V, Rue KS, Salomao SR, Moraes-Filho MN, Moraes MN, Berezovsky A, Belfort R, Sadun AA (2012) Mathematically modeling the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 53:7608-7617.

    Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV (2012) Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmologica 90:e463-469.

    Pradhan M, Sharp D, Best S, Vincent A, Vaphiades M (2010) Drug-induced optic neuropathy-TB or not TB. Sur Ophthalmol 55:378-385.

    ?ahin A, Kür?at Cingü A, Kaya S, Türkcü G, Ar? ?, Evliyao?lu O, ??nar Y, Türkcü FM, Yüksel H, Murat M, ?a?a ?, G?kalp O (2013) The protective effects of caffeic acid phenethyl ester in isoniazid and ethambutol-induced ocular toxicity of rats. Cutan Ocul Toxicol 32:228-233.

    Schneider E, Zimmermann H, Oberwahrenbrock T, Kaufhold F, Kadas EM, Petzold A, Bilger F, Borisow N, Jarius S, Wildemann B (2013) Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One 8:e66151.

    Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M (2006) Visual acuities “hand motion” and “counting fingers” can be quantified with the Freiburg visual acuity test. Invest Ophthalmol Vis Sci 47:1236-1240.

    Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33:172-178.

    Wang W, Yang H, Xhang XL (2012) Present status of ethambutol-induced optic neuropathy. Zhonghua Yan Ke Za Zhi 48:184-188.

    Wojtkowski M, Bajraszewski T, Gorczyńska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138:412-419.

    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734-1746.

    Zoumalan CI, Agarwal M, Sadun AA (2005) Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 243:410-416.

    Copyedited by Dawes E, Yajima W, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.179061 http://www.nrronline.org/

    How to cite this article: Peng CX, Zhang AD, Chen B, Yang BJ, Wang QH, Yang M, Wei SH (2016) Macular thickness as a predictor of loss of visual sensitivity in ethambutol-induced optic neuropathy. Neural Regen Res 11(3):469-475.

    Funding: This research was supported by the National High Technology Research and Development Program of China (863 Program), No. 2015AA020511.

    Accepted: 2015-12-22

    *Correspondence to: Shi-hui Wei, weishihui706@hotmail.com.

    欧美日韩视频精品一区| 欧美午夜高清在线| 亚洲成人免费av在线播放| 国产精品久久久av美女十八| 亚洲国产看品久久| 午夜福利乱码中文字幕| 久久婷婷成人综合色麻豆| 亚洲av国产av综合av卡| 欧美黑人精品巨大| 久久人人97超碰香蕉20202| 黄色毛片三级朝国网站| 国产精品电影一区二区三区 | 成年人免费黄色播放视频| 99在线人妻在线中文字幕 | 极品少妇高潮喷水抽搐| 一边摸一边做爽爽视频免费| 久久精品亚洲精品国产色婷小说| 欧美性长视频在线观看| 99九九在线精品视频| 国产老妇伦熟女老妇高清| 九色亚洲精品在线播放| 欧美午夜高清在线| 欧美乱妇无乱码| 伦理电影免费视频| 女同久久另类99精品国产91| 1024香蕉在线观看| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 一本大道久久a久久精品| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 99国产精品99久久久久| 亚洲av成人不卡在线观看播放网| 免费高清在线观看日韩| 日韩大片免费观看网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| aaaaa片日本免费| 在线观看免费高清a一片| 五月天丁香电影| 亚洲自偷自拍图片 自拍| 一区二区av电影网| 一二三四社区在线视频社区8| 狠狠狠狠99中文字幕| bbb黄色大片| 777米奇影视久久| 正在播放国产对白刺激| 午夜福利影视在线免费观看| 成人特级黄色片久久久久久久 | 在线观看免费视频网站a站| 亚洲性夜色夜夜综合| 国产黄频视频在线观看| 国产亚洲欧美精品永久| 美国免费a级毛片| 欧美亚洲日本最大视频资源| 日韩视频在线欧美| 国产精品自产拍在线观看55亚洲 | 最黄视频免费看| 亚洲天堂av无毛| 18禁裸乳无遮挡动漫免费视频| 久久人妻av系列| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| www.自偷自拍.com| 高清视频免费观看一区二区| 亚洲九九香蕉| 女警被强在线播放| 久久国产精品人妻蜜桃| 午夜福利影视在线免费观看| 国产精品久久久久久精品电影小说| 中文字幕制服av| 伊人久久大香线蕉亚洲五| 欧美在线黄色| 美女高潮到喷水免费观看| 老司机靠b影院| 999精品在线视频| 色婷婷久久久亚洲欧美| 精品福利观看| 免费在线观看影片大全网站| 亚洲第一av免费看| 欧美激情 高清一区二区三区| 午夜福利免费观看在线| 大香蕉久久成人网| 精品国产一区二区久久| 久久久久久亚洲精品国产蜜桃av| 91麻豆av在线| 久久热在线av| 国产精品一区二区免费欧美| 精品高清国产在线一区| 国产日韩欧美视频二区| 丝袜在线中文字幕| 亚洲全国av大片| 亚洲av成人不卡在线观看播放网| 国产在线一区二区三区精| 久久精品熟女亚洲av麻豆精品| 天天影视国产精品| 一区二区日韩欧美中文字幕| 精品人妻熟女毛片av久久网站| 18在线观看网站| 色综合欧美亚洲国产小说| 成人精品一区二区免费| 久久久久久免费高清国产稀缺| 久久亚洲精品不卡| 叶爱在线成人免费视频播放| 大香蕉久久成人网| 国产精品亚洲av一区麻豆| 久久人妻av系列| 欧美人与性动交α欧美软件| 美女国产高潮福利片在线看| 国产在线精品亚洲第一网站| 一区在线观看完整版| 久久性视频一级片| 欧美成人免费av一区二区三区 | 91av网站免费观看| 19禁男女啪啪无遮挡网站| 丁香欧美五月| 亚洲成人免费电影在线观看| 国产精品电影一区二区三区 | 香蕉国产在线看| 亚洲人成电影免费在线| 久久精品国产99精品国产亚洲性色 | 丰满少妇做爰视频| 一本久久精品| 国产欧美日韩一区二区三区在线| 少妇被粗大的猛进出69影院| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 免费不卡黄色视频| 午夜激情久久久久久久| 丁香六月欧美| 亚洲精品在线美女| av视频免费观看在线观看| 香蕉丝袜av| 久久精品成人免费网站| 三级毛片av免费| 久久久久精品国产欧美久久久| 午夜福利视频精品| 亚洲五月色婷婷综合| 十八禁高潮呻吟视频| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 亚洲av日韩在线播放| 午夜老司机福利片| 久久热在线av| 美女国产高潮福利片在线看| 免费看a级黄色片| 精品人妻熟女毛片av久久网站| 免费看十八禁软件| 性少妇av在线| 免费一级毛片在线播放高清视频 | 欧美黑人精品巨大| 美女视频免费永久观看网站| 色播在线永久视频| 变态另类成人亚洲欧美熟女 | 国产成人欧美| 国产精品.久久久| 一边摸一边抽搐一进一小说 | 精品少妇久久久久久888优播| 亚洲欧美精品综合一区二区三区| 另类亚洲欧美激情| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 91精品三级在线观看| 最黄视频免费看| 99国产精品99久久久久| 另类精品久久| 亚洲熟妇熟女久久| 一进一出抽搐动态| 丝袜美足系列| 涩涩av久久男人的天堂| 久久人妻福利社区极品人妻图片| 亚洲一码二码三码区别大吗| 国产高清国产精品国产三级| 啦啦啦视频在线资源免费观看| 午夜两性在线视频| 无遮挡黄片免费观看| 精品国产乱码久久久久久男人| 国产一区二区在线观看av| 91大片在线观看| 一级a爱视频在线免费观看| 99re在线观看精品视频| 亚洲七黄色美女视频| 国产精品成人在线| 777米奇影视久久| 高清在线国产一区| 大型av网站在线播放| 99精品久久久久人妻精品| 欧美精品av麻豆av| 在线观看舔阴道视频| 欧美成人午夜精品| 丰满饥渴人妻一区二区三| 中文字幕制服av| 久久人人97超碰香蕉20202| 国产野战对白在线观看| 欧美av亚洲av综合av国产av| 男女免费视频国产| 国产成人av教育| 中文字幕最新亚洲高清| 美女国产高潮福利片在线看| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 国产成人av激情在线播放| 久久久精品区二区三区| av欧美777| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 麻豆国产av国片精品| 国产精品免费大片| 大码成人一级视频| 91大片在线观看| 伦理电影免费视频| 欧美久久黑人一区二区| 精品高清国产在线一区| 成人特级黄色片久久久久久久 | 男女午夜视频在线观看| 1024香蕉在线观看| 五月开心婷婷网| 黄频高清免费视频| 久热这里只有精品99| 国产在线免费精品| 国产成人影院久久av| 久久九九热精品免费| 18禁美女被吸乳视频| av网站免费在线观看视频| 日本黄色日本黄色录像| 狠狠婷婷综合久久久久久88av| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 麻豆成人av在线观看| 亚洲av成人不卡在线观看播放网| 19禁男女啪啪无遮挡网站| 一区二区三区精品91| 久久久久国产一级毛片高清牌| 精品国内亚洲2022精品成人 | 久久这里只有精品19| 亚洲中文日韩欧美视频| 三上悠亚av全集在线观看| 精品国产一区二区三区四区第35| 1024香蕉在线观看| 亚洲久久久国产精品| 午夜福利免费观看在线| 欧美精品人与动牲交sv欧美| 国产精品美女特级片免费视频播放器 | 美女福利国产在线| 黄色视频在线播放观看不卡| 国产亚洲精品第一综合不卡| 欧美黄色片欧美黄色片| 亚洲黑人精品在线| 超色免费av| 性少妇av在线| 亚洲国产欧美在线一区| 欧美大码av| 一本综合久久免费| 黄网站色视频无遮挡免费观看| 日本五十路高清| 日韩欧美一区二区三区在线观看 | 9热在线视频观看99| 日本黄色视频三级网站网址 | 美女视频免费永久观看网站| 搡老岳熟女国产| 国产伦理片在线播放av一区| 国产精品一区二区在线观看99| 国产伦人伦偷精品视频| 十八禁人妻一区二区| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 丰满少妇做爰视频| 欧美成人午夜精品| 波多野结衣av一区二区av| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久久5区| 日本av免费视频播放| 国产区一区二久久| 青青草视频在线视频观看| 成人永久免费在线观看视频 | 亚洲色图av天堂| 黑人巨大精品欧美一区二区mp4| 丝瓜视频免费看黄片| 午夜福利一区二区在线看| 国产精品九九99| 国产精品 国内视频| 三级毛片av免费| 色尼玛亚洲综合影院| 9191精品国产免费久久| 水蜜桃什么品种好| 嫩草影视91久久| 在线永久观看黄色视频| 香蕉丝袜av| 精品国产乱码久久久久久小说| 国产亚洲欧美精品永久| 免费一级毛片在线播放高清视频 | 久久精品国产综合久久久| 成人特级黄色片久久久久久久 | 国产一区二区三区综合在线观看| 极品教师在线免费播放| 大香蕉久久成人网| 2018国产大陆天天弄谢| 亚洲中文日韩欧美视频| 国产精品亚洲一级av第二区| 久久久国产欧美日韩av| 啦啦啦 在线观看视频| a级毛片在线看网站| bbb黄色大片| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲全国av大片| 91麻豆精品激情在线观看国产 | 久久 成人 亚洲| 亚洲熟女毛片儿| 午夜福利一区二区在线看| 大陆偷拍与自拍| 欧美乱妇无乱码| 欧美中文综合在线视频| 欧美国产精品va在线观看不卡| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 99久久国产精品久久久| 国产99久久九九免费精品| 一区二区三区激情视频| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久成人av| 国产成人欧美| 男女床上黄色一级片免费看| 久久精品成人免费网站| 日韩三级视频一区二区三区| 久久精品国产亚洲av高清一级| 成人黄色视频免费在线看| 国产精品免费大片| 9热在线视频观看99| 精品视频人人做人人爽| 日韩人妻精品一区2区三区| av一本久久久久| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看| 国精品久久久久久国模美| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| av网站在线播放免费| 亚洲三区欧美一区| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品| 操出白浆在线播放| 成年人午夜在线观看视频| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 日日夜夜操网爽| 国产一区二区三区视频了| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 女性被躁到高潮视频| 久久毛片免费看一区二区三区| 波多野结衣一区麻豆| 成人精品一区二区免费| 天天影视国产精品| 老鸭窝网址在线观看| 国产99久久九九免费精品| 国产一区有黄有色的免费视频| 丝袜人妻中文字幕| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| 无人区码免费观看不卡 | 久久精品熟女亚洲av麻豆精品| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 欧美日韩中文字幕国产精品一区二区三区 | 嫩草影视91久久| 亚洲av第一区精品v没综合| av天堂久久9| 精品人妻1区二区| 国产成人影院久久av| 9色porny在线观看| 欧美日韩精品网址| 宅男免费午夜| 操出白浆在线播放| 超碰成人久久| 深夜精品福利| 日本vs欧美在线观看视频| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 另类精品久久| 国产伦人伦偷精品视频| 国产激情久久老熟女| 黄色 视频免费看| 欧美在线一区亚洲| 久久久久久久久免费视频了| 老司机靠b影院| 午夜福利免费观看在线| 国产男女内射视频| 夜夜夜夜夜久久久久| 日本av免费视频播放| 日本av手机在线免费观看| 久久久国产欧美日韩av| 满18在线观看网站| 精品国内亚洲2022精品成人 | 久久久久久久久免费视频了| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 窝窝影院91人妻| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 一区二区三区国产精品乱码| 国产不卡一卡二| 精品国产一区二区久久| 亚洲专区国产一区二区| 国产午夜精品久久久久久| 成人国产av品久久久| 五月开心婷婷网| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| 国产成人av教育| 日韩一区二区三区影片| 最近最新中文字幕大全免费视频| 在线观看免费高清a一片| 人妻一区二区av| 在线播放国产精品三级| 国产xxxxx性猛交| 一区二区av电影网| 另类精品久久| 午夜福利在线观看吧| 美国免费a级毛片| 在线天堂中文资源库| 久久这里只有精品19| 久久人妻av系列| 在线观看免费视频网站a站| 桃花免费在线播放| av天堂在线播放| 精品久久久久久电影网| 男人舔女人的私密视频| 后天国语完整版免费观看| 久热爱精品视频在线9| 日韩人妻精品一区2区三区| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 啦啦啦在线免费观看视频4| 国产一区二区激情短视频| 成人影院久久| tube8黄色片| 日本wwww免费看| 丝袜在线中文字幕| 日本av免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 亚洲色图综合在线观看| 久久av网站| av一本久久久久| 在线观看免费视频网站a站| 亚洲天堂av无毛| 欧美精品亚洲一区二区| 成人免费观看视频高清| 亚洲人成伊人成综合网2020| 在线十欧美十亚洲十日本专区| 免费观看人在逋| 久久精品国产综合久久久| 免费高清在线观看日韩| 99九九在线精品视频| 精品国产一区二区三区久久久樱花| 中文字幕av电影在线播放| 在线天堂中文资源库| av国产精品久久久久影院| 这个男人来自地球电影免费观看| 免费看十八禁软件| 色播在线永久视频| 日本黄色日本黄色录像| 久久久久久久久免费视频了| 亚洲精品一二三| 正在播放国产对白刺激| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 久久久国产欧美日韩av| 性少妇av在线| 国产在线一区二区三区精| av福利片在线| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 天堂动漫精品| 日韩免费高清中文字幕av| 久久精品91无色码中文字幕| 18禁观看日本| 2018国产大陆天天弄谢| 精品少妇黑人巨大在线播放| 美国免费a级毛片| 亚洲精品自拍成人| 亚洲国产成人一精品久久久| 91麻豆av在线| 99re6热这里在线精品视频| 一区二区三区乱码不卡18| 男女边摸边吃奶| 久久久久久久国产电影| 高清av免费在线| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 日韩大码丰满熟妇| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美精品永久| 国产一区二区三区综合在线观看| 久久精品亚洲熟妇少妇任你| tocl精华| 日本欧美视频一区| 高潮久久久久久久久久久不卡| 久久中文字幕一级| 中文亚洲av片在线观看爽 | 在线av久久热| 少妇被粗大的猛进出69影院| 丝袜美足系列| 亚洲精品自拍成人| 老熟女久久久| 欧美国产精品一级二级三级| 国产精品九九99| 国产精品久久久久久精品电影小说| 久9热在线精品视频| 国产日韩欧美在线精品| 9色porny在线观看| 国产亚洲精品久久久久5区| 成人特级黄色片久久久久久久 | 亚洲精品中文字幕在线视频| 久久久久视频综合| 91精品三级在线观看| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 精品人妻1区二区| 国产片内射在线| 老司机影院毛片| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 一本久久精品| 两性夫妻黄色片| 亚洲欧美色中文字幕在线| 黄色a级毛片大全视频| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 国产精品亚洲av一区麻豆| 一本一本久久a久久精品综合妖精| 亚洲专区字幕在线| 国产精品成人在线| xxxhd国产人妻xxx| 免费高清在线观看日韩| 中文亚洲av片在线观看爽 | 午夜福利影视在线免费观看| 91国产中文字幕| 丁香欧美五月| 国精品久久久久久国模美| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| 男女高潮啪啪啪动态图| 国产av精品麻豆| 国产亚洲一区二区精品| 精品久久蜜臀av无| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 一区福利在线观看| 美女福利国产在线| 18在线观看网站| 免费黄频网站在线观看国产| 精品国产乱子伦一区二区三区| 亚洲一码二码三码区别大吗| 亚洲专区中文字幕在线| 国产亚洲午夜精品一区二区久久| 一个人免费在线观看的高清视频| 亚洲专区国产一区二区| 亚洲免费av在线视频| 人人妻人人爽人人添夜夜欢视频| 超碰成人久久| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月 | 免费看a级黄色片| 91老司机精品| 人成视频在线观看免费观看| 午夜精品国产一区二区电影| svipshipincom国产片| 人人妻人人澡人人爽人人夜夜| 亚洲熟女毛片儿| 久久久久国产一级毛片高清牌| 国产在线免费精品| 亚洲五月色婷婷综合| 一本色道久久久久久精品综合| 久久久久精品人妻al黑| 国产精品98久久久久久宅男小说| av片东京热男人的天堂| www.999成人在线观看| a级毛片黄视频| 极品人妻少妇av视频| 99精品欧美一区二区三区四区| a级毛片黄视频| aaaaa片日本免费| 中文字幕人妻丝袜一区二区| 国产精品国产高清国产av | 99国产精品99久久久久| 十八禁人妻一区二区| 国产xxxxx性猛交| 大片免费播放器 马上看| 久久性视频一级片| 久久狼人影院| 亚洲av片天天在线观看| 久久午夜亚洲精品久久| 久久精品国产亚洲av香蕉五月 | 天天躁狠狠躁夜夜躁狠狠躁|