• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neuroinflammation in glaucoma: soluble tumor necrosis factor alpha and the connection with excitotoxic damage

    2016-12-02 03:28:09JorgeL.CuevaVargas,AdrianaDiPolo

    HIGHLIGHTS

    Neuroinflammation in glaucoma: soluble tumor necrosis factor alpha and the connection with excitotoxic damage

    Inflammation is a complex and highly regulated response that occurs early after infection or injury. This process is initiated by cells of the immune system to re-establish tissue homeostasis. When the injury is persistent, however, chronic inflammation leads to overproduction of noxious mediators that contribute to cell dysfunction and death. The inflammatory response in the central nervous system (CNS), known as neuroinflammation, is achieved by activation of resident glia and monocyte-derived cells. Accumulating evidence indicates that this cellular response occurs in the early stages of numerous neurodegenerative diseases, triggering a cascade of events that converge to promote neuronal damage. Indeed, neuroinflammation has been reported in a host of CNS disorders including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, stroke, and glaucoma.

    Glaucoma is a prevalent neurodegenerative disease and the leading cause of irreversible blindness worldwide affecting over 60 million people. Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGC) and their axons in the optic nerve resulting in gradual vision loss. High intraocular pressure is the most significant known risk factor for developing the disease, but the mechanism by which elevated pressure promotes RGC damage is currently unknown. Current therapies are aimed at lowering intraocular pressure, but many patients continue to experience visual field loss even when pressure lowering treatments are implemented. A better understanding of the mechanisms causing glaucomatous neurodegeneration triggered by ocular hypertension injury is, therefore, essential to develop effective therapies.

    Accumulating evidence indicates that neuroinflammation plays a key role in RGC damage in glaucoma. A number of studies have confirmed the presence of hallmark features of neuroinflammation in glaucoma animal models and human specimens including glial cell activation, upregulation of proinflammatory cytokines, induction of the complement cascade, and trans-endothelial cell migration of leukocytes (Soto and Howell, 2014). A critical modulator of the neuroinflammatory response in glaucoma is tumor necrosis factor alpha (TNFα). RGCs express the TNFα receptors 1 and 2 (TNFR1/2) and TNFα signaling has been linked to RGC death. For example, exogenous administration of TNFα promotes RGC loss and optic nerve degeneration, and genetic or pharmacological depletion of TNFα or its receptors stimulates RGC survival (Tezel et al., 2008). High-throughput characterization of the retinal proteome revealed significant upregulation of TNFα signaling in human glaucoma (Yang et al., 2011). TNFα levels have been shown to be elevated in aqueous humor samples from glaucoma patients (Sawada et al., 2010; Balaiya et al., 2011; Xin et al., 2013). Notably, TNFα gene polymorphisms are associated with primary open angle glaucoma (Fan et al., 2010; Bozkurt et al., 2012; Xin et al., 2013). A recent meta-analysis study (> 3,000 cases) showed that the TNFα 308G/A polymorphism is significantly linked with higher risk of developing primary open angle glaucoma, predominantly in the Asian population, but not with low tension or exfoliation glaucoma (Xin et al., 2013).

    What is the source of TNFα in glaucoma? Chronically reactive glial cells are thought to become a sustained source of proinflammatory cytokines in the CNS. Traditionally, microglia are thought to be the primary source of TNFα after injury or in disease. Using a well-characterized rat model of ocular hypertension glaucoma (Morrison et al., 2015), our team recently demonstrated that high intraocular pressure stimulates production of TNFα by retinal glia (Cueva Vargas et al., 2015). Intriguingly, our results show that Müller cells, the most abundant glial cell type in the retina, rapidly upregulate TNFα in response to increased eye pressure. Müller cells are specialized radial glia that play critical structural, metabolic and support roles for retinal neurons. Consistent with their role as a source of TNFα, Müller cells exposed to selective blockers of the neurotrophin receptor p75NTR, an upstream activator of TNFα production in these cells, promoted RGC survival in models of traumatic axonal injury and excitotoxic damage (Lebrun-Julien et al., 2009a, b). In addition, we observed increased TNFα expression in retinal microglia with amoeboid shape, characteristic of a reactive state, rather than in quiescent cells with ramified morphology (Cueva Vargas et al., 2015). This finding is consistent with previous reports showing TNFα expression in microglia from human glaucomatous optic nerve head and rat retinas subjected to ocular hypertension (Roh et al., 2012). Of interest, high-dose irradiation leading to reduced microglial activation, and presumably decreased levels of proinflammatory mediators, attenuated RGC degeneration in a mouse model of inherited pigmentary glaucoma (Howell et al., 2012). Collectively, these data suggest that both Müller cells and microglia respond rapidly to ocular hypertension by increasing TNFα production.

    TNFα plays both homeostatic and pathophysiological roles in the CNS. TNFα is generated as a membrane-bound precursor that is cleaved by the cell surface protease TNFα-converting enzyme (TACE/ADAM17) to release the soluble 17-kDa protein. Both the transmembrane and secreted forms of TNFα are biologically active and play distinct roles in vivo. Soluble TNFα binds primarily to TNFR1 and regulates apoptosis and chronic inflammation, whereas membrane-bound TNFα displays a higher affinity for TNFR2 and mediates immunity against pathogens, resolution of inflammation and promotes myelination. Consistent with this, mice expressing only transmembrane TNFα suppress the onset and progression of autoimmune demyelination while maintaining host defenses against bacterial infection, septic shock and pulmonary fibrosis. Therefore, modulation of soluble versus transmembrane TNFα signaling might be a powerful strategy to achieve homeostasis in diseases with a neuroinflammatory component.

    Which form of TNFα, soluble or transmembrane, is responsible for RGC death in glaucoma? To investigate this, we used an engineered dominant negative peptide, called XPro1595, that selectively inhibits soluble TNFα without interfering with transmembrane TNFα signalling (Zalevsky et al., 2007). XPro1595 binds only to soluble TNFα monomers and formsinactive heterotrimers that are unable to interact with TNFα receptors. Our data demonstrate that intraocular administration of XPro1595 effectively promoted RGC survival in a rat model of ocular hypertension glaucoma, without altering intraocular pressure (Cueva Vargas et al., 2015). Consistent with the idea that the primary site of degeneration in glaucoma is at the level of RGC axons, we found that glaucomatous eyes had more pronounced axon loss than cell body loss. XPro1595 effectively protected a similar proportion of RGC soma and axons suggesting a dynamic crosstalk between these compartments.

    Both TNFR1 and TNFR2 are upregulated by RGCs during ocular hypertension (Cueva Vargas et al., 2015), thus it is likely that blockade of soluble TNFα with XPro1595 minimizes the detrimental effect of TNFR1 activation while preserving beneficial TNFR2-mediated signaling. Recently, other studies have also reported a beneficial effect of XPro1595 in models of Parkinson’s and Huntington’s disease, spinal cord injury, and experimental autoimmune encephalomyelitis, confirming that soluble TNFα plays a harmful role in the context of multiple neurodegenerative conditions. Etanercept, a drug that blocks both soluble and transmembrane TNFα, also protects RGCs in a rat glaucoma model (Roh et al., 2012). However, non-selective TNFα inhibitors such as etanercept, infliximab and adalimumab have been associated with serious adverse effects including impaired host defense, autoimmunity, lupus, demyelination syndromes and congestive heart failure. Collectively, these findings highlight the benefits of inhibiting soluble TNFα while preserving transmembrane TNFα function during neurodegeneration.

    How does TNFα promote RGC death in glaucoma? In physiological conditions, TNFα exerts homeostatic control of synaptic strength by regulating α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid receptor (AMPAR) trafficking in the CNS (Pribiag and Stellwagen, 2014). AMPAR are tetramers assembled from GluA1-4 subunits, and lack of GluA2 confers calcium (Ca2+) permeability through the AMPAR pore. TNFα strengthens synapses in hippocampal pyramidal neurons by inducing rapid exocytosis of AMPAR that lack or have low stoichiometric amounts of the GluA2 subunit thus enhancing intracellular Ca2+levels. Moreover, TNFα was shown to induce expression of Ca2+-permeable-AMPAR (CP-AMPAR) exacerbating neuronal death during acute ischemia and excitotoxicity (Lebrun-Julien et al., 2009b; Pribiag and Stellwagen, 2014). Our team recently reported that ocular hypertension triggered robust upregulation of CP-AMPAR in RGCs in a TNFα-dependent manner. Using a cobalt (Co2+) permeability assay based on the selective transport of Co2+through CP-AMPAR, but not Ca2+channels or N-methyl-D-aspartate (NMDA) receptors, we demonstrated that RGCs accumulate Co2+soon after induction of ocular hypertension (Cueva Vargas et al., 2015). Co2+uptake was blocked by XPro1595 demonstrating TNFα-dependent CP-AMPAR upregulation in these neurons. Furthermore, intraocular delivery of a non-competitive AMPAR antagonist (GYKI 52466) or a polyamine-derived compound that selectively antagonizes CP-AMPAR (philantotoxin 343), blocked Co2+uptake and promoted striking survival of RGC soma and axons in hypertensive eyes (Cueva Vargas et al., 2015), confirming the role of CP-AMPAR in TNFα-induced RGC death.

    How do AMPAR become Ca2+permeable in glaucoma? The vast majority of AMPAR in the CNS (> 90%) are not Ca2+permeable, but can become so after injury or in disease. The Ca2+permeability of AMPAR varies depending on whether the GluA2 subunit is present and, if so, whether it has undergone mRNA editing. A possible mechanism for AMPAR to become Ca2+permeable is defective GluA2 mRNA editing. Typically, the change from an uncharged amino acid glutamine (Q) to a positively charged arginine (R) in GluA2 is sufficient to confer Ca2+impermeability due to electrostatic repulsion by the arginine residues lining the AMPAR pore. Accordingly, abnormal mRNA processing can result in a Ca2+-permeable AMPAR pore. Using a molecular approach, we recently found that retinal GluA2 is fully edited in glaucoma, ruling out a post-transcriptional editing defect as a mechanism by which AMPARs become permeable to divalent cations in this disease (Cueva Vargas et al., 2015). A second mechanism that would allow Ca2+influx through AMPAR is low stoichiometric amounts of the GluA2 subunit. Using biochemical and immunohistochemical analyses, we showed that GluA2 expression in RGCs is selectively downregulated by ocular hypertension thus setting the stage for increased Ca2+permeability and excitotoxic injury (Cueva Vargas et al., 2015).

    Several factors may contribute to the susceptibility of RGCs to excitotoxic damage via TNFα-induced CP-AMPAR upregulation, including poor cytosolic Ca2+buffering leading to mitochondrial Ca2+overload and generation of reactive oxygen species (Crish and Calkins, 2011). A rise in cytosolic Ca2+via CP-AMPAR is likely to stimulate signaling cascades that exacerbate RGC degeneration. Excessive intracellular Ca2+can activate Ca2+-dependent calpains that degrade components of the RGC axon cytoskeleton impairing axonal transport (Crish and Calkins, 2011). Ca2+overload can also promote oxidative stress compromising the ability of mitochondria to buffer Ca2+, and might disable Na+/K+ion pumps causing electrical failure of RGC axons. CP-AMPAR are also permeable to zinc (Zn2+), which can be particularly toxic for neurons. Zn2+is known to rapidly accumulate in hippocampal neurons following ischemia, and was recently shown to play a role in oxidative stress and age-related neurodegeneration (McCord and Aizenman, 2014). The future elucidation of the precise role of Ca2+and Zn2+excitotoxicity in RGC death is of great interest to understand their potential contribution to CP-AMPAR-mediated damage in glaucoma.

    Our data support a model in which glia-derived soluble TNFα contributes to neurodegeneration in glaucoma by increasing cell membrane expression of CP-AMPAR (Figure 1), an excitatory ionotropic glutamate receptor involved in fast synaptic transmission, thus promoting Ca2+overload and RGC death. These findings identify TNFα as an important molecular link between reactive glia and RGC excitotoxicity mediated by TNFα-induced cell surface CP-AMPAR expression. The connection between de novo TNFα production by glial cells and neuronal excitotoxicity is increasingly being recognized as an important mechanism in neurodegenerative diseases (Olmos and Lladó, 2014). In addition to regulating AMPAR trafficking, TNFα increases NMDA receptor expression and reduces inhibitory GABA receptor levels, thus altering the balance of excitatory to inhibitory synapses. In this scenario, TNFα enhances the synaptic excitation/ inhibition ratio hence potentiating neuronal excitotoxicity. TNFα can also inhibit glutamate uptake by astrocytes further increasing extracellular glutamate levels. In microglia, TNFα induces release of glutamate which, in addition to contributingto excitotoxic damage, can act on microglial metabotropic glutamate receptors through an autocrine loop to stimulate more TNFα synthesis. Collectively, these findings reveal a complex mode of action of TNFα: a direct effect on neurons to shift the balance between excitatory and inhibitory synaptic receptors, and an indirect effect on glial cells to regulate their ability to buffer glutamate and produce TNFα.

    Figure 1 Glia-derived tumor necrosis factor alpha (TNFα): a molecular link between neuroinfammation and retinal ganglion cell (RGC) excitotoxic death in glaucoma.

    In conclusion, while endogenous TNFα plays critical physiological roles in retinal homeostasis and neurotransmission, excess soluble TNFα results in CP-AMPAR upregulation, Ca2+overload and neuronal death in glaucoma. These findings suggest that modulation of soluble TNFα signaling might be beneficial to counter the harmful effect of neuroinflammation and synaptic alterations in glaucomatous optic neuropathies.

    This work was supported by grants from the Canadian Institutes of Health Research and the Fonds de recherche du Québec-Santé (FRQS). A.D.P. holds a National Chercheur Boursier award from FRQS. We thank Dr. Timothy Kennedy (McGill University) for helpful comments on the manuscript. Due to space limitations, the authors regret the omission of many important studies and their corresponding references.

    Jorge L. Cueva Vargas, Adriana Di Polo*

    Department of Neuroscience and Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), University of Montreal, Montreal, Quebec H3R2T6, Canada

    *Correspondence to: Adriana Di Polo, Ph.D., adriana.di.polo@umontreal.ca.

    Accepted: 2016-02-14

    orcid: 0000-0003-1430-0760 (Adriana Di Polo)

    Balaiya S, Edwards J, Tillis T, Khetpa lV, Chalam KV (2011) Tumor necrosis factor-alpha (TNF-α) levels in aqueous humor of primary open angle glaucoma. Clin Ophthalmol 5:553-556.

    Bozkurt B, Mesci L, Irkec M, Ozdag BB, Sanal O, Arslan U, Ersoy F, Tezcan I (2012) Association of tumour necrosis factor alpha-308 G/A polymorphism with primary open-angle glaucoma. Clin Experiment Ophthalmol 40:e156-162.

    Crish SD, Calkins DJ (2011) Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176:1-11.

    Cueva Vargas JL, Osswald IK, Unsain N, Aurousseau MR, Barker PA, Bowie D, Di Polo A (2015) Soluble tumor necrosis factor alpha promotes retinal ganglion cell death in glaucoma via calcium-permeable AMPA receptor activation. J Neurosci 35:12088-12102.

    Fan BJ, Liu K, Wang DY, Tham CCY, Tam POS, Lam DSC, Pang CP (2010) Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 51:4110-4116.

    Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SWM (2012) Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 122:1246-1261.

    Lebrun-Julien F, Morquette B, Douillette A, Saragovi HU, Di Polo A (2009a) Inhibition of p75NTR in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell Neurosci 40:410-420.

    Lebrun-Julien F, Duplan L, Pernet V, Osswald IK, Sapieha P, Bourgeois P, Dickson K, Bowie D, Barker PA, Di Polo A (2009b) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29:5536-5545.

    McCord MC, Aizenman E (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 6:77.

    Morrison JC, Cepurna WO, Johnson EC (2015) Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 141:23-32.

    Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231.

    Pribiag H, Stellwagen D (2014) Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 78:13-22.

    Roh M, Zhang Y, Murakami Y, Thanos A, Lee S, Vavvas D, Benowitz L, Miller J (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7:e40065.

    Sawada H, Fukuchi T, Tanaka T, Abe H (2010) Tumor necrosis factor-α concentrations in the aqueous humor of patients with glaucoma. Invest Ophthalmol Vis Sci 51:903-906.

    Soto I, Howell GR (2014) The complex role of neuroinflammation in glaucoma. Cold Spring Harbor perspectives in medicine 4.

    Tezel G, Carlo Nucci LCNNO, Giacinto B (2008) TNF-[alpha] signaling in glaucomatous neurodegeneration. In: Prog Brain Res, pp 409-421: Elsevier.

    Xin X, Gao L, Wu T, Sun F (2013) Roles of tumor necrosis factor alpha gene polymorphisms, tumor necrosis factor alpha level in aqueous humor, and the risks of open angle glaucoma: a meta-analysis. Mol Vis 19:526-535.

    Yang X, Luo C, Cai J, Powell DW, Yu D, Kuehn MH, Tezel G (2011) Neurodegenerative and inflammatory pathway components linked to TNF-α/ TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci 52:8442-8454.

    Zalevsky J, Secher T, Ezhevsky SA, Janot L, Steed PM, O’Brien C, Eivazi A, Kung J, Nguyen D-HT, Doberstein SK, Erard F, Ryffel B, Szymkowski DE (2007) Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J Immunol 179:1872-1883.

    10.4103/1673-5374.179053 http://www.nrronline.org/

    How to cite this article: Cueva Vargas JL, Di Polo A (2016) Neuroinflammation in glaucoma: soluble tumor necrosis factor alpha and the connection with excitotoxic damage. Neural Regen Res 11(3):424-426.

    电影成人av| 99久久精品国产亚洲精品| 男女边吃奶边做爰视频| 夜夜骑夜夜射夜夜干| 久久精品久久久久久久性| 精品一区二区三卡| 国产男女超爽视频在线观看| 成人黄色视频免费在线看| 国产视频首页在线观看| 一级黄片播放器| 丝袜喷水一区| 国产伦人伦偷精品视频| 最新在线观看一区二区三区 | 曰老女人黄片| 男人添女人高潮全过程视频| 亚洲欧美精品自产自拍| 免费在线观看黄色视频的| 国产男女内射视频| 欧美日韩精品网址| 国产淫语在线视频| 亚洲欧美精品自产自拍| 高清av免费在线| 美国免费a级毛片| 国产欧美日韩一区二区三区在线| 国产在线免费精品| 欧美日韩成人在线一区二区| 国产日韩一区二区三区精品不卡| 日韩中文字幕欧美一区二区 | 91老司机精品| 亚洲精品中文字幕在线视频| 久久精品国产亚洲av涩爱| 大型av网站在线播放| 99久久精品国产亚洲精品| 啦啦啦视频在线资源免费观看| 亚洲熟女毛片儿| 欧美变态另类bdsm刘玥| 久久免费观看电影| 熟女少妇亚洲综合色aaa.| 最近手机中文字幕大全| 精品亚洲成a人片在线观看| 五月开心婷婷网| 国产一区二区三区av在线| 成人影院久久| 啦啦啦啦在线视频资源| 亚洲国产精品999| 男女边摸边吃奶| 亚洲国产欧美在线一区| a级毛片黄视频| 波多野结衣av一区二区av| 免费高清在线观看日韩| 国产成人一区二区三区免费视频网站 | 国产极品粉嫩免费观看在线| 亚洲成人手机| 成人国产一区最新在线观看 | 午夜福利影视在线免费观看| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 9191精品国产免费久久| 亚洲av在线观看美女高潮| 亚洲中文av在线| 男人操女人黄网站| 精品高清国产在线一区| 精品亚洲成a人片在线观看| 天天添夜夜摸| 大码成人一级视频| 水蜜桃什么品种好| 免费在线观看完整版高清| 十八禁人妻一区二区| 久久久精品94久久精品| 婷婷成人精品国产| 在线精品无人区一区二区三| 亚洲av成人精品一二三区| 高清不卡的av网站| 国产亚洲精品第一综合不卡| 成人亚洲欧美一区二区av| 精品国产一区二区久久| 午夜日韩欧美国产| 免费少妇av软件| 国产伦人伦偷精品视频| 国产高清videossex| 少妇 在线观看| 考比视频在线观看| 欧美日韩视频精品一区| 午夜日韩欧美国产| 精品国产一区二区三区四区第35| 免费看十八禁软件| 精品少妇久久久久久888优播| 婷婷成人精品国产| 成人亚洲欧美一区二区av| 性少妇av在线| 女性被躁到高潮视频| 青春草视频在线免费观看| 精品福利永久在线观看| 欧美另类一区| 悠悠久久av| 欧美日本中文国产一区发布| 极品人妻少妇av视频| 9191精品国产免费久久| av欧美777| 国产精品 国内视频| 国产高清videossex| 日韩中文字幕欧美一区二区 | 人妻人人澡人人爽人人| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 50天的宝宝边吃奶边哭怎么回事| 丝瓜视频免费看黄片| 亚洲av日韩精品久久久久久密 | 亚洲精品中文字幕在线视频| www.av在线官网国产| 精品国产乱码久久久久久小说| 丁香六月欧美| 一个人免费看片子| 老鸭窝网址在线观看| 伦理电影免费视频| 999精品在线视频| 国产一区二区三区综合在线观看| 亚洲伊人久久精品综合| 欧美日韩精品网址| 啦啦啦 在线观看视频| 国产精品秋霞免费鲁丝片| av国产久精品久网站免费入址| 精品人妻1区二区| 99精国产麻豆久久婷婷| 伦理电影免费视频| 韩国精品一区二区三区| 男女下面插进去视频免费观看| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看 | 夜夜骑夜夜射夜夜干| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 丝袜美足系列| 久久久精品免费免费高清| 最新的欧美精品一区二区| 我的亚洲天堂| 91成人精品电影| 国产伦人伦偷精品视频| 人人澡人人妻人| 亚洲精品国产av蜜桃| 人体艺术视频欧美日本| 国产精品三级大全| 丝袜在线中文字幕| 天天添夜夜摸| 制服人妻中文乱码| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 欧美大码av| 国产一级毛片在线| 男女之事视频高清在线观看 | 欧美亚洲日本最大视频资源| av在线老鸭窝| 婷婷色麻豆天堂久久| 十分钟在线观看高清视频www| 免费在线观看日本一区| 午夜免费成人在线视频| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 久久人人爽av亚洲精品天堂| 久久人人97超碰香蕉20202| 国产三级黄色录像| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 国产精品.久久久| 人人妻人人澡人人看| 我要看黄色一级片免费的| av欧美777| 亚洲美女黄色视频免费看| 丰满迷人的少妇在线观看| 一级黄色大片毛片| 久久久精品区二区三区| 91九色精品人成在线观看| 999精品在线视频| 91成人精品电影| 香蕉丝袜av| 久久精品久久久久久噜噜老黄| 亚洲熟女精品中文字幕| 黄色a级毛片大全视频| 久久国产精品影院| 99久久人妻综合| 免费高清在线观看日韩| 国产国语露脸激情在线看| 欧美少妇被猛烈插入视频| 亚洲午夜精品一区,二区,三区| 国产野战对白在线观看| 亚洲,欧美精品.| 国产精品成人在线| 国产男女内射视频| 午夜福利影视在线免费观看| 午夜影院在线不卡| 久久中文字幕一级| 亚洲国产av影院在线观看| 99久久综合免费| 女人被躁到高潮嗷嗷叫费观| 尾随美女入室| cao死你这个sao货| 色婷婷av一区二区三区视频| 热re99久久国产66热| 亚洲欧美激情在线| 欧美精品高潮呻吟av久久| 亚洲av电影在线进入| 观看av在线不卡| 激情五月婷婷亚洲| 色婷婷久久久亚洲欧美| 少妇粗大呻吟视频| avwww免费| 久久国产精品大桥未久av| 欧美亚洲 丝袜 人妻 在线| 可以免费在线观看a视频的电影网站| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸 | 美女主播在线视频| 欧美精品啪啪一区二区三区 | 国产免费现黄频在线看| av天堂久久9| 伊人久久大香线蕉亚洲五| 久久99一区二区三区| 日本av手机在线免费观看| 日本91视频免费播放| 麻豆av在线久日| 啦啦啦中文免费视频观看日本| 日本欧美视频一区| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 免费看不卡的av| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 久久影院123| 十八禁高潮呻吟视频| 日韩av不卡免费在线播放| 久久午夜综合久久蜜桃| 手机成人av网站| 国产日韩欧美在线精品| 精品少妇黑人巨大在线播放| 男女边摸边吃奶| 一本色道久久久久久精品综合| 在线 av 中文字幕| 亚洲视频免费观看视频| 亚洲男人天堂网一区| 欧美精品人与动牲交sv欧美| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 亚洲av电影在线进入| xxx大片免费视频| 亚洲午夜精品一区,二区,三区| 成年动漫av网址| 超色免费av| 一级毛片女人18水好多 | 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 久久国产精品影院| 国产欧美日韩一区二区三 | 青春草视频在线免费观看| 天堂中文最新版在线下载| 日本一区二区免费在线视频| 啦啦啦视频在线资源免费观看| 999久久久国产精品视频| 深夜精品福利| 久久九九热精品免费| 天堂8中文在线网| 亚洲精品中文字幕在线视频| 国产在线免费精品| 一区二区av电影网| 男男h啪啪无遮挡| 亚洲伊人色综图| 国产免费现黄频在线看| 女人精品久久久久毛片| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 夫妻午夜视频| 精品亚洲成国产av| bbb黄色大片| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 国产三级黄色录像| 亚洲av电影在线观看一区二区三区| 国产日韩欧美亚洲二区| 视频区图区小说| 亚洲中文字幕日韩| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 男女之事视频高清在线观看 | 黄片小视频在线播放| 777米奇影视久久| 久久人人97超碰香蕉20202| 只有这里有精品99| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| 国产片特级美女逼逼视频| 性高湖久久久久久久久免费观看| e午夜精品久久久久久久| 五月天丁香电影| 久久精品国产a三级三级三级| av国产久精品久网站免费入址| 欧美精品高潮呻吟av久久| 欧美xxⅹ黑人| 久久热在线av| tube8黄色片| 亚洲av日韩在线播放| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 人成视频在线观看免费观看| 一区二区三区四区激情视频| 天天影视国产精品| 国产黄频视频在线观看| 男女国产视频网站| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 精品欧美一区二区三区在线| 超碰97精品在线观看| 男女免费视频国产| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 嫁个100分男人电影在线观看 | 韩国精品一区二区三区| 久久中文字幕一级| 人人澡人人妻人| 亚洲第一av免费看| 国产女主播在线喷水免费视频网站| 婷婷丁香在线五月| 亚洲一区中文字幕在线| 国产三级黄色录像| 欧美中文综合在线视频| 免费日韩欧美在线观看| 午夜福利一区二区在线看| 欧美日韩视频精品一区| 中文字幕高清在线视频| 涩涩av久久男人的天堂| 成人免费观看视频高清| 国产成人欧美在线观看 | 纯流量卡能插随身wifi吗| 黑丝袜美女国产一区| 欧美中文综合在线视频| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 亚洲国产av新网站| 欧美精品啪啪一区二区三区 | 欧美日韩亚洲高清精品| 精品久久久久久久毛片微露脸 | netflix在线观看网站| 久久久久精品人妻al黑| 脱女人内裤的视频| 日韩,欧美,国产一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 在线观看免费视频网站a站| 亚洲国产欧美在线一区| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 中文乱码字字幕精品一区二区三区| 国产男女超爽视频在线观看| 一本综合久久免费| 国产高清不卡午夜福利| 亚洲情色 制服丝袜| 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 日本av手机在线免费观看| 考比视频在线观看| 国产精品欧美亚洲77777| 精品一品国产午夜福利视频| av一本久久久久| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 丝袜人妻中文字幕| 日韩中文字幕视频在线看片| 性少妇av在线| 精品高清国产在线一区| 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| videos熟女内射| 日韩大码丰满熟妇| 国产免费一区二区三区四区乱码| 欧美av亚洲av综合av国产av| 中国美女看黄片| 色播在线永久视频| 免费看不卡的av| 亚洲av男天堂| 另类精品久久| cao死你这个sao货| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 日本五十路高清| 91国产中文字幕| 男人爽女人下面视频在线观看| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 欧美精品一区二区大全| 一级a爱视频在线免费观看| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 一区二区三区精品91| 亚洲精品在线美女| 国产极品粉嫩免费观看在线| videos熟女内射| 可以免费在线观看a视频的电影网站| 丝袜喷水一区| 国产精品三级大全| 久久av网站| 校园人妻丝袜中文字幕| 国产成人精品在线电影| 超碰成人久久| 欧美精品人与动牲交sv欧美| 丰满饥渴人妻一区二区三| 日本av免费视频播放| 晚上一个人看的免费电影| 少妇人妻 视频| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 国产精品偷伦视频观看了| 亚洲国产欧美日韩在线播放| 极品人妻少妇av视频| 欧美av亚洲av综合av国产av| 久久久精品94久久精品| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 丝袜美腿诱惑在线| 亚洲精品自拍成人| 在线观看www视频免费| 午夜av观看不卡| 中文字幕亚洲精品专区| 一级毛片 在线播放| 男人添女人高潮全过程视频| 国产高清国产精品国产三级| 亚洲国产日韩一区二区| 9191精品国产免费久久| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 在线观看免费午夜福利视频| 晚上一个人看的免费电影| 免费看十八禁软件| 亚洲中文字幕日韩| 别揉我奶头~嗯~啊~动态视频 | 美女高潮到喷水免费观看| 亚洲 欧美一区二区三区| 国产午夜精品一二区理论片| 一级毛片电影观看| 国产精品二区激情视频| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 国产男女内射视频| 亚洲久久久国产精品| 精品高清国产在线一区| 满18在线观看网站| 性色av一级| 婷婷色综合大香蕉| 精品人妻1区二区| 亚洲综合色网址| 国产主播在线观看一区二区 | 午夜两性在线视频| 亚洲激情五月婷婷啪啪| 国产亚洲一区二区精品| 日本av免费视频播放| 女人被躁到高潮嗷嗷叫费观| 性少妇av在线| 丁香六月天网| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 中文字幕av电影在线播放| 亚洲中文av在线| 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| av不卡在线播放| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 最新的欧美精品一区二区| 妹子高潮喷水视频| 又大又黄又爽视频免费| videos熟女内射| 亚洲精品国产一区二区精华液| 80岁老熟妇乱子伦牲交| 久久青草综合色| 女人久久www免费人成看片| netflix在线观看网站| 性色av乱码一区二区三区2| 日韩 亚洲 欧美在线| 只有这里有精品99| 午夜两性在线视频| 伊人亚洲综合成人网| 中文字幕精品免费在线观看视频| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 日韩制服丝袜自拍偷拍| 亚洲色图 男人天堂 中文字幕| 狂野欧美激情性bbbbbb| 免费在线观看完整版高清| 大码成人一级视频| 免费黄频网站在线观看国产| 中文欧美无线码| 一级a爱视频在线免费观看| 成年美女黄网站色视频大全免费| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 亚洲国产最新在线播放| 精品久久久久久久毛片微露脸 | 久久久久久亚洲精品国产蜜桃av| 午夜福利视频在线观看免费| 桃花免费在线播放| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 国产精品久久久av美女十八| 精品久久蜜臀av无| 天天影视国产精品| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 午夜激情久久久久久久| 国产淫语在线视频| 免费久久久久久久精品成人欧美视频| 青春草视频在线免费观看| 高清av免费在线| 青春草视频在线免费观看| 色综合欧美亚洲国产小说| 国产精品国产av在线观看| 亚洲中文日韩欧美视频| 欧美精品一区二区大全| 久久久久久久国产电影| 欧美中文综合在线视频| 亚洲av日韩精品久久久久久密 | 亚洲av电影在线进入| 日韩 亚洲 欧美在线| 18禁黄网站禁片午夜丰满| 日韩电影二区| 国产1区2区3区精品| 永久免费av网站大全| 欧美日韩亚洲高清精品| 亚洲精品国产一区二区精华液| 久久鲁丝午夜福利片| 久久久久网色| 99热国产这里只有精品6| 成年动漫av网址| 日日摸夜夜添夜夜爱| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 日韩av免费高清视频| 日韩,欧美,国产一区二区三区| 亚洲精品日本国产第一区| 99精品久久久久人妻精品| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 天天添夜夜摸| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 下体分泌物呈黄色| 青草久久国产| 欧美亚洲日本最大视频资源| 在线观看免费午夜福利视频| 好男人电影高清在线观看| 桃花免费在线播放| 亚洲国产看品久久| 黑人猛操日本美女一级片| 免费在线观看完整版高清| 日日夜夜操网爽| 欧美日韩综合久久久久久| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 久久精品aⅴ一区二区三区四区| 一区二区三区四区激情视频| 亚洲国产欧美一区二区综合| 人人妻,人人澡人人爽秒播 | 免费少妇av软件| 久久精品久久精品一区二区三区| 欧美在线一区亚洲| 亚洲av成人不卡在线观看播放网 | 在现免费观看毛片| 免费在线观看黄色视频的| 赤兔流量卡办理| 欧美乱码精品一区二区三区| 欧美成狂野欧美在线观看| 巨乳人妻的诱惑在线观看| 黄色毛片三级朝国网站| 国产黄色免费在线视频| 日本91视频免费播放| 久久99热这里只频精品6学生| 人成视频在线观看免费观看| 亚洲图色成人| 国产精品一区二区免费欧美 | 国产亚洲欧美精品永久| 色94色欧美一区二区| 又紧又爽又黄一区二区| 一本—道久久a久久精品蜜桃钙片| 91精品三级在线观看| 老司机在亚洲福利影院| 亚洲伊人久久精品综合| 中文字幕人妻丝袜一区二区| 老司机在亚洲福利影院| 国产成人免费观看mmmm| 中文字幕人妻丝袜一区二区| 丝袜脚勾引网站| 桃花免费在线播放| 啦啦啦 在线观看视频|